首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Monoolein lipid bilayers were formed using a monolayer transfer technique and from dispersions of monoolein in squalene, triolein, 1-chlorodecane and 1-bromodecane. Measurements of optical reflectance and electrical capacitance were used to determine the thickness and dielectric constant of the bilayers. The thickness of the hydrocarbon region of the five bilayer systems ranged from 2.5 to 3.0 nm. Two of the bilayer systems (made from 1-chlorodecane and 1-bromodecane solvents) had a high dielectric constant (2.8 to 2.9) whereas the other bilayer systems had dielectric constants close to that of pure hydrocarbons (2.2). The charge-pulse technique was used to study the transport kinetics of three lipophilic ions and two ion carrier complexes in the bilayers. For the low dielectric constant bilayers, the transport of the lipophilic ions tetraphenylborate, tetraphenylarsonium and dipicrylamine was governed mainly by the thickness of the hydrocarbon region of the bilayer whereas the transport of the ion-carrier complexes proline valinomycin-K+ and valinomycin-Rb+ was nearly independent of thickness. This is consistent with previous studies on thicker monoolein bilayers. The transport of lipophilic anions across bilayers with a high dielectric constant was 20 to 50 times greater than expected on the basis of thickness alone. This agrees qualitatively with predictions based on Born charging energy calculations. High dielectric constant bilayers were three times more permeable to the proline valinomycin-K+ complex than were low dielectric constant bilayers but were just as permeable as low dielectric constant bilayers to the valinomycin-Rb+ complex.  相似文献   

2.
Dielectric measurements on lecithin/cholesterol bimolecular lipid membranes have indicated that the series of extrinsic fluorescent probe molecules, the n-(9-anthroyloxy) fatty acids, cause significant perturbation to the bilayer structure at concentrations equivalent to those used in fluorescence experiments (0.1 mol%). Perturbations were observed in the capacitance and conductance of the electrically distinct substructural regions of the bilayer that were consistent with the putative location of the probe molecules. Inclusion of stearic acid decreased the thickness of the hydrocarbon region of the membrane, presumably by expanding the average surface area per unit membrane mass, and also significantly disrupted the surface regions. The attachment of the anthroyloxy moiety to position 2 of a fatty acid accentuated both these effects. Attachment at position 12 had the reverse effect by increasing the volume of the hydrocarbon region without further disturbance of the surface organisation. The 9-positioned probe had an intermediate effect. The degree of perturbation by the 2-positioned probe was dependent on the probe concentration within the range (probe:lipid) 1:1000 to 1:10 000. The technique therefore detects perturbation of structure at probe levels which are lower than those commonly used in fluorescence-labelling experiments.  相似文献   

3.
The fusion of liposomes with planar lipid bilayers was monitored by two different methods. (a) Liposomes consisting of phospholipids and cholesterol were added to the aqueous phase bathing the cholesterol-deficient planar lipid bilayers in the presence of nystatin. The resulting increase in the planar lipid bilayer's electrical conductance was considered indicative of fusion. (b) Transplanar lipid bilayer injection of 35SO42? trapped inside the liposomes.It is shown by both methods that fusion is specifically dependent on the presence of negatively charged phospholipids both in the liposomes and the planar lipid bilayers and on Ca2+ in the aqueous phase of the fusion system.  相似文献   

4.
The water permeability of the lipid bilayer can be used as a probe of membrane structure. A simple model of the bilayer, the liquid hydrocarbon model, views the membrane as a thin slice of bulk hydrocarbon liquid. A previous study (Petersen, D. (1980) Biochim. Biophys. Acta 600, 666–677) showed that this model does not accurately predict the water permeability of the monoolein/n-hexadecane bilayer: the measured activation energy for water permeation is 50% above the predicted value. From this it was inferred that the hydrocarbon chains in the lipid bilayer are more ordered than in the bulk hydrocarbon liquid. The present study tests the liquid hydrocarbon model for the monoolein/triolein bilayer, which has been shown to contain very little triolein in the plane of the membrane (Waldbillig, R.C. and Szabo, G. (1979) Biochim. Biophys. Acta 557, 295–305). Measurements of the water permeability coefficient of the bilayer are compared with predictions of the liquid hydrocarbon model based on measurements of the water permeability coefficient of bulk 8-heptadecene. The predicted and measured values agree quite closely over the temperature range studied (15–35°C): the predicted activation energy is 11.1±0.2 kcal/mol, whereas the measured activation energy for the bilayer is 9.8±0.7 kcal/mol. This close agreement is in contrast with the monoolein/n-hexadecane results and suggests that, insofar as water permeation is concerned, the liquid hydrocarbon model quite closely represents the monoolein/triolein bilayer.  相似文献   

5.
Small-angle neutron scattering (SANS) experiments were performed on unilamellar 1,2-dimyristoylphosphatidylcholine (DMPC) vesicles prepared in heavy water by extrusion through polycarbonate filters with 500 Å pores. The data obtained at 30±0.1 °C were evaluated using a five-strip function model of the bilayer coherent neutron scattering length density, three different approximate form factors describing scattering from vesicles, and different methods of evaluation of the experimental data. It is shown that the results obtained from the SANS data in the range of scattering vector values 0.0316 Å–1<q<0.0775 Å–1 are not sensitive to the vesicle form factor, nor to the evaluation method. Using the hollow sphere model of vesicles convoluted with the Gaussian distribution of their sizes, a constrained bilayer polar region thickness of 9 Å and a DMPC headgroup volume of 325.5 Å3, it was possible to obtain from the experimental data the DMPC surface area as 58.9±0.8 Å2, the bilayer thickness as 44.5±0.3 Å and the number of water molecules as 6.8±0.2 per DMPC located in the bilayer polar region.  相似文献   

6.
The continuous decrease of the quadrupolar splitting of deuterated water interacting with phosphocholine lipid bilayers with growing water concentration is analyzed as a function of the water activity. From the apparent linear dependence on water activity a measure for hydration forces is obtained. The forces calculated are in the range of published data using sorption isotherms and osmotic stress technique in combination with SAXS. A simple interaction potential which includes orientational order of water adsorbed on surfaces gives a physical base for these findings. Therefore, deuterium NMR may become a powerful tool for hydration force analysis complementing well-known methods.  相似文献   

7.
Molecular dynamics simulations of fully hydrated Dipalmitoylphosphatidylcholine bilayers, extending temporal and spatial scales by almost one order of magnitude, are presented. The present work reaches system sizes of 1024 lipids and times 10-60 ns. The simulations uncover significant dynamics and fluctuations on scales of several nanoseconds, and enable direct observation and spectral decomposition of both undulatory and thickness fluctuation modes. Although the former modes are strongly damped, the latter exhibit signs of oscillatory behavior. From this, it has been possible to calculate mesoscopic continuum properties in good agreement with experimental values. A bending modulus of 4 x 10(-20) J, bilayer area compressibility of 250-300 mN/m, and mode relaxation times in the nanosecond range are obtained. The theory of undulatory motions is revised and further extended to cover thickness fluctuations. Finally, it is proposed that thickness fluctuations is the explanation to the observed system-size dependence of equilibrium-projected area per lipid.  相似文献   

8.
The binding of organic anions and cations, mainly tetraphenylboride and tetraphenylarsonium, to phospholipid membranes has been studied using an NMR method. Binding is appreciable and is affected by cholesterol in the membrane and counterions in solution. The passage of the organic anions through the membrane has also been followed. These measurements indicate that it is naive to use organic anions to measure membrane potentials in a simple manner.  相似文献   

9.
10.
Summary It has been shown that the capacitance, thickness and composition of black lipid films may depend strongly on the hydrocarbon solvent used in their formation. By the use of n-hexadecane, films have been formed which contain effectively no solvent and which are comparable to the leaflets of the mesomorphic phase of the pure lipid. These films have capacitances of ca. 0.6 F/cm2 and hydrocarbon thicknesses of ca. 31 Å. Thinner black films of higher capacitances are also described.The capacitances of biological membranes are, in contrast, nearer to 1 F/cm2, and it is suggested that the hydrocarbon region in these membranes may often be thinner than in the lipid leaflets. This suggestion is consistent with some X-ray and lipid composition data. It is pointed out that if the membranes contain abnormally thin lipid leaflets, the area per polar head group of the phospholipid must be increased, and that hydrocarbon is thereby exposed to the aqueous phases. Non-polar protein residues could then interact with these hydrocarbon areas, thus tending to stabilize the expanded leaflet.  相似文献   

11.
In this study we address the stability of integration of proteins in membranes. Using dynamic atomic force spectroscopy, we measured the strength of incorporation of peptides in lipid bilayers. The peptides model the transmembrane parts of alpha-helical proteins and were studied in both ordered peptide-rich and unordered peptide-poor bilayers. Using gold-coated AFM tips and thiolated peptides, we were able to observe force events which are related to the removal of single peptide molecules out of the bilayer. The data demonstrate that the peptides are very stably integrated into the bilayer and that single barriers within the investigated region of loading rates resist their removal. The distance between the ground state and the barrier for peptide removal was found to be 0.75 +/- 0.15 nm in different systems. This distance falls within the thickness of the interfacial layer of the bilayer. We conclude that the bilayer interface region plays an important role in stably anchoring transmembrane proteins into membranes.  相似文献   

12.
Spectral reflectance (R) of corals is a fundamental parameter to coral reef remote sensing. We explore general trends as well as geographic and taxonomic variabilities of coral R using a data set consisting of 5,199 Rs measured in situ at depths of up to 15 m for 195 coral colonies at 11 sites worldwide. Coral R ranges in magnitude from ~0.5% at 400 nm to near 100% at 700 nm; mean coral R rises from ~2.5% at 400–500 nm to ~8% between 550 and 650 nm. All corals measured in this study exhibit one of two basic shapes of R, which we label the brown and blue modes. We postulate that brown-mode R is determined by pigment absorption solely by zooxanthellae, while blue-mode R arises through expression of a non-fluorescing coral-host pigment. Taxonomic and geographic variabilities are approximately equal to global variability, both in magnitude and shape, indicating that coral R is independent of taxonomic or geographic differences. We reason that this is to be expected, since R is determined by pigments that are conservative across geographic and taxonomic boundaries.  相似文献   

13.
We investigate the structure of cholesterol-containing membranes composed of either short-chain (diC14:1PC) or long-chain (diC22:1PC) monounsaturated phospholipids. Bilayer structural information is derived from all-atom molecular dynamics simulations, which are validated via direct comparison to x-ray scattering experiments. We show that the addition of 40 mol % cholesterol results in a nearly identical increase in the thickness of the two different bilayers. In both cases, the chain ordering dominates over the hydrophobic matching between the length of the cholesterol molecule and the hydrocarbon thickness of the bilayer, which one would expect to cause a thinning of the diC22:1PC bilayer. For both bilayers there is substantial headgroup rearrangement for lipids directly in contact with cholesterol, supporting the so-called umbrella model. Importantly, in diC14:1PC bilayers, a dynamic network of hydrogen bonds stabilizes long-lived reorientations of some cholesterol molecules, during which they are found to lie perpendicular to the bilayer normal, deep within the bilayer’s hydrophobic core. Additionally, the simulations show that the diC14:1PC bilayer is significantly more permeable to water. These differences may be correlated with faster cholesterol flip-flop between the leaflets of short-chain lipid bilayers, resulting in an asymmetric distribution of cholesterol molecules. This asymmetry was observed experimentally in a case of unilamellar vesicles (ULVs), and reproduced through a set of novel asymmetric simulations. In contrast to ULVs, experimental data for oriented multilamellar stacks does not show the asymmetry, suggesting that it results from the curvature of the ULV bilayers.  相似文献   

14.
The interaction of melittin with lecithin bilayers was studied using the resulting surface potentials at the bilayer/water interfaces to monitor the association. Melittin added to the aqueous phase binds strongly to the interface but remains localized on that side of the bilayer to which it is added. The analysis of the binding curves reveals the inadequacy of the Gouy-Chapman theory for the fixed-charge surface potential in describing the electrostatic potential experienced by the adsorbed molecules. Calculations based on the Stern equation, modified for a discrete charge distribution, give a good fit to the experimental data. The thermodynamic analysis revealed different binding energies, ΔG°, at 10 and 100 mM ionic strength (?7.85 and ?8.26 kcal/mol, respectively). Binding saturates at an area of 650 Å2 per melittin molecule. A change in the surface dipole potential corresponding to ?1.1 debye/?a (?a = dielectric constant of the adsorption region) had to be postulated. The Debye-Hückel length for a charge bound to the membrane/solution interface was found to be about one-third smaller than in bulk solution.  相似文献   

15.
The force between two phosphatidylcholine bilayers is measured as a function of their separation, showing a strong hydration repulsion at short range, as previously reported by LeNeveu et al. (LeNeveu, D.M., Rand, R.P., Parsegian, V.A. and Gingell, D. (1977) (Biophys. J. 18, 209–230). The experimental technique also allows direct observation of the molecular process by which two bilayers fuse into one.  相似文献   

16.
The diffusion of lipids in bilayers on curved supports of porous silica beads is studied by deuterium solid state NMR relaxation. We demonstrate that the combination of bilayers coated on curved silica substrates with NMR experiments and simulations which are sensitive to the diffusive motion of the fluid bilayer lipids can provide information about the substrate topology. This provides a new approach for the exploration of the complex internal surface topology of silica gels widely used in biomolecule chromatography. Received: 10 December 1997 / Revised version: 26 January 1998 / Accepted: 4 February 1998  相似文献   

17.
Both dimethylsulfoxide (DMSO) and glycerol act cryoprotectants for biological systems and materials. Knowledge of molecular interactions of DMSO and glycerol with biological lipids is important for understanding of their cryoprotecitive mechanisms. In this study, the phase behavior and structures of hydrated monoolein were investigated in the presence of DMSO or glycerol, using differential scanning calorimetry (DSC) and simultaneous X-ray diffraction/DSC measurements. Based on the results obtained by this study, partial phase diagrams were constructed as a function of DMSO or glycerol concentrations and temperature. DMSO and glycerol hardly affect the enthalpy value for melting temperature of lamellar crystal phase of monoolein and the structure. On the other hand, DMSO and glycerol greatly affect the phase transformations associated with bicontinuous cubic phases of monoolein and the cubic phase structures. DMSO expands Im3m/Pn3m cubic phase co-existence region in the phase diagram and increases the lattice constant of the Pn3m monoolein cubic phase. Glycerol shows opposite effects. The present study suggests that different mechanisms act in the cryopreservation by DMSO and glycerol.  相似文献   

18.
X-ray diffraction studies have been performed, as a function of water content, on dipalmitoyl phosphatidyl-glycerol bilayers, both in the charged state at pH 8.0 and in the protonated state at pH 1.5, using buffers of 1.5 M salt concentration. Measurements were made at 20°C, and the high-angle reflections indicated that the bilayers were in the ordered phase at both pH values. Lamellar diffractions were observed under all conditions studied. The lamellar repeat reached a limiting value of 62.4 Å (6.24 nm) at a water/lipid ratio of 0.24 at pH 8.0, and a limiting value of 67.3 Å (6.73 nm) at a water/lipid ratio of 0.22 at pH 1.5. The area per lipid molecule in the plane of the bilayer, deduced from the bilayer thickness and the lipid partial specific volume, is 48 Å2 (0.48 nm2) at pH 8.0 and 37 Å2 (0.37 nm2) at pH 1.5. The area per molecule in the plane perpendicular to the chain axes, deduced from the X-ray short spacings, is 40.5 Å2 (0.405 nm2) at pH 8.0 and 39.2 Å2 (0.392 nm2) at pH 1.5. Thus the lipid molecules are tilted by approx. 30° relative to the bilayer normal at pH 8.0, but are not essentially untilted at pH 1.5.  相似文献   

19.
Solid-state NMR methods employing (2)H NMR and geometric analysis of labeled alanines (GALA) were used to study the structure and orientation of the transmembrane alpha-helical peptide acetyl-GWW(LA)(8)LWWA-amide (WALP23) in phosphatidylcholine (PC) bilayers of varying thickness. In all lipids the peptide was found to adopt a transmembrane alpha-helical conformation. A small tilt angle of 4.5 degrees was observed in di-18:1-PC, which has a hydrophobic bilayer thickness that approximately matches the hydrophobic length of the peptide. This tilt angle increased slightly but systematically with increasing positive mismatch to 8.2 degrees in di-C12:0-PC, the shortest lipid used. This small increase in tilt angle is insufficient to significantly change the effective hydrophobic length of the peptide and thereby to compensate for the increasing hydrophobic mismatch, suggesting that tilt of these peptides in a lipid bilayer is energetically unfavorable. The tilt and also the orientation around the peptide axis were found to be very similar to the values previously reported for a shorter WALP19 peptide (GWW(LA)(6)LWWA). As also observed in this previous study, the peptide rotates rapidly around the bilayer normal, but not around its helix axis. Here we show that these properties allow application of the GALA method not only to macroscopically aligned samples but also to randomly oriented samples, which has important practical advantages. A minimum of four labeled alanine residues in the hydrophobic transmembrane sequence was found to be required to obtain accurate tilt values using the GALA method.  相似文献   

20.
The orientation of the motional axis of (-)-delta 9-tetrahydrocannabinol in dipalmitoylphosphatidylcholine model membrane was calculated from the 2H quadrupolar splittings (delta nu Q) of individual deuterons strategically located on the cannabinoid tricyclic component. The molecule assumes an orientation in which its long axis is nearly perpendicular to the phospholipid chains and its most ordered axis is almost in the plane of the aromatic ring. This 'awkward' cannabinoid orientation in the membrane presumably occurs in order to allow the phenolic hydroxyl group to direct itself towards the polar bilayer interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号