首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Culture medium made hypertonic by the addition of osmotic stabilizers such as sucrose, poly(ethylene glycol), dextran and bovine serum albumin protected against changes in morphology and plasma membrane permeability induced by Clostridium perfringes enterotoxin. The protection did not appear to be due to binding inhibition. Results of these studies support an osmotic disruption mechanism for the action of the enterotoxin. A comprehensive model of the enterotoxin's action based on an osmotic disruption mechanism is proposed.  相似文献   

2.
Using a sensitive Vero (African green monkey kidney) cell model system, studies were performed to further investigate whether Clostridium perfringens enterotoxin acts via disruption of the colloid-osmotic equilibrium of sensitive cells. Enterotoxin was shown to cause a rapid loss of intracellular 86Rb+ (Mr approx. 100) with time- and dose-dependent kinetics. The enterotoxin-induced release of intracellular 86Rb+ preceded the loss of two larger labels, 51Cr label (Mr approx. 3500) and 3H-labeled nucleotides (Mr less than 1000). The osmotic stabilizers, sucrose and poly(ethylene glycol), differentially inhibited enterotoxin-induced larger label loss versus 86Rb+ loss. Further, enterotoxin was shown to cause a rapid influx of 24Na+ that was not significantly inhibited by osmotic stabilizers. Additional studies demonstrated that lysosomotropic agents were not protective against characteristic enterotoxin-induced membrane permeability alterations or morphological damage. Taken collectively, these results are consistent with an action for enterotoxin which involves a disruption of the osmotic equilibrium.  相似文献   

3.
Some enteric strains of Escherichia coli release a heat-stable enterotoxin which, in contrast to cholera and heat-labile E. coli enterotoxins, stimulates guanylate cyclase (GTP pyrophosphate-lyase (cyclizing), EC 4.6.1.2). We have exmined the tissue specificity of its action and the relation of its action to those of the 8-bromo analogues of cyclic GMP and cyclic AMP. Heat-stable enterotoxin stimulated guanylate cyclase activity and increased cyclic GMP oncentration throughout the small and large intestine. It increased transepithelial electric potential difference and short-circuit current in the jejunum, ileum and caecum but not in the duodenum or distal colon. This pattern of electrical responses was mimicked by 8-bromo-cyclic GMP. However, 8-bromo-cyclic AMP produced an electrical response in all intestinal segments. The enterotoxin failed to stimulate guanylate cyclase in liver, lung, pancreas or gastric antral mucosa. In the intestines, it stimulated only the particulate and not the soluble form of the enzyme. Preincubation of the toxin with intestinal membranes did not render it capable of stimulating pancreatic guanylate cyclase. Cytosol factors did not enhance the toxin's stimulation of intestinal guanylate cyclase. This study supports the role of cyclic GMP as intracellular mediator for heat-stable enterotoxin and suggests that the toxin affects a membrane-mediated mechanism for guanylate cyclase activation that is unique to the intestines.  相似文献   

4.
Initial exposure of plants to osmotic stress caused by drought, cold, or salinity leads to acclimation, termed acquired tolerance, to subsequent severe stresses. Acquired osmotolerance induced by salt stress is widespread across Arabidopsis (Arabidopsis thaliana) accessions and is conferred by disruption of a nucleotide-binding leucine-rich repeat gene, designated ACQUIRED OSMOTOLERANCE. De-repression of this gene under osmotic stress causes detrimental autoimmunity via ENHANCED DISEASE SUSCEPTIBILITY1 and PHYTOALEXIN DEFICIENT4 (PAD4). However, the mechanism underlying acquired osmotolerance remains poorly understood. Here, we isolated an acquired osmotolerance-defective mutant (aod13) by screening 30,000 seedlings of an ion beam-mutagenized M2 population of Bu-5, an accession with acquired osmotolerance. We found that AOD13 encodes the dual-specificity phosphatase MAP KINASE PHOSPHATASE1 (MKP1), which negatively regulates MITOGEN-ACTIVATED PROTEIN KINASE3/6 (MPK3/6). Consistently, MPK3/6 activation was greater in aod13 than in the Bu-5 wild-type (WT). The aod13 mutant was sensitive to osmotic stress but tolerant to salt stress. Under osmotic stress, pathogenesis-related genes were strongly induced in aod13 but not in the Bu-5 WT. Loss of PAD4 in pad4 aod13 plants did not restore acquired osmotolerance, implying that activation of immunity independent of PAD4 renders aod13 sensitive to osmotic stress. These findings suggest that AOD13 (i.e. MKP1) promotes osmotolerance by suppressing the PAD4-independent immune response activated by MPK3/6.

Under osmotic stress, MAP KINASE PHOSPHATASE1 represses the MITOGEN-ACTIVATED PROTEIN KINASE3/6-dependent immune response that impairs osmotolerance of Arabidopsis thaliana.  相似文献   

5.
In this study, we describe the mechanism of action of a cytotonic enterotoxin produced by two isolates of Aeromonas hydrophila. Isolates SSU and Ah65 are of different origin and both are capable of producing either a cytotoxic enterotoxin or aerolysin. A cytotonic enterotoxin produced by diarrheal isolate SSU, which was purified and characterized in our laboratory, elevated intracellular cAMP and PgE2 levels in cultured Chinese hamster ovary (CHO) cells. Likewise, enterotoxic activity expressed by a cytotonic enterotoxin was detected in the culture filtrate of a fish isolate (Ah65) after cytotoxic activity was neutralized with homologous aerolysin monoclonal antibodies. This cytotonic enterotoxin also elevated intracellular cAMP and PgE2 levels in CHO cells, suggesting a cholera toxin-like mechanism of action for Aeromonas cytotonic enterotoxins.  相似文献   

6.
LIGHT-INDUCED VOLUME CHANGES IN SPINACH CHLOROPLASTS   总被引:1,自引:1,他引:0       下载免费PDF全文
A light-dependent mechanism that results in a slow, high-amplitude swelling of spinach chloroplasts in vitro has been discovered. The swelling is readily observed by optical and gravimetric methods, and by the use of an electronic particle counter; all show a 100 per cent increase of chloroplast volume in the light with an approximately 10-minute half-time. The existence of an osmotic mechanism for chloroplast swelling in the dark is confirmed. The volume of illuminated chloroplasts versus NaCl concentration represents the addition of osmotic and light effects. The action of light is enhanced by electron flow cofactors, such as phenazine methosulfate (PMS). However, neither conditions for ATP hydrolysis or synthesis nor NH4Cl influence the time course and extent of swelling. Hence, high-amplitude chloroplast swelling is light- (or electron flow), but not energy-dependent. A remarkable inhibitory effect of inorganic phosphate on chloroplast swelling is observed in the light, but not in the dark. Another action of light on chloroplasts is known to result in a shrinkage of chloroplasts which is rapid, reversible, energy-dependent, and requires phosphate. Thus phosphate determines the action of light on chloroplast volume. Since shrinkage is reversible, but swelling is not, it may be that they reflect physiological and deteriorative processes, respectively. Chloroplasts and mitochondria appear to control their volume by similar mechanisms.  相似文献   

7.
Inclusion bodies (IB) synthesized during sporulation and enterotoxin formation by Clostridium perfringens NCTC 8239 and 8798 were isolated and characterized. IB were isolated by disruption of sporangia by sonication in the presence of tetrasodium EDTA and phenylmethylsulfonyl fluoride. Fractionation was carried out in a linear gradient of sodium bromide, sucrose, or diatrizoate sodium. Denaturing and reducing agents were necessary to solubilize the IB. An alkylating agent was required to prevent reaggregation of the subunits. Molecular weight, compositional, and serological analyses and peptide mapping revealed strong similarities between the IB subunits and the enterotoxin synthesized during sporulation by C. perfringens. IB appear to represent the structural component where overproduced enterotoxin accumulates intracellularly. Enterotoxin-like subunits in the IB appeared to be held together by noncovalent and disulfide bonds, which were generally resistant to the action of intracellular proteases of C. perfringens, trypsin, or trypsin plus bile salts.  相似文献   

8.
Intestinal damage caused by an enterotoxin from a coatless spore mutant ofClostridium perfringens type A (8-6) was identified by both light and scanning electron microscopy. Under the light microscope, damage to the epithelial layer of the villus and to the lamina propria was evident. Whole tissue viewed under the scanning electron microscope confirmed the two distinct forms of damage seen by light microscopy and showed that the action of the enterotoxin on an individual villus appears to occur in a specific sequence. The gross tissue damage observed contrasts with that found in previous studies of the action ofClostridium perfringens enterotoxin on rabbit ileal tissue; this suggests that the 8-6 enterotoxin may have a different mode of action on the cell, which subsequently leads to death and lysis.  相似文献   

9.
U. Kutschera 《Planta》1991,184(1):61-66
The relationship between growth, change in cell osmotic pressure and accumulation of osmotic solutes was investigated in hypocotyls of sunflower (Helianthus annum L.) seedlings. During growth in darkness the osmotic pressure decreased by 50% between days 2 and 6 after sowing. After irradiation of dark-grown seedlings with continuous white light (WL) an inhibition of hypocotyl growth was measured, but the osmotic pressure of the growing cells was not lower than in the dark-grown control. Growth in darkness and after WL irradiation was accompanied by an increase in the amount of osmotic substances (soluble sugars) which was proportional to the increase in length of the organ. During growth in continuous WL the cell osmotic pressure decreased by 45 % between days 2 and 6 after sowing. The transfer of WL-grown seedlings to darkness (“re-etiolation”) resulted in a rapid acceleration of hypocotyl growth, but the cell osmotic pressure was the same as that of the WL grown control. Growth in continuous WL was accompanied by a corresponding accumulation of osmotic substances (soluble sugars). The transition from WL to darkness resulted in an enhanced accumulation of osmotica and an increase in cell-wall extensibility. The results indicate that the relative maintenance of cell osmotic pressure during rapid hypocotyl growth in darkness is caused by an enhanced accumulation of soluble sugars into the growing cells of the organ.  相似文献   

10.
We investigated the role of a Ca(2+) channel and intracellular calcium concentration ([Ca(2+)](i)) in osmotic stress-induced JNK activation and tight junction disruption in Caco-2 cell monolayers. Osmotic stress-induced tight junction disruption was attenuated by 1,2-bis(2-aminophenoxyl)ethane-N,N,N',N'-tetraacetic acid (BAPTA)-mediated intracellular Ca(2+) depletion. Depletion of extracellular Ca(2+) at the apical surface, but not basolateral surface, also prevented tight junction disruption. Similarly, thapsigargin-mediated endoplasmic reticulum (ER) Ca(2+) depletion attenuated tight junction disruption. Thapsigargin or extracellular Ca(2+) depletion partially reduced osmotic stress-induced rise in [Ca(2+)](i), whereas thapsigargin and extracellular Ca(2+) depletion together resulted in almost complete loss of rise in [Ca(2+)](i). L-type Ca(2+) channel blockers (isradipine and diltiazem) or knockdown of the Ca(V)1.3 channel abrogated [Ca(2+)](i) rise and disruption of tight junction. Osmotic stress-induced JNK2 activation was abolished by BAPTA and isradipine, and partially reduced by extracellular Ca(2+) depletion, thapsigargin, or Ca(V)1.3 knockdown. Osmotic stress rapidly induced c-Src activation, which was significantly attenuated by BAPTA, isradipine, or extracellular Ca(2+) depletion. Tight junction disruption by osmotic stress was blocked by tyrosine kinase inhibitors (genistein and PP2) or siRNA-mediated knockdown of c-Src. Osmotic stress induced a robust increase in tyrosine phosphorylation of occludin, which was attenuated by BAPTA, SP600125 (JNK inhibitor), or PP2. These results demonstrate that Ca(V)1.3 and rise in [Ca(2+)](i) play a role in the mechanism of osmotic stress-induced tight junction disruption in an intestinal epithelial monolayer. [Ca(2+)](i) mediate osmotic stress-induced JNK activation and subsequent c-Src activation and tyrosine phosphorylation of tight junction proteins. Additionally, inositol 1,4,5-trisphosphate receptor-mediated release of ER Ca(2+) also contributes to osmotic stress-induced tight junction disruption.  相似文献   

11.

Background

Water and salt stresses are two important environmental factors that limit the germination of seeds in most ecological environments. Most studies conducted so far to address the genetic basis of the above phenomenon have used stress conditions that are much more extreme than those found in natural environments. Furthermore, although an excess of ions and water restrictions have similar osmotic effects on germination, the common and divergent signalling components mediating the effects of both factors remain unknown.

Methods

The germination of seeds was compared under solutions of NaCl (50 mm) and polyethylene glycol (PEG, −0·6 MPa), that establish mild stress conditions, in 28 Arabidopsis thaliana accessions. Because Bayreuth (Bay) and Shadara (Sha) accessions showed contrasting sensitivity responses to both stresses, a quantitative trait locus (QTL) analysis was carried out using Bay × Sha recombinant inbred lines (RILs) to identify loci involved in the control of germination under mild salt and osmotic stresses.

Key Results

Two loci associated with the salt sensitivity response, named SSR1 and SSR2 QTLs, and four loci for the osmotic sensitivity response, named OSR1OSR4 QTLs, were mapped. The effects of the SSR1 QTL on toxic salt sensitivity, and the osmotic contribution of OSR1, were confirmed by heterogeneous inbred families (HIFs). Whilst the SSR1 QTL had a significant effect under a wide range of NaCl concentrations, the OSR1 QTL was confirmed only under moderate drought stress. Interestingly the OSR1 QTL also showed pleiotropic effects on biomass accumulation in response to water deficit.

Conclusions

The regulation of germination under moderate salt and osmotic stresses involves the action of independent major loci, revealing the existence of loci specifically associated with the toxic component of salt and not just its osmotic effect. Furthermore, this work demonstrates that novel loci control germination under osmotic stress conditions simulating more realistic ecological environments as found by populations of seeds in nature.  相似文献   

12.
Antimicrobial peptides constitute an important part of the innate immune defense and are promising new candidates for antibiotics. Naturally occurring antimicrobial peptides often possess hemolytic activity and are not suitable as drugs. Therefore, a range of new synthetic antimicrobial peptides have been developed in recent years with promising properties. But their mechanism of action is in most cases not fully understood. One of these peptides, called V4, is a cyclized 19 amino acid peptide whose amino acid sequence has been modeled upon the hydrophobic/cationic binding pattern found in Factor C of the horseshoe crab (Carcinoscorpius rotundicauda). In this work we used a combination of biophysical techniques to elucidate the mechanism of action of V4. Langmuir-Blodgett trough, atomic force microscopy, Fluorescence Correlation Spectroscopy, Dual Polarization Interference, and confocal microscopy experiments show how the hydrophobic and cationic properties of V4 lead to a) selective binding of the peptide to anionic lipids (POPG) versus zwitterionic lipids (POPC), b) aggregation of vesicles, and above a certain concentration threshold to c) integration of the peptide into the bilayer and finally d) to the disruption of the bilayer structure. The understanding of the mechanism of action of this peptide in relation to the properties of its constituent amino acids is a first step in designing better peptides in the future.  相似文献   

13.
Measurements of diffusion permeability and of net transfer of water have been made across the isolated urinary bladder of the toad, Bufo marinus, and the effects thereon of mammalian neurohypophyseal hormone have been examined. In the absence of a transmembrane osmotic gradient, vasopressin increases the unidirectional flux of water from a mean of 340 to a mean of 570 µl per cm2 per hour but the net water movement remains essentially zero. In the presence of an osmotic gradient but without hormone net transfer of water remains very small. On addition of hormone large net fluxes of water occur; the magnitude of which is linearly proportional to the osmotic gradient. The action of the hormone on movement of water is not dependent on the presence of sodium or on active transport of sodium. Comparison of the net transport of water and of unidirectional diffusion permeability of the membrane to water indicates that non-diffusional transport must predominate as the means by which net movement occurs in the presence of an osmotic gradient. An action of the hormone on the mucosal surface of the bladder wall is demonstrated. The effects of the hormone on water movement are most simply explained as an action to increase the permeability and porosity of the mucosal surface of the membrane.  相似文献   

14.
This report examines the genetic basis for Salmonella enterotoxin production. The examination was conducted using an internal XbaI/HincII sequence of plasmid pJM17 encoding cholera toxin as a gene probe (ctxAB). This gene probe detected some sequence homology with the total as well as digested chromosomal DNA fragments from Salmonella strains under reduced stringent conditions in dot-blot and Southern-blot hybridization experiments. Our hybridization analysis results suggested that the enterotoxin (ent) gene of Salmonella resides on chromosomal DNA and that the Salmonella ent operon might be duplicated on the Salmonella chromosome.  相似文献   

15.
This report describes the purification and partial characterization of a cytotonic enterotoxin produced by a human diarrheal isolate (SSU) of Aeromonas hydrophila. The extracellular enterotoxin was purified by (NH4)2SO4 precipitation, hydrophobic column chromatography, and chromatofocusing. The highly purified enterotoxin exhibited a molecular mass of 44 kDa and an isoelectric point in the range of 4.3 - 5.5 as determined by chromatofocusing. Western blot analysis using Aeromonas anti-enterotoxin revealed a single band at 44 kDa; however, cholera antitoxin failed to detect the enterotoxin antigen. This non-cholera toxin cross-reactive (non-CTC) enterotoxin was biologically active in vivo as determined by rabbit ligated ileal loop and rabbit skin vascular permeability assays. Biological activity also was in vitro by this toxin as measured by the elongation of Chinese hamster ovary (CHO) cells. The enterotoxic activity associated with this molecule was neutralized completely by homologous antibodies but not by cholera antitoxin. The purified toxin preparation was free of hemolytic and cytotoxic activities as determined by its inability to lyse rabbit red blood cells or damage CHO cells, respectively. Furthermore, this toxin induced the elevation of cAMP in CHO cells suggesting thereby that the mechanism of action of Aeromonas non-CTC enterotoxin may be similar to heat-labile enterotoxins of Escherichia coli and Vibrio cholerae.  相似文献   

16.
Treating the mouse intestine with the calmodulin antagonist W-7 and KN-93, an inhibitor of Ca2+ -calmodulin-dependent protein kinase II (CaMK II), reduced the sensitivity of the host to the action of Escherichia coli heat-stable enterotoxin II (STII). CaMK II activity in mouse intestinal cells increased after exposure to STII. These results indicate that CaMK II is involved in the mechanism of action of STII.  相似文献   

17.
The mechanism of action of the heat-stable enterotoxin STa secreted from enterotoxigenic forms of Escherichia coli has remained elusive, in part due to a tedious, low-yield purification procedure. We report here a method for obtaining large amounts of a biologically active lysine-containing analog of STa. Initial attempts to express the toxin using an expression vector that did not encode a signal sequence resulted in no biologically active material being recovered either from lysed cells or as a secretory product. However, use of the secretion vector pJAL36, which contains the STII enterotoxin signal sequence, allowed large amounts of an STa derivative containing the additional sequence Ser-Thr-Lys at the amino terminus of the mature enterotoxin to be readily purified from culture supernatants. This enterotoxin analog, known as KSTa-1, was equal in biological and receptor binding activity to the native toxin STa. The lysine residue present in KSTa-1 promises to be useful as a reactive amino acid that is readily derivatized to allow coupling of the enterotoxin to supports for affinity chromatography and antigenic conjugates. Additionally, the insertion of the lysine residue carboxy terminal to the Ser-Thr sequence adds a reversible “handle” to the toxin sequence in that the Ser-Thr-Lys segment can be removed by treatment with trypsin, releasing the native form of STa.  相似文献   

18.
Staphylococcus enterotoxin B (SEB) is one of several toxins produced by the gram positive bacterium Staphylococcus aureus. SEB is a major cause of food poisoning and represents a significant biological threat with regard to bioterrorism. A rapid, sensitive, and specific method is required to monitor food and water in cases of both natural and intentional contamination by this toxin. This report presents an improved immunochromatographic test (ICT) using immunoliposomes as label for the detection of SEB. For the first time in an ICT, the signal generated by the sulforhodamine B encapsulated into immunoliposomes was measured by fluorescence, allowing a 15-fold increase in sensitivity compared with that for visual detection of colored labels. The ICT was completed within 30 min, providing a limit of detection close to 20 pg/ml in buffer and showing no cross-reactivity with the other major toxin of the bacterium, Staphylococcus enterotoxin A. This sensitivity was retained when analyzing SEB spiked in various alimentary matrices, mimicking contaminated foods. Due to the use of fluorescent immunoliposomes as label, the present assay offers the inherent simplicity and speed of a dipstick assay while providing detection of low levels of SEB in real samples.  相似文献   

19.
A common cellular mechanism of osmotic-stress adaptation is the intracellular accumulation of organic solutes (osmolytes). We investigated the mechanism of osmotic adaptation in the diazotrophic bacteria Azotobacter chroococcum, Azospirillum brasilense, and Klebsiella pneumoniae, which are adversely affected by high osmotic strength (i.e., soil salinity and/or drought). We used natural-abundance 13C nuclear magnetic resonance spectroscopy to identify all the osmolytes accumulating in these strains during osmotic stress generated by 0.5 M NaCl. Evidence is presented for the accumulation of trehalose and glutamate in Azotobacter chroococcum ZSM4, proline and glutamate in Azospirillum brasilense SHS6, and trehalose and proline in K. pneumoniae. Glycine betaine was accumulated in all strains grown in culture media containing yeast extract as the sole nitrogen source. Alternative nitrogen sources (e.g., NH4Cl or casamino acids) in the culture medium did not result in measurable glycine betaine accumulation. We suggest that the mechanism of osmotic adaptation in these organisms entails the accumulation of osmolytes in hyperosmotically stressed cells resulting from either enhanced uptake from the medium (of glycine betaine, proline, and glutamate) or increased net biosynthesis (of trehalose, proline, and glutamate) or both. The preferred osmolyte in Azotobacter chroococcum ZSM4 shifted from glutamate to trehalose as a consequence of a prolonged osmotic stress. Also, the dominant osmolyte in Azospirillum brasilense SHS6 shifted from glutamate to proline accumulation as the osmotic strength of the medium increased.  相似文献   

20.
Background: Antibiotic-resistant bacteria pose a global health threat. Traditional antibiotics can lose their effectiveness, and the development of novel effective antimicrobials has become a priority in recent years. In this area, plants represent an invaluable source of antimicrobial compounds with vast therapeutic potential.Purpose: To review the full possible spectrum of plant antimicrobial agents (plant compounds, extracts and essential oils) discovered from 2016 to 2021 and their potential to decrease bacterial resistance. Their activities against bacteria, with special emphasis on multidrug resistant bacteria, mechanisms of action, possible combinations with traditional antibiotics, roles in current medicine and future perspectives are discussed.Methods: Studies focusing on the antimicrobial activity of compounds of plant origin and their mechanism of action against bacteria were identified and summarized, including contributions from January 2016 until January 2021. Articles were extracted from the Medline database using PubMed search engine with relevant keywords and operators.Results: The search yielded 11,689 articles from 149 countries, of which 101 articles were included in this review. Reports from 41 phytochemicals belonging to 20 families were included. Reports from plant extracts and essential oils from 39 plant species belonging to 17 families were also included. Polyphenols and terpenes were the most active phytochemicals studied, either alone or as a part of plant extracts or essential oils. Plasma membrane disruption was the most common mechanism of antimicrobial action. Number and position of phenolic hydroxyl groups, double bonds, delocalized electrons and conjugation with sugars in the case of flavonoids seemed to be crucial for antimicrobial capacity. Combinations of phytochemicals with beta-lactam antibiotics were the most studied, and the inhibition of efflux pumps was the most common synergistic mechanism.Conclusion: In recent years, terpenes, flavones, flavonols and some alkaloids and phenylpropanoids, either isolated or as a part of extracts, have shown promising antimicrobial activity, being membrane disruption their most common mechanism. However, their utilization as appropriate antimicrobials need to be boosted by means of new omics technologies and network pharmacology to find the most effective combinations among them or in combination with antibiotics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号