首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cultured epithelial monolayers of MDCK cells grown upon Millipore filter supports and mounted in Ussing chambers for transport studies respond to addition of 5 · 10?7M adrenalin from only the basal bathing solution by an increased short-circuit current, due both to an increased transmonolayer potential difference (basal solution electropositive) and an increased transmonolayer conductance. Measurement of tracer Na+, K+ and Cl? fluxes demonstrate that the adrenalin-stimulated short-circuit current results primarily from basal to apical net Cl? secretion. Half-maximal stimulation of the short-circuit current was observed at (3.1 ± 0.3) · 10?8M adrenalin; the order of potency of adrenergic agonists for short-circuit current stimulation was isoprenalin >adrenalin >noradrenalin, consistent with adrenalin action being mediated by a β-adrenergic receptor. The adrenalin-stimulated short-circuit current was sensitive to inhibition (75%) by basal additions of furosemide (1 · 10?4M); phloretin inhibition (54%, 57%) was observed from both epithelial surfaces. Amiloride (10?4 M) and 4-acetamido-4-isothiocyanostilbene-2, 2′-disulphonic acid (SITS) (10 μM) were ineffective as inhibitors of the adrenalin response. The increased short-circuit current was sensitive to replacement of medium Na+ by choline (87%) and Tris (93%). Li+ was a partially effective substitute cation for Na+ · NO3?, and isethionate were ineffective substitutes for Cl? whereas Br? was partially effective. Partial replacement of medium Na+ by choline gave an upward-curving non-saturable dependence of the adrenalin-stimulated short-circuit current upon [Na]; partial replacement of Cl? by NO3? in contrast gave a saturable increase with a K12 of approx. 65 mM Cl?.  相似文献   

2.
A maximal rate of the ouabain-sensitive 204Tl influx in human erythrocytes can be attained at trace concentrations of Tl+ in Mg2+ isotonic media free of K+ and Na+. The maximal influx of Tl+ from isotonic Mg(NO3)2 at 20°C and pH 7.4 was 0.45 mM · 1?1 · h?1 with a Km of 0.025 mM. In contrast to the active influx of Tl+, the passive Tl+ fluxes were neither saturated nor influenced by external cations in the range of concentrations of Tl+ and K+ studied. The rate constants of Tl+ passive fluxes in human and cat erythrocytes can be related to pH by the equation log kin(out) = –A + B · pH, where A and B are empirical constants for particular conditions. The apparent activation energy was 16 and 11 kcal/mol in sulphate and nitrate media, respectively. Tl+ and the alkali metal cations seem to overcome a common barrier in the erythrocyte membrane. Nevertheless, the rate of the passive penetration of Tl+ is about two orders of magnitude faster than those of K+ or Rb+. An extra non-Coulombic interaction between Tl+ and membrane ligands appears to be involved providing an accumulation of Tl+ somewhere in the vicinity of the membrane barrier and increasing the diffusion fluxes of Tl+ in both directions.  相似文献   

3.
The technique of laser Doppler electrophoresis was applied for the study of the surface charge properties of (Na+,+)-ATPase containing microsomal vesicles derived from guinea-pig kidney. The influence of pH, the screening and binding of uni- and divalent cations and the binding of ATP show: (1) one net negative charge per protein unit with a pK = 3.9; (2) deviation from the Debye relation between surface potential and ionic strength for univalent cations, with no difference in the effect of Na+ and K+; (3) Mg2+ binds with an association constant of Ka = 1.1 · 102M?1 while ATP binds with an apparent Ka = 1.1 · 104M?2 for 1 mM Nacl, 0.2 mM KCI, 0.1 mM MgCl2, 0.1 mM Tris-HCI (pH 7.3). The binding is weaker at higher Mg2+ concentrations. There is no ATP binding in the absence of Mg2+. In addition, the average vesicle size derived from the linewidth of the quasi-elastic light scattering spectrum is 203.7 ± 15.2 nm. In the presence of ATP a reduction in size is observed.  相似文献   

4.
Depletion of mitochondrial divalent cations by addition of the ionophore A23187 results in a marked increase in passive 42K+K+ exchange activity. The exchange is activated by increasing pH and temperature and inhibited by added divalent cations. The reaction is independent of the amount of A23187 present, but depends on the concentration of external K+ (Km = 25 mm). Intramitochondrial 42K+ in cation-depleted mitochondria exchanges passively with external Na+ and Li+, but not with choline+. The evidence suggests that removal of mitochondrial divalent cations by A23187 activates the endogenous K+H+ exchange component of the mitochondrion and that the activated exchanger promotes cation/cation exchange in the absence of a metabolic pH gradient.  相似文献   

5.
(1) Treatment of (Na+ + K+)-ATPase from rabbit kidney outer medulla with the γ-35S labeled thio-analogue of ATP in the presence of Na+ + Mg2+ and the absence of K+ leads to thiophosphorylation of the enzyme. The Km value for [γ-S]ATP is 2.2 μM and for Na+ 4.2 mM at 22°C. Thiophosphorylation is a sigmoidal function of the Na+ concentration, yielding a Hill coefficient nH = 2.6. (2) The thio-analogue (Km = 35 μM) can also support overall (Na+ + K+)-ATPase activity, but Vmax at 37°C is only 1.3 γmol · (mg protein)? · h?1 or 0.09% of the specific activity for ATP (Km = 0.43 mM). (3) The thiophosphoenzyme intermediate, like the natural phosphoenzyme, is sensitive to hydroxylamine, indicating that it also is an acylphosphate. However, the thiophosphoenzyme, unlike the phosphoenzyme, is acid labile at temperatures as low as 0°C. The acid-denatured thiophosphoenzyme has optimal stability at pH 5–6. (4) The thiophosphorylation capacity of the enzyme is equal to its phosphorylation capacity, indicating the same number of sites. Phosphorylation by ATP excludes thiophosphorylation, suggesting that the two substrates compete for the same phosphorylation site. (5) The (apparent) rate constants of thiophosphorylation (0.4 s?1 vs. 180 s?1), spontaneous dethiophosphorylation (0.04 s?1 vs. 0.5 s?1) and K+-stimulated dethiophosphorylation (0.54 s?1 vs. 230 s?1) are much lower than those for the corresponding reactions based on ATP. (6) In contrast to the phosphoenzyme, the thiophosphoenzyme is ADP-sensitive (with an apparent rate constant in ADP-induced dethiophosphorylation of 0.35 s?1, KmADP = 48 μM at 0.1 mM ATP) and is relatively K+-insensitve. The Km for K+ in dethiophosphorylation is 0.9 mM and in dephosphorylation 0.09 mM. The thiophosphoenzyme appears to be for 75–90% in the ADP-sensitive E1-conformation.  相似文献   

6.
7.
The effect of acetylcholine and the cholecystokinin-like peptide, caerulein on the fractional efflux of 86Rb+ from preloaded isolated segments of mouse pancreas were studied. Both secretagogues evoked a marked transient increase in 86Rb+ efflux. The removal of Ca2+ from the superfusing medium and addition of 10?4 M EGTA, markedly reduced, but did not abolish the responses to either acetylcholine or caerulein. Furosemide (10?5?10?3M) or piretanide (10?4 M) reduced the basal efflux and inhibited the secretagogue-elicited responses. Stimulus-induced 86Rb+ outflow was abolished when the Cl? component of the superfusing solution was replaced by either NO3?, SO42? or I? but not in case of replacement by Br?, When Na+ was replaced with either Li+ or choline+ both acetylcholine and caerulein failed to elicit any detectable increase in 86Rb+ outflow. However, when Tris+ was substituted for Na+, acetylcholine caused a moderate increase in 86Rb+ efflux which was abolished by either furosemide (10?4 M) or chloride depletion (nitrate substitution). The removal of extracellular K+ or pretreatment with 10?3 M ouabain had little effect on secretagogue-evoked 86Rb+ efflux. These results indicate the presence of a diuretic-sensitive Na+-K+-Cl? cotransport system in the mouse pancreatic acinar cell membrane.  相似文献   

8.
Dispersed acini from dog pancreas were used to examine the ability of dopamine to increase cyclic AMP cellular content and the binding of [3H]dopamine. Cyclic AMP accumulation caused by dopamine was detected at 1·10?8 M and was half-maximal at 7.9±3.4·10?7M. The increase at 1·10?5 M, (7.5-fold) was equal to the half-maximal increase caused by secretin at 1·10?9 M. Haloperidol, a dopaminergic receptor antagonist inhibited cyclic AMP accumulation caused by dopamine. The IC50 value for haloperidol, calculated from the inhibition of cyclic AMP increase caused by 1·10?5 M dopamine was 2.3±0.9·10?6M. Haloperidol did not alter basal or secretin-stimulated cyclic AMP content. [3H]Dopamine binding was studied on the same batch of cells as cyclic AMP accumulation. At 37°C, it was rapid, reversible, saturable and stereospecific. The Kd value for high affinity binding sites was 0.43±0.1·10?7M and 4.7±1.6·10?7M for low affinity binding sites. The concentration of drugs necessary to inhibit specific binding of dopamine by 50% was 1.2±0.4·10/t-7M noradrenaline, 2·10/t-7 M epinine, 4.1±1.8·10/t-6M fluphenazine, 8.0±1.6·10/t-6M haloperidol, 4.2±1.2·10?6Mcis-flupenthixol, 2.7±0.4·10?5Mtrans-flupenthixol, >1·10?5M apomorphine, sulpiride, naloxone and isoproterenol.  相似文献   

9.
10?5 M cyclic AMP has high permeability in human erythrocyte ghosts (p = 0.061 · 10?6cm · s?1). Saturation of influx and efflux occurs. Kztoi = 4.43 mM. Vztoi = 259.6 μM · min?1. Kztio = 0.475 μM. Vztio = 28.3 μM · min?1 at 30°C. Equilibrium exchange entry of cyclic AMP has similar kinetics to zero trans influx, though the system does show counterflow. Cythochalasin B is an apparent competitive inhibitor of cyclic AMP exit. (Ki = 3.9 · 10?7M).Control experiments indicated that cyclic AMP remains intact during incubation with red blood cell ghosts and is contained within the intravesicular space during the transport experiments.  相似文献   

10.
Human red cell and guinea pig kidney (Na+ + K+)-ATPase were phosphorylated at 0°C. Using concentrations of ATP ranging from 10?6 to 10?8 M, ATP-dependent regulation of reactivity is observed with red cell but not kidney (Na+ + K+)-ATPase at 0°C. In particular, with the red cell enzyme only, the following are observed: (i) the ratio of enzyme-bound ATP (E·ATP, measured by the pulse-chase method of Post, R.L., Kume, S., Tobin, T., Orcutt, B. and Sen, A.K. (1969) J. Gen. Physiol. 54, 306s-326s) to steady-state level of total phosphoenzyme (EP) decreases with decrease in ATP concentration and (ii) the apparent turnover of phosphoenzyme (ratio of Na+-stimulated ATP hydrolysis to level of total EP at steady state) also varies as a function of ATP concentration. In addition, when EP is formed at very low ATP (0.02 μM), and then EDTA is added, rapid disappearance of a fraction of EP occurs, presumably due to ATP resynthesis, only with the red cell enzyme. These differences in behaviour of the red cell and kidney enzymes are explained on the basis of the observed predominance of K+-insensitive EP in red cell, but K+-sensitive EP in kidney (Na+ + K+)-ATPase at 0°C.  相似文献   

11.
(Na+ + K+)-ATPase from dog kidney lost its activity when heated at 55°C in the presence of 0.3 M 2-mercaptoethanol. Either heat treatment alone or addition of reducing agent at around 25°C caused little inactivation. One disulfide bond per protomer (mol. wt. 146000) was reduced in the inactivated sample but in active samples no reduction occurred. Neither K+-dependent phosphatase activity nor phosphoenzyme formation in the presence of Na+ was detected in the inactivated sample, suggesting that the disulfide bond was essential for the catalytic cycle of (Na+ + K+)-ATPase. This essential disulfide bond belonged to the β-subunit, the glycoprotein component of the enzyme, indicating that the β-subunit may be an integral component of the (Na+ + K+)-ATPase system.  相似文献   

12.
In genetically low K+ but not in high K+ red cells of sheep and goat N-ethylmaleimide induced a ouabain insensitive K+ flux as measured by tracer influx or net efflux methods. The augmented K+ flux was observed in Cl? or Br? but not in NO3?, SO42? or PO42? media. The action of N-ethylmaleimide was distinct from that of parachloromercuribenzoate or its sulfonic acid derivative which increased both passive K+ and Na+ movements across the red cell membrane. The instantaneous selective action of N-ethylmaleimide suggests that sulfhydryl groups control a K+Cl? transport system which, associated with the low K+ gene, is apparently functionally silent in adult ruminant red cells.  相似文献   

13.
Na+, K+ and Cl? concentrations (cji) and activities (aji), and mucosal membrane potentials (Em) were measured in epithelial cells of isolated bullfrog (Rana catesbeiana) small intestine. Segments of intestine were stripped of their external muscle layers, and bathed (at 25°C and pH 7.2) in oxygenated Ringer solutions containing 105 mM Na+ and Cl? and 5.4 mM K+. Na+ and K+ concentrations were determined by atomic absorption spectrometry and Cl? concentrations by conductometric titration following extraction of the dried tissue with 0.1 M HNO3. 14C-labelled inulin was used to determine extracellular volume. Em was measured with conventional open tip microelectrodes, aCli with solid-state Cl?-selective silver microelectrodes and aNai and aKi with Na+- and K+-selective liquid ion-exchanger microelectrodes. The average Em recorded was ?34 mV. cNai, cKi and cCli were 51, 105 and 52 mM. The corresponding values for aNai, aKi and aCli were 18, 80 and 33 mM. These results suggest that a large fraction of the cytoplasmic Na+ is ‘bound’ or sequestered in an osmotically inactive form, that all, or virtually all the cytoplasmic K+ behaves as if in free solution, and that there is probably some binding of cytoplasmic Cl?. aCli significantly exceeds the level corresponding to electrochemical equilibrium across the mucosal and baso-lateral cell membranes. Earlier studies showed that coupled mucosal entry of Na+ and Cl? is implicated in intracellular Cl? accumulation in this tissue. This study permitted estimation of the steady-state transapical Na+ and Cl? electrochemical potential differences (Δμ̄Na and Δμ̄Cl). Δμ̄Na (?7000 J · mol?1; cell minus mucosal medium) was energetically more than sufficient to account for Δμ̄Cl (1000–2000 J · mol?1).  相似文献   

14.
[3H]Ouabain binding to intact MDCK (cultured monolayers of dog kidney) cells of 60 serial passages is dependent upon ouabain concentration, time and medium K+. By utilising high K+ incubations to estimate non-specific [3H]ouabain-binding, the concentration of ouabain giving half maximal specific binding was estimated to be 1.0 · 10?7 M and the total maximum binding to be 2.33 · 105 sites/cell. Ouabain inhibition of (Na+, K+)-pump function was monitored by the cellular uptake of B6Rb over 5 min. The larger fraction of B6Rb uptake was ouabain sensitive and the ouabain concentration giving half-maximal inhibition was 2 · 10?7 M. The cellular distribution of the (Na+ + K+)-ATPase was investigated using [3H]ouabain autoradiography of intact freeze-dried epithelial monolayers of MDCK cells grown upon millipore filter supports. Binding of [3H]ouabain is localised over the lateral cellular membranes. Autoradiographic silver grain density is close to background levels over both the apical and basal (attachment) membranes.  相似文献   

15.
Analysis of the cation composition of growing Mycoplasma mycoides var. Capri indicates that these organisms have a high intracellular K+ concentration (Ki: 200–300 mM) which greatly exceeds that of the growth medium, and a low Na+ concentration (Nai+: 20 mM). Unlike Nai+, Ki+ varies with cell aging.The K+ transport properties studied in washed organisms resuspended in buffered saline solution show that cells maintain a steady and large K+ concentration gradient across their membrane at the expense of metabolic energy mainly derived from glycolysis. In starved cells, Ki+ decreases and is partially compensated by a gain in Na+. This substitution completely reverses when metabolic substrate is added (K+ reaccumulation process). Kinetic analysis of K+ movement in cells with steady K+ level shows that most of K+ influx is mediated by an autologous K+-K+ exchange mechanism. On the other hand, during K+ reaccumulation by K+-depleted cells, a different mechanism (a K+ uptake mechanism) with higher transport capacity and affinity drives the net K+ influx. Both mechanisms are energy-dependent.Ouabain and anoxia have no effect on K+ transport mechanisms; in contrast, both processes are completely blocked by dicyclohexylcarbodiimide, an inhibitor of the Mg2+-dependent ATPase activity.  相似文献   

16.
(1) A membrane fraction enriched in (Na+ + K+)-ATPase (EC 3.6.1.3) was obtained from optic ganglia of the squid (Loligo pealei) by density gradient fractionation of membranes followed by treatment with either SDS or Brij-58. The resulting membrane had an (Na+ + K+)-ATPase specific activity of approx. 2 units/mg and was >95% ouabain-sensitive. (2) The (Na+ + K+)-ATPase had a Km for ATP of 0.42 ± 0.04 mM and a pH optimum of 7.0. It was inhibited by ouabain with a Ki of 0.32 ± 0.04 μM. (3) Optimum monovalent cation concentrations were: 240 mM NaCl, 60 mM KCl, tested with NaCl + KCl = 300 mM. (4) The Mg2+ dependence of hydrolysis varied with the absolute ATP concentration. At 3 mM ATP, theKm for Mg2+ was 0.86 ± 0.10 mM, and at 6 mM ATP, the Km was 1.86 ± 0.44 mM. High levels of Mg2+ caused inhibition of hydrolysis. (5) The interactions of Na+ and K+ were examined over a range of conditions. K+ levels caused modulations in the Na+ dependence in the range of 1–150 mM. (6) The (Na+ + K+)-ATPase prepared from squid optic ganglion displays properties similar to those of the sodium pump in injected nerves.  相似文献   

17.
Effect of changing [K+], [Na+] and [Cl?] in nutrient solution on potential difference (PD) and resistance was studied in bullfrog antrum with and without nutrient HCO3? but with 95% O2/5% CO2 in both cases. In both cases, changing from 4 to 40 mM K+ gave about the same initial PD maximum (anomalous response) which was followed by a decrease below control level. Latter effect was much less with zero than with 25 mM HCO3?. Changing from 102 to 8 mM Na+ gave initial normal PD response about the same in both cases. However, 10 min later the change in PD with zero HCO3? was insignificant but with 25 mM HCO3? the PD decreased (anomalous response of electrogenic NaCl symport). PD maxima due to K+ and Na+ were largely related to (Na+ + K+)-ATPase pump. Changes in nutrient Cl? from 81 to 8.1 mM gave only a decrease in PD (normal response). Initial PD increases are explained by relative increases in resistance of simple conductance pathways and of parallel pathways of (Na+ + K+)-ATPase pump and Na+/Cl? symport. Removal of HCO3? and concurrent reduction of pH modify resistance of these pathways.  相似文献   

18.
19.
The permeability of the lysosomal membrane to small anions and cations was studied at 37°C and pH 7.0 in a lysosomal-mitochondrial fraction isolated from the liver of untreated rats. The extent of osmotic lysis following ion influx was used as a measure of ion permeancy. In order to preserve electroneutrality, anion influx was coupled to an influx of K+ in the presence of valinomycin, and cation influx was coupled to an efflux of H+ using the protonophore 3-tert-butyl-5,2′-dichloro-4′-nitrosalicilylanilide. Lysosomal lysis was monitored by observing the loss of latency of two lysosomal hydrolases.The order of permeability of the lysosomal membrane to anions was found to be SCN? > I? > CH3COO? > Cl? ≈ HCO?3 ≈ Pi > SO42? and that to cations Cs+ > K+ > Na+ > H+. These orders are largely in agreement with the lyotropic series of anions and cations.The implications of these findings for the mechanism by means of which a low intralysosomal pH is produced and maintained are discussed.  相似文献   

20.
The uptake of radiolabeled carnitine and butyrobetaine has been studied in human heart cells (CCL 27). The uptake of carnitine is 3–10-fold higher in heart cells than in fibroblasts (pmol · μg DNA?1). The uptake of carnitine increases with temperature coefficient KT of 1.6 in the interval 10–20° C and with a negligible uptake at 4 and 10° C. The uptake of carnitine follows Michaelis-Menten kinetics with a KM of 4.8 ± 2.2 μM and V = 8.7 ± 3.2 pmol · μg DNA?1 · h?1. Carnitine uptake is suppressed 90% by NaF (24 mM). Butyrobetaine is taken up into heart cells to the same extent as carnitine with a KM of 5.7–17.3 μM and V = 8.7–9.3 pmol · μg DNA?1 · h?1. Butyrobetaine inhibits competitively the uptake of carnitine and carnitine inhibits the uptake of butyrobetaine to the same extent. No conversion of radiolabeled butyrobetaine to carnitine, or carnitine to methyl choline was observed intra- or extracellulary during incubation. These data are compatible with a selective transport mechanism for carnitine which is also responsible for the uptake of butyrobetaine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号