首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary To study the physiological role of the bidirectionally operating, furosemide-sensitive Na+/K+ transport system of human erythrocytes, the effect of furosemide on red cell cation and hemoglobin content was determined in cells incubated for 24 hr with ouabain in 145mm NaCl media containing 0 to 10mm K+ or Rb+. In pure Na+ media, furosemide accelerated cell Na+ gain and retarded cellular K+ loss. External K+ (5mm) had an effect similar to furosemide and markedly reduced the action of the drug on cellular cation content. External Rb+ accelerated the Na+ gain like K+, but did not affect the K+ retention induced by furosemide. The data are interpreted to indicate that the furosemide-sensitive Na+/K+ transport system of human erythrocytes mediates an equimolar extrusion of Na+ and K+ in Na+ media (Na+/K+ cotransport), a 1:1 K+/K+ (K+/Rb+) and Na+/Na+ exchange progressively appearing upon increasing external K+ (Rb+) concentrations to 5mm. The effect of furosemide (or external K+/Rb+) on cation contents was associated with a prevention of the cell shrinkage seen in pure Na+ media, or with a cell swelling, indicating that the furosemide-sensitive Na+/K+ transport system is involved in the control of cell volume of human erythrocytes. The action of furosemide on cellular volume and cation content tended to disappear at 5mm external K+ or Rb+. Thein vivo red cell K+ content was negatively correlated to the rate of furosemide-sensitive K+ (Rb+) uptake, and a positive correlation was seen between mean cellular hemoglobin content and furosemide-sensitive transport activity. The transport system possibly functions as a K+ and waterextruding mechanism under physiological conditiosin vivo. The red cell Na+ content showed no correlation to the activity of the furosemide-sensitive transport system.  相似文献   

2.
A. A. Rubashkin 《Biophysics》2013,58(5):660-663
A theory of change of the ionic fluxes in the lymphoid cells in their transition from normal to apoptosis we have developed previously is applied to the analysis of Na+/Na+ exchange fluxes in human lymphoid cells U937 exposed to ouabain. We solve a system of equations describing changes in the intracellular concentrations of Na+, K+ and Cl?, membrane potential and cell volume. It is shown that the Na+ influx (I Na/Na) and output flux through the Na+/Na+ tract increased 4 times in 8 h after disconnecting Na+/K+-ATPase for normal cell U937. These fluxes increased 2.6 times for apoptotic cells. The value of I Na/Na after 8 h off pump by ouabain is 97% of the total Na+ input for both cell types. It is concluded that ouabain not only inhibits the Na+/K+-ATPase, but also increases Na+ exchange fluxes through the Na+/Na+ tract, thereby switching sodium transport across the membrane of lymphoid cells to Na+/Na+ equivalent exchange.  相似文献   

3.
Summary Suspensions of LLC-PK1 cells (a continuous epitheliod cell line with renal characteristics) are examined for mechanisms of intracellular pH regulation using the fluorescent probe BCECF. Initial experiments determine suitable calibration procedures for use of the BCECF fluorescent signal. They also determine that the cell suspension contains cells which (after 4 hr in suspension) have Na+ and K+ gradients comparable to those of cells in monolayer culture. The steady-state intracellular pH (7.05±0.01,n=5) of cells which have recovered in (pH 7.4) Na+-containing medium is not affected over several minutes by addition of 100 M amiloride or removal of extracellular Na+ (Na o + /H i + and Na i + /H o + exchange reactions are functionally inactive (compared to cellular buffering capacity). In contrast, Na o + /H i + exchange is activated by an increased cellular acid load. This activation may be observed directly either as a stimulation of net H+ efflux or net Na+ influx with decreasing intracellular pH. The extrapolation of this latter data suggests a set point of Na+/H+ exchange of approximately pH 7.0, consistent with the observed resting intracellular pH of approximately 7.05.  相似文献   

4.
Summary Addition of glucose or the nonmetabolizable analogue -methyl-d-glucoside to rabbit proximal tubules suspended in a glucoseand alanine-free buffer caused a sustained increase in intracellular Na+ content (+43±7 nmol · (mg protein)–1) and a concomitant but larger decrease in K+ content (–72±11 nmol· (mg protein)–1). A component of the net K+ efflux was Ba2+ insensitive, and was inhibited by high (1mm) but not low (10 m) concentrations of the diuretics, furosemide and bumetanide. The increase in intracellular Na+ content is consistent with the view that the increased rates of Na+ and water transport seen in the proximal tubule in the presence of glucose can be attributed (at least in part) to a stimulation of basolateral pump activity by an increased [Na+] i .  相似文献   

5.
The existence of a subsarcolemmal space with restricted diffusion for Na+ in cardiac myocytes has been inferred from a transient peak electrogenic Na+-K+ pump current beyond steady state on reexposure of myocytes to K+ after a period of exposure to K+-free extracellular solution. The transient peak current is attributed to enhanced electrogenic pumping of Na+ that accumulated in the diffusion-restricted space during pump inhibition in K+-free extracellular solution. However, there are no known physical barriers that account for such restricted Na+ diffusion, and we examined if changes of activity of the Na+-K+ pump itself cause the transient peak current. Reexposure to K+ reproduced a transient current beyond steady state in voltage-clamped ventricular myocytes as reported by others. Persistence of it when the Na+ concentration in patch pipette solutions perfusing the intracellular compartment was high and elimination of it with K+-free pipette solution could not be reconciled with restricted subsarcolemmal Na+ diffusion. The pattern of the transient current early after pump activation was dependent on transmembrane Na+- and K+ concentration gradients suggesting the currents were related to the conformational poise imposed on the pump. We examined if the currents might be accounted for by changes in glutathionylation of the β1 Na+-K+ pump subunit, a reversible oxidative modification that inhibits the pump. Susceptibility of the β1 subunit to glutathionylation depends on the conformational poise of the Na+-K+ pump, and glutathionylation with the pump stabilized in conformations equivalent to those expected to be imposed on voltage-clamped myocytes supported this hypothesis. So did elimination of the transient K+-induced peak Na+-K+ pump current when we included glutaredoxin 1 in patch pipette solutions to reverse glutathionylation. We conclude that transient K+-induced peak Na+-K+ pump current reflects the effect of conformation-dependent β1 pump subunit glutathionylation, not restricted subsarcolemmal diffusion of Na+.  相似文献   

6.
Summary The purpose of this work was to determine if hypotonicity, in addition to the stimulation of active Na+ transport (Venosa, R.A., 1978,Biochim. Biophys. Acta 510:378–383), promoted changes in (i) active K+ influx, (ii) passive Na and K+ fluxes, and (iii) the number of3H-ouabain binding sites.The results indicate that a reduction of external osmotic pressure () to one-half of its normal value (=0.5) produced the following effects: (i) an increase in active K+ influx on the order of 160%, (ii) a 20% reduction in Na+ influx and K+ permeability (P K), and (iii) a 40% increase in the apparent density of ouabain binding sites. These data suggest that the hypotonic stimulation of the Na+ pump is not caused by an increased leak of either Na+ (inward) or K+ (outward). It is unlikely that the stimulation of active Na+ extrusion and the rise in the apparent number of pump sites produced by hypotonicity were due to a reduction of the intracellular ionic strength. It appears that, at least in part, the stimulation of active Na+ transport takes place whenever muscles are transferred from one medium to another of lower tonicity even if neither one was hypotonic (for instance =2 to =1 transfer). Comparison of the present results with those previously reported indicate that in addition to the number of pump sites, the cycling rate of the pump is increased by hypotonicity. Active Na+ and K+ fluxes were not significantly altered by hypertonicity (=2).  相似文献   

7.
1. The sidedness of Ca2+-pump activation by Na+ and K+ was studied by atomic absorption spectrophotometry in human erythrocyte ghosts, which had been prepared in dextran solutions and resealed to alkali cations. 2. When ghosts were incubated in an all-choline medium, the increase in Nai+ elicited an inhibitory-stimulatory effect on Ca2+ extrusion. By contrast, only a stimulatory action was induced when choline was replaced by Na0+. 3. A dual effect on active Ca2+ efflux was also produced by increasing Ki+ or K0+. The biphasic response to the latter, however, was absent from high-K+ ghosts. Furthermore, the stimulation obtained at high K0+ was additive to that elicited by Ki+. 4. The results suggest that Na+ and K+ stimulate the Ca2+ pump of human red cells through two different mechanisms. The first one appears to be an electric coupling between Ca2+ efflux and the external activating cation. The other seems associated with the molecular reactions of the Ca2+-pump protein.  相似文献   

8.
Na+,K+-ATPase activity was monitored in MDCK kidney epithelial cell monolayers and in cell extracts as a function of cell density, cAMP elevation, and exposure to hexamethylene bisacetamide (HMBA) and dimethylsulfoxide (Me2SO). Ouabain-sensitive Na+,K+-ATPase and 86Rb+ uptake activities, and the number of [3H]-ouabain binding sites were maximal in subconfluent cultures and decreased accompanying the development of a confluent monolayer. A sodium pump density of 8 × 107 pumps/cell was estimated for subconfluent cultures, declining to 9 × 105 pumps/cell at confluence. Previous studies have shown that dibutyryl cyclic AMP (Bt2cAMP), 1-methyl-3-isobutylxanthine (IBMX), or the differentiation inducers HMBA and Me2SO, which also caused cAMP elevation, all stimulated dome formation, a visible manifestation of active transepithelial Na+ and water transport (Lever, 1979). In the present study, all of these inducers were found to elevate intracellular Na+ content, implicating this variable in control of induction of dome formation. Operationally, inducers could be divided into two classes. HMBA and Me2SO partially inhibited ouabain-sensitive 86Rb+ influx. Ouabain, at a concentration that caused partial sodium pump inhibition and increased intracellular Na+ content, was also effective as an inducer. The second class, exemplified by IBMX and Bt2cAMP caused a furosemide-sensitive increase in intracellular Na+ content. This class of inducers stimulated ouabain-sensitive 86Rb+ uptake, presumably by substrate effects due to increased Na+ levels. The Na+ or ATP activation of Na+,K+-ATPase activity assayed in cell-free extracts, the affinity of the transport system for Rb+ in intact cells and intracellular ATP levels were unchanged by inducer treatment. Elevation of intracellular Na+ concentration, either by cAMP-stimulated, furosemide-sensitive mechanisms or by partial inhibition of the sodium pump may stimulate the induction of dome formation in MDCK cells.  相似文献   

9.
Adrenergic stimulation of trout red blood cells activates a Na+/H+-exchange. If unopposed, the ensuing increase in cell Na+ leads to an isosmotic cell swelling. In this study the effect of the level of haemoglobin O2 saturation on volume regulation has been investigated in adrenergically stimulated red blood cells from trout: at full haemoglobin O2 saturation, net influx of Na+ through the Na+/H+-exchanger was balanced by net efflux of K+ and no increases in cell volume took place. In contrast, at low O2 saturation (8–14%) adrenergic stimulation led to a substantial increase in cell Na+, K+ and volume. Moreover, cell volume recovery after adrenergic swelling was incomplete at low O2 saturation, whereas cells at high O2 saturation exhibited a fast and complete cell volume recovery. In cells exposed to alternating high and low O2 saturation, volume regulation was similar to the regulation found in cells maintained at high O2 saturation. In cells at high O2 saturation, extrusion of cellular Na+ by the Na+/K+-pump significantly contributed to the volume decrease. It is concluded that trout red blood cells at high or alternating O2 saturations possess a powerful regulatory volume decrease response that is shut off at low O2 saturation. The physiological implications of this regulation is discussed. Accepted: 30 September 1996  相似文献   

10.
J. Barber  Y. J. Shieh 《Planta》1973,111(1):13-22
Summary The rate of Na+/Na+ exchange as measured with 24Na+ in Na+-rich cells of Chlorella pyrenoidosa is governed by a single rate constant and saturates with increasing external Na+ concentration. The K mvalue for this process is 0.8 mM Na+ and the maximum rate of exchange in illuminated cells is about 5 pmoles cm-2 sec-1. These values contrast with a K mof 0.18 mM K+ and maximum rate of about 17 pmoles K+·cm-2·sec-1 for net K+ influx. Although the Na+/Na+ exchange was only slightly sensitive to light it was inhibited by the uncouplers CCCP and DNP and by the energy transfer inhibitor DCCD. This inhibition of the rate of Na+/Na+ exchange was not accompanied by a loss of internal Na+. Both the effect of external K+ on 24Na+ influx into Na+-rich cells and the inhibition of net K+ uptake by the presence of external Na+ indicates that Na+/Na+ and K+/Na+ exchanges share the same carrier and that the external site of this carrier has a three to four times higher affinity for K+ over Na+.  相似文献   

11.
Red cells of hibernating species have a higher relative rate of Na+–K+ pump activity at low temperature than the red cells of a mammal with a typical sensitivity to cold. The kinetics of ATP stimulation of the Na+–K+ pump were determined in guinea pig and ground squirrel red cells at different temperatures between 5 and 37°C by measuring ouabain-sensitive K+ influx at different levels of ATP. In guinea pig cells, elevation of intracellular free Mg2+ to 2 mmol·l-1 by use of the divalent cation ionophore A23187 caused the apparent affinity of the pump for ATP to increase with cooling to 20°C, rather than to decrease, as occurs in cells not loaded with Mg2+. In ground squirrel cells raising intracellular free Mg2+ had little effect on apparent affinity of the pump for ATP at 20°C. ATP affinity rose slightly with cooling both in Mg2+-enriched and in control ground squirrel cells. Increased intracellular free Mg2+ in guinea pig cells stimulated Na+–K+ pump activity so that at 20°C the pump rate was the same in the Mg2+-enriched guinea pig and control ground squirrel cells. Pump activity in Mg2+-enriched guinea pig cells at 5°C was significantly improved but still lower than pump activity in control cells from ground squirrel. Thus, loss of affinity of the Na+–K+ pump for ATP that occurs with cooling in cold-sensitive guinea pig red cells can be, at least partially, prevented by elevating cytoplasmic free Mg2+. Conversely, in ground squirrel red cells natural rise of free Mg2+ may in part account for the preservation of the ATP affinity of their Na+–K+ pump with cooling.Abbreviations K m Michaelis-Menten constant for apparent affinity - MOPS 3-(N-morpholino)-propanesulphonic acid - [Mg2+]i intracellular concentration of free Mg2+ - OD optical density - RBC red blood cell(s) - T b body temperature  相似文献   

12.
13.
Our preliminary studies have shown that the Na,K-pump in frog erythrocytes is activated by isoproterenol (ISP), phosphodiesterase blocker (3-isobutyl-methylxantine, IBMX), and by iodoacetate (MIA). The aim of the present study was to determine a mechanism responsible for the effect of MIA on the Na,K-pump activity in frog red blood cells as well as the role of G proteins and intracellular messengers in modulation of active K+ transport induced by ISP. An additive stimulation of active K+ (86Rb) transport in frog erythrocytes was found after exposure of the cells to MIA in a combination with ISP or IBMX. The treatment of the red blood cells with 1 mM MIA for 1 or 2 h was associated with a significant decrease in intracellular Na+ concentration, on average, by 13 and 20%, respectively, suggesting a direct action of MIA on the Na,K-pump. Incubation of cells in the presence of dibutyryl-cAMP (1 mM) or adenylate cyclase activator forskolin (0.1 mM) caused stimulation of the active K+ influx by 21.8 and 27.9%, respectively. AlF 4 - and cholera toxin able to increase cell cAMP levels via G protein interactions had no effect on the total and IPS-induced K+ influx in frog erythrocytes. The treatment of the red blood cells with sodium nitroprusside that increases cGMP concentration in cells also had no effect on the K+ influx. The stimulatory influence of ISP on the Na,K-pump was reduced with increase of the intracellular Na+ concentration. ISP increased affinity of the Na,K-pump to Na+ (the Mihaelis constant KM = 34.4 ± 5.1 in control and 25.3 ± 2.8 mM in the presence of ISP,p < 0.01), but did not change maximal velocity (8.1 ± 0.6 and 7.7 ± 0.3 mmol/1/h in the control and ISP-treated cells, respectively). The results obtained indicate the presence of several different signal pathways involved in regulation of the Na,K-pump activity in frog erythrocytes.  相似文献   

14.
Proton-dependent, ethylisopropylamiloride (EIPA)-sensitive Na+ uptake (Na+/H+ antiporter) studies were performed to examine if saliva, and ionophores which alter cellular electrolyte balance, could influence the activity of the cheek cell Na+/H+ antiporter. Using the standard conditions of 1 mmol/1 Na+, and a 65:1 (inside:outside) proton gradient in the assay, the uniport ionophores valinomycin (K+) and gramicidin (Na+) increased EIPA-sensitive Na+ uptake by 177% (p < 0.01) and 227% (p < 0.01), respectively. The dual antiporter ionophore nigericin (K+-H+) increased EIPA-sensitive Na+ uptake by 654% (p < 0.01), with maximal Na+ uptake achieved by 1 min and at an ionophore concentration of 50 mol/l, with an EC 50 value 6.4 mol/l. Preincubation of cheek cells with saliva or the low molecular weight (MW) components of saliva (saliva activating factors, SAF) for 2 h at 37°C, also significantly stimulated EIPA-sensitive Na+ uptake. This stimulation could be mimicked by pre-incubation with 25 mmol/l KCl or K+-phosphate buffer. Pre-incubating cheek cells with SAF and the inclusion of 20 mol/1 nigericin in the assay, produced maximum EIPA-sensitive Na+ uptake. After pre-incubation with water, 25 mmol/1 K+-phosphate or SAF, with nigericin in all assays, the initial rate of proton-gradient dependent, EIPA-sensitive Na+ uptake was saturable with respect to external Na+ with Km values of 0.9, 1.7, and 1.8 mmol/l, and V max values of 13.4, 25.8, and 31.1 nmol/mg protein/30 sec, respectively. With 20 mol/1 nigericin in the assay, Na+ uptake was inhibited by either increasing the [K+]o in the assay, with an ID 50 of 3 mmol/l. These results indicate that nigericin can facilitate K+ i exchange for H+ o and the attending re-acidification of the cheek cell amplifies IINa+ uptake via the Na+/H+ antiporter. The degree of stimulation of proton-dependent, EIPA-sensitive Na+ uptake is therefore dependent, in part, on the intracellular K+ i.  相似文献   

15.
Lettré cells maintain a plasma membrane potential near — 60mV, yet are scarcely depolarized by 80 mM Rb+ and are relatively impermeable to 86Rb+. They are depolarized by ouabain without a concomitant change in intracellular cation content. Addition of K+ to cells suspended in a K+ free medium, or of Na+ to cells in a Na+ free medium, hyperpolarizes the cells. They contain electroneutral transport mechanisms for Na+, K+ and H+ which can function as Na+:K+ and Na+:H+ exchanges. It is concluded that plasma membrane potential of Lettré cells, in steady-state for Na+ and K+, is produced by an electrogenic Na+ pump sustained by electroneutral exchanges, and restricted by anion leakage.  相似文献   

16.
Sharad Kumar  D.J.D. Nicholas 《BBA》1984,765(3):268-274
Potassium-depleted cells of Nitrosomonas europaea and Nitrobacter agilis were prepared by diethanolamine treatment and contained less than 5 mM intracellular K+. The addition of K+ to K+-depleted cells of N. europaea and N. agilis resulted in a depolarization of membrane potential (ΔΨ) by about 5 and 10 mV, respectively. This depolarization was, however, compensated by an equivalent increase in transmembrane pH gradient (ΔpH), so that the total proton-motive force (Δp) remained constant, indicating that K+ transport was electrogenic in both bacteria. Using 22Na+-loaded cells, it is shown that both bacteria lack a respiration-dependent Na+ pump; however, antiporters for Na+/H+, K+/Na+ and K+/H+ were detected. Of these, at least the K+/Na+ antiporter required an electrochemical gradient for its operation. It is also shown that the unprotonated form of NH4+ is transported into these bacteria by a simple diffusion mechanism.  相似文献   

17.
Summary Rabbit erythrocytes are well known for possessing highly active Na+/Na+ and Na+/H+ countertransport systems. Since these two transport systems share many similar properties, the possibility exists that they represent different transport modes of a single transport molecule. Therefore, we evaluated this hypothesis by measuring Na+ transport through these exchangers in acid-loaded cells. In addition, selective inhibitors of these transport systems such as ethylisopropyl-amiloride (EIPA) and N-ethylmaleimide (NEM) were used. Na+/Na+ exchange activity, determined as the Na o + -dependent22Na efflux or Na i + -induced22Na entry was completely abolished by NEM. This inhibitor, however, did not affect the H i + -induced Na+ entry sensitive to amiloride (Na+/H+ exchange activity). Similarly, EIPA, a strong inhibitor of the Na+/H+ exchanger, did not inhibit Na+/Na countertransport, suggesting the independent nature of both transport systems. The possibility that the NEM-sensitive Na+/Na+ exchanger could be involved in Na+/H+ countertransport was suggested by studies in which the net Na+ transport sensitive to NEM was determined. As expected, net Na+ transport through this transport system was zero at different [Na+] i /[Na+] o ratios when intracellular pH was 7.2. However, at pH i =6.1, net Na+ influx occurred when [Na+] i was lower than 39mm. Valinomycin, which at low [K+] o was lower than 39mm. Valinomycin, which at low [K+] o clamps the membrane potential close to the K+ equilibrium potential, did not affect the net NEM-sensitive Na+ entry but markedly stimulated, the EIPA-and NEM-resistant Na+ uptake. This suggest that the net Na+ entry through the NEM-sensitive pathway at low pH i , is mediated by an electroneutral process possibly involving Na+/H+ exchange. In contrast, the EIPA-sensitive Na+/H+ exchanger is not involved in Na+/Na+ countertransport, because Na+ transport through this mechanism is not affected by an increase in cell Na from 0.4 to 39mm. Altogether, these findings indicate that both transport systems: the Na+/Na+ and Na+/H+ exchangers, are mediated by distinct transport proteins.  相似文献   

18.
Summary We have investigated the kinetic properties of the human red blood cell Na+/H+ exchanger to provide a tool to study the role of genetic, hormonal and environmental factors in its expression as well as its functional properties in several clinical conditions. The present study reports its stoichiometry and the kinetic effects of internal H+ (H i ) and external Na+ (Na o ) in red blood cells of normal subjects.Red blood cells with different cell Na+ (Na i ) and pH (pH i ) were prepared by nystatin and DIDS treatment of acid-loaded cells. Unidirectional and net Na+ influx were measured by varying pH i (from 5.7 to 7.4), external pH (pH o ), Na i and Na o and by incubating the cells in media containing ouabain, bumetanide and methazolamide. Net Na+ influx (Na i <2.0 mmol/liter cell, Na o = 150mm) increased sigmoidally (Hill coefficient 2.5) when pH i fell below 7.0 and the external pH o was 8.0, but increased linearly at pH o 6.0. The net Na+ influx driven by an outward H+ gradient was estimated from the difference of Na+ influx at the two pH o levels (pH o 8 and pH o 6). The H+-driven Na+ influx reached saturation between pH i 5.9 and 6.1. TheV max had a wide interindividual variation (6 to 63 mmol/liter cell · hr, 31.0±3, mean±sem,n=20). TheK m for H i to activate H+-driven Na+ influx was 347±30nm (n=7). Amiloride (1mm) or DMA (20 m) partially (59±10%) inhibited red cell Na+/H+ exchange. The stoichiometric ratio between H+-driven Na+ influx and Na+-driven H+ efflux was 11. The dependence of Na+ influx from Na o was studied at pH i 6.0, and Na i lower than 2 mmol/liter cell at pH o 6.0 and 8.0. The meanK m for Na o of the H+-gradient-driven Na+ influx was 55±7mm.An increase in Na i from 2 to 20 mmol/liter cell did not change significantly H+-driven net Na+ influx as estimated from the difference between unidirectional22Na influx and efflux. Na+/Na+ exchange was negligible in acid-loaded, DIDS-treated cells. Na+ and H+ efflux from acid-loaded cells were inhibited by amiloride analogs in the absence of external Na+ indicating that they may represent nonspecific effects of these compounds and/or uncoupled transport modes of the Na+/H+ exchanger.It is concluded that human red cell Na+/H+ exchange performs 11 exchange of external Na+ for internal protons, which is partially amiloride sensitive. Its kinetic dependence from internal H+ and external Na+ is similar to other cells, but it displays a larger variability in theV max between individuals.  相似文献   

19.
Simultaneous net uptake of Na+ and net extrusion of H+, both inhibited by amiloride, could be stimulated in red blood cells of the frog, Rana temporaria, either by intracellular acidification or cellular shrinkage. Net transports of Na+ and H+ were transient, dying out after 10–20 min (20°C) when stimulated by intracellular acidification but developing more slowly and proceeding for more than 60 min (20°C) when stimulated by cellular shrinkage. Evidence is presented suggesting a coupling between the transports of Na+ and H+ with an exchange ratio of 1:1 Na+/H+ exchange, stimulated by intracellular acidification, was able to readjust intracellular pH also when operating in parallel to a fully working anion exchanger in CO2/HCO 3 - -buffered media. Inhibition of anion exchange resulted in reduced cellular net uptake of Na+.Abbreviations DIDS 4,4-diisothiocyanatostilbene-2,2-disulphonate - DMSO dimethylsulphoxide - IU international unit - pH e extracellular pH - pH i intracellular pH - RBC red blood cell  相似文献   

20.
Summary Human red cells were prepared with various cellular Na+ and K+ concentrations at a constant sum of 156mm. At maximal activation of the K+ conductance,g K(Ca), the net efflux of K+ was determined as a function of the cellular Na+ and K+ concentrations and the membrane potential,V m , at a fixed [K+]ex of 3.5mm.V m was only varied from (V m E K)25 mV and upwards, that is, outside the range of potentials with a steep inward rectifying voltage dependence (Stampe & Vestergaard-Bogind, 1988).g K(Ca) as a function of cellular Na+ and K+ concentrations atV m =–40, 0 and 40 mV indicated a competitive, voltage-dependent block of the outward current conductance by cellular Na+. Since the present Ca2+-activated K+ channels have been shown to be of the multi-ion type, the experimental data from each set of Na+ and K+ concentrations were fitted separately to a Boltzmann-type equation, assuming that the outward current conductance in the absence of cellular Na+ is independent of voltage. The equivalent valence determined in this way was a function of the cellular Na+ concentration increasing from 0.5 to 1.5 as this concentration increased from 11 to 101mm. Data from a previous study of voltage dependence as a function of the degree of Ca2+ activation of the channel could be accounted for in this way as well. It is therefore suggested that the voltage dependence ofg K(Ca) for outward currents at (V m E K)>25 25 mV reflects a voltage-dependent Na+ block of the Ca2+-activated K+ channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号