首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of ATP on the kinetics of Na and K fluxes across the membranes of reconstituted sodium pump vesicles was examined. In the absence of ATP, the active vesicles equilibrated with 42K or 86Rb within 6 hours. In contrast, the equilibration of intravesicular Na with external 22Na was about 4 times slower. In the presence of ATP, the intravesicular K was replaced within 3 min by Na via a Na:K exchange process. The total intravesicular Na pool was then labeled to the same specific radioactivity as the Na of the medium via a Na:Na exchange process. The Na:K transport ratio varied with the intravesicular concentrations of Na and K.  相似文献   

2.
1. The ionophore X-537A increases the rate of catecholamine release from the in vitro frog adrenal.2. The ratio of epinephrine/norepinephrine measured during X-537A stimulation was the same as that during spontaneous release.3. Even when Ca++ was removed from the Ringer, X-537A stimulated catecholamine release, but depolarization by elevated extra-cellular K+ was no longer effective.4. X-537A also increases the release of dopamine β-hydroxylase, suggesting that the ionophore acts, at least in part, by stimulating the exocytosis of the chrommaffin granule contents.5. Therefore, it is questionable whether the release of catecholamines by X-537A is owing to its action as a Ca++- ionophore.6. The divalent cation ionophore, A-23187 (50μM), did not affect the rate of catecholamine release.  相似文献   

3.
When young intact forespores of Bacillus megaterium were incubated with either Mn++ or the ionophore X-537A, the pool of 3-phosphoglyceric acid (3-PGA) was stable. However, incubation of forespores with Mn++ plus the ionophore X-537A resulted in rapid and complete utilization of the 3-PGA. This effect was not seen with Ca++ or Mg++, and was also not observed with older forespores or fresh dormant spores. Since the phosphoglycerate mutase of B.megaterium has an absolute and specific requirement for Mn++, it is possible that phosphoglycerate mutase in developing forespores may be inactive because of a low intrasporal level of free Mn++.  相似文献   

4.
Both enzyme-mediated group translocation and facilitated diffusion have been proposed as mechanisms by which mammalian cells take up purine bases and nucleosides. We have investigated the mechanisms for hypoxanthine and inosine transport by using membrane vesicles from Chinese hamster ovary cells (CHO), Balb/c 3T3 and SV3T3 cells prepared by identical procedures. Uptake mechanisms were characterized by analyzing intravesicular contents, determining which substrates could exchange with the transport products, assaying for hypoxanthine phosphoribosyltransferase activity, and measuring the stimulation of uptake of hypoxanthine by phosphoribosyl pyrophosphate (PRib-PP).We found that the uptake of hypoxanthine in Balb 3T3 vesicles was stimulated 3–4-fold by PRib-PP. The intravesicular product was predominantly IMP. The hypoxanthine phosphoribosyltransferase activity copurified with the vesicle preparation. These results suggest the possible involvement of this enzyme in hypoxanthine uptake in 3T3 vesicles. In contrast to the 3T3 vesicles, CHO vesicles prepared under identical procedures did not retain hypoxanthine phosphoribosyltransferase activity and did not demonstrate PRib-PP-stimulated hypoxanthine uptake. The intravesicular product of hypoxanthine uptake in CHO vesicles was hypoxanthine. These results and data from our kinetic and exchange studies indicated that CHO vesicles transport hypoxanthine via facilitated diffusion. An analogous situation was observed for inosine uptake; CHO vesicles accumulated inosine via a facilitated diffusion mechanism, while in the same experiments SV3T3 vesicles exhibited a purine nucleoside phosphorylase-dependent translocation of the ribose moiety of inosine.  相似文献   

5.
The Ca2+ actively accumulated by sarcoplasmic reticulum isolated from skeletal muscle is composed of two fractions; one represented by intravesicular free Ca2+ and another represented by Ca2+ selectively bound to the membranes. Both of these Ca2+ fractions depend on ATP, although it is not clear whether ATP hydrolysis is essential for accumulation of the second Ca2+ fraction. The existence of the membrane-bound Ca2+ induced by ATP is clearly shown in experiments in which the Ca2+ retention by sarcoplasmic reticulum is measured in the presence and in the absence of X-537A, a Ca2+ ionophore, which makes the membrane permeable to Ca2+. Thus, in the presence of X-537A all Ca2+ accumulated due to ATP is bound to the membranes. This membrane-bound Ca2+ represents about 30 nmol/mg protein in the range of external pCa values of 7 to 3.5. The magnitude of this Ca2+ fraction is slightly higher whether or not the experiments are performed in the presence of oxalate, which greatly increased the intravesicular Ca2+ accumulation. Furthermore, taking advantage of the impermeability of sarcoplasmic reticulum to EGTA, it is possible to show the existence of the membrane-bound Ca2+ as a distinct fraction from that which exists intravesicularly.  相似文献   

6.
At 0.05 to 0.01 μM concentrations the monocarboxylic acid antibiotic X-537A inhibits ADP or 2,4-dinitrophenol-activated oxidation of glutamate but has no appreciable effect on state 4 respiration. ATP synthetase activity is also inhibited. There is no efflux of Mg2+ or Ca2+ from the mitochondria under these conditions. Dissociation of membrane bound Mg2+ induced by X-537A is reversed and prevented by Mg2+ + ATP but inhibitory effects of the antibiotic are not. Half maximal effects of X-537A occur when the ratio of X-537A to mitochondrial non-diffusible Mg2+ is 1800 to 1400. It is proposed that this small fraction of membrane associated Mg2+ may be at the catalytic site of energy transfer and irreversible inhibition by X-537A is due to hydrophobic complexation of Mg2+ in situ.  相似文献   

7.
The Ca2+ ionophore X-537A is employed as a tool to distinguish between intravesicular Ca2+ and surface membrane-bound Ca2+ in sarcoplasmic reticulum isolated from rabbit skeletal muscle. When sarcoplasmic reticulum is incubated in 20 mM Ca2+ in the absence of ATP, 10–12 h are necessary for measurable amounts of Ca2+ to penetrate into the vesicular space, as determined by the fact that X-537A releases Ca2+ from ‘loaded’ vesicles only after this period of incubation. A fraction of Ca2+ of 50–60nmol/mg protein, rapidly taken up by sarcoplasmic reticulum, exchanges with Mg2+ and K+ in the medium and is readily released by ethyleneglycol-bis-(β-aminoethyl ether)-N,N′-tetraacetic acid, but it is not released by X-537A. The slow-penetrating fraction of Ca2+ (30–40 nmol/mg protein) is rapidly released by X-537A. The results indicate that most of the Ca2+ retained by sarcoplasmic reticulum under conditions of passive uptake is bound to the external side of the membrane. The fraction of Ca2+ that slowly penetrates the vesicles remains essentially free inside the vesicles and only a small part is bound to the internal side of the membrane.  相似文献   

8.
Nuclear magnetic resonance spectroscopy has been applied as a method for studying manganous ions transport across the membrane of phosphatidylcholine vesicles. The rates of the ionophore X-537A (lasalocid A)-mediated Mn2+ transport have been measured as a function of ionophore concentration, pH of the vesicle suspension, and temperature. The translocation was found to occur via a neutral complex composed of one manganous ion bound to two ionized X-537A molecules (Mn X2). The activation energy for the overall transport process was determined to be 22 ± 5 kcal/mol. Also a pKa of 5.0 ± 0.2 was determined for the ionophore acid dissociation equilibrium in the vesicle suspension.  相似文献   

9.
The effect of X537A on acetylcholine (ACh) release was examined in vitro in superfused slices of rat cerebrum and striatum. The ionophore (30 μM) induced a transient release of ACh which was not dependent on calcium in the medium. Also in contrast to K+-stimulated release, X537A-induced release was not sustained by 10?5M choline in the superfusion medium and not inhibited by 5 × 10?4M pentobarbital. The ionophore did not transport ACh or choline from an aqueous to an organic phase. Both K+ and X537A inhibited 1 μM (3H) choline uptake into striatal synaptosomes but this effect of X537A was more extensive and less reversible than that caused by K+. X537A did not inhibit choline acetyltransferase activity.  相似文献   

10.
Robert B. Hill 《Life sciences》1980,27(21):1967-1973
When treated with caffeine (10 mM) isolated longitudinal retractor muscles of Isostichopus badionotus show a contracture which diminishes progressively with repeated doses. Brief treatment with X-537A (10?5 M) restores contractility for the duration of the exposure. However, after longer treatment with X-537A, restored contractility persists even after X-537A has been washed off. The persistent contractility may indicate that X-537A has partitioned into muscle cell membranes, thus speeding the time course of refilling of calcium stores.  相似文献   

11.
The Ca2+ ionophore X-537A is employed as a tool to distinguish between intravesicular Ca2+ and surface membrane-bound Ca2+ in sarcoplasmic reticulum isolated from rabbit skeletal muscle. When sarcoplasmic reticulum is incubated in 20 mM Ca2+ in the absence of ATP, 10-12 h are necessary for measurable amount of Ca2+ to penetrate into the vesicular space, as determined by the fact that X-537A releases Ca2+ from 'loaded' vesicles only after this period of incubation. A fraction of Ca2+ of 50-60 nmol/mg protein, rapidly taken up by sarcoplasmic reticulum, exchanges with Mg2+ and K+ in the medium and is readily released by ethyleneglycol-bis-(beta-aminoethyl ether)-N,N'-tetraacetic acid, but it is not released by X-537A. The slow-penetrating fraction of Ca2+ (30-40 nmol/mg protein) is rapidly released X-537A. The results indicate that most of the Ca2+ retained by sarcoplasmic reticulum under conditions of passive uptake is bound to the external side of the membrane. The fraction of Ca2+ that slowly penetrates the vesicles remains essentially free inside the vesicles and only a small part is bound to the internal side of the membrane.  相似文献   

12.
The transport kinetics of three lanthanide ions (viz., Pr3+, Nd3+, and Eu3+) across dimyristoylphosphatidylcholine and dipalmitoylphosphatidylcholine unilamellar vesicles mediated by the two carboxylic ionophores lasalocid A and A23187 have been studied by proton nuclear magnetic resonance spectroscopy. Time-dependent changes in the chemical shifts of head group choline signals have been measured to calculate apparent rate constants of transport. These experiments have been done at different ionophore concentrations to determine the stoichiometry of the transporting species. The rates of transport have been found to be faster in the absence of intravesicular La3+ compared to those observed in its presence. The stoichiometry of the transporting species has been found to be 2:1 (ionophore:cation) for both lasalocid A and A23187 in dimyristoylphosphatidylcholine vesicles. However, stoichiometries of greater than 2 have been obtained for lasalocid A mediated lanthanide ion transport across dipalmitoylphosphatidylcholine vesicles. Possible reasons for the observations of such noninteger stoichiometries are discussed. Our results also indicated that A23187 is a more efficient carrier ionophore than lasalocid A.  相似文献   

13.
A burst of proton ejection was observed during the initial steps of Ca2+ uptake by sarcoplasmic reticulum vesicles. The initial rate of this proton ejection is considerably higher than the initial rate of Ca2+ uptake, and is independent of the amount of accumulated Ca2+. The ejection of protons is a transmembrane event, since it is dissipated by the ionophore X-537A, and does not occur when the ionophore is added before the initiation of the transport of Ca2+. The low proton permeability of the membranes is largely increased by X-537A. The studies of facilitated diffusion of protons in the presence of the ionophore permitted the estimation of the pH within the vesicles. A fast alkalinization occurs within the vesicles during the initial steps of Ca2+ uptake, as revealed by sequestered bromothymol blue. The change in absorbance of this dye corresponds to a change of 0.15 pH unit within the vesicles, and a maximal transmembrane ΔpH of about 0.5 may build up. Since such a gradient may not account energetically for the transmembrane gradients of Ca2+, I suggest that a transmembrane electrical potential may develop as a consequence of proton ejection.  相似文献   

14.
Intestinal brush border vesicles of a Mediterranean sea fish (Dicentrarchus labrax) were prepared using the Ca2+-sedimentation method. The transport of glucose, glycine and 2-aminoisobutyric acid is energized by an Na+ gradient (out > in). In addition, amino acid uptake requires Cl? in the extravesicular medium (2-aminoisobutyric acid more than glycine). This Na+- and Cl?-dependent uptake is electrogenic, since it can be stimulated by negative charges inside the vesicles. The specific Cl? requirement of glycine and 2-aminoisobutyric acid transport is markedly influenced by pH, a change from 6.5 to 8.4 reducing the role played by Cl?. In the presence of Cl?, the Km of 2-aminoisobutyric acid uptake is reduced and its Vmax is enhanced. Cl? affects also a non-saturable Na+-dependent component of this amino acid uptake. Amino acid transport is also increased by intravesicular Cl? (2-aminoisobutyric acid less than glycine). This effect is more concerned with glucose uptake, which can be then multiplied by 2.3. A concentration gradient (in > out) as well as the presence of Na+ in the incubation medium seems to enter into this requirement. This intravesicular Cl? effect is not influenced by pH between 6.5 and 8.4.  相似文献   

15.
Band 3 protein, extracted from human erythrocyte membranes by Triton X-100, was recombined with egg lecithin/cholesterol mixtures to form small unilamellar vesicles at a yield of 15–20%. These systems exhibited sulfate fluxes which were inhibitable by stilbene disulfonates and other inhibitors. Maximal inhibition could only be obtained when inhibitors were present at both membrane surfaces. Inhibitor constants I50 were higher than in the native membrane. Quantitatively, transport function was retained at least 60%, as related to the amount of protein involved. Sulfate transport in the recombinates resembled transport in the native membrane with respect to temperature dependence (Ea = 29?32 kcal/mol), pH dependence between pH 6.5 and 7.8, and the relationship between net and exchange fluxes. In contrast to the native cell, concentration dependence was linear up to 80 mM sulfate, which may be indicative of a lowered affinity for the substrate. Lactate transport in these systems, although substantial, was insensitive to stilbene disulfonates as well as to mercurials, indicating that band 3 is not involved in the specific monocarboxylate transfer in the erythrocyte. Anion transport in band 3-lipid recombinates was insensitive to cholesterol between 0 and 27 mol%. Treatment with proteases, while not affecting transport per se, abolished sensitivity to stilbene disulfonate inhibitors. These observations indicate a number of disturbances of band 3 after recombination, in spite of a preservation of the major transport properties.  相似文献   

16.
The effects of the broad-range cationophore X-537A on pollen tubes of Lilium longiflorum were investigated, using both light and electron microscopy. Pollen tube growth is completely inhibited within 30 min after the application of 5·10-5 M ionophore X-537A; cytoplasmic streaming is stopped only after 60 min of ionophore treatment. Ultrastructurally, X-537A effects are a vacuolation of Golgi cisternae and a general vacuolation. The wall is thickened at the very tip. Coated vesicles and coated regions are enriched close to and at the plasma membrane. The results indicate that pollen tube tip growth needs a specific ion distribution.Abbreviations CTC chlorotetracycline - DMSO dimethylsulfoxide  相似文献   

17.
The ionophore X537A causes a large increase in the [(14)C]dopamine (a catecholamine) permeability of planar bilayer membranes. Dopamine transport increases linearly with the ionophore concentration. At relatively high concentrations in the presence of dopamine, the ionophore omdices a conductance which is nearly ideally selective for the dopamine cation. However, the total dopamine flux as determined in tracer experiments is not affected by an electric field and is over 10(5) times larger than predicted from the estimated dopamine conductance. Increasing the dopamine concentration on the side containing radioactive dopamine (the cis side) saturates the dopamine transport. This saturation is relieved by trans addition of nonradioactive dopamine, tyramine, H(+), or K(+). With unequal concentrations of dopamine cis and trans (49 and 12.5 mM), the unidirectional dopamine fluxes are equal. Increasing H(+) cis and trans decreases dopamine transport. It is concluded that at physiological pH, the X537A-induced transport of dopamine occurs via an electrically silent exchange diffusion of dopamine cation with another cation (e.g., dopamine(+), H(+), or K(+)). X537A induces a Ca(++)-independent release of catecholamines from sympathetic nerves by interfering with intracellular storage within storage vesicles (R.W. Holz. 1975. Biochim. Biophys. Acta. 375:138-152). It is suggested that X537A causes an exchange of intravesicular catecholamine with a cytoplasmic cation (perhaps K(+) or H(+)) across the storage vesicle membrane.  相似文献   

18.
Transport of Pr3+ across phosphatidylcholine vesicles, monitored through 31P nmr, is first-order in monensin (1), second-order in etheromycin (2) or in lasalocid A (3). When 1 and 2 (or 2 and 3) are incorporated together in 1:1 ratio into the lipidic phase, transport is faster than with each ionophore alone. For instance, assuming that the complexes 2.Pr3+.2, 3.Pr3+.3, and 2.Pr3+3 are equiprobable, they effect transport at intrinsic relative rates of 1, 2, and 13.5, i.e. a remarkable synergism is set up.  相似文献   

19.
The uptake of l-glutamic acid into brush-border membrane vesicles isolated from rat renal proximal tubules is Na+-dependent. In contrast to Na+-dependent uptake of d-glucose, pre-equilibration of the vesicles with K+ stimulates l-glutamic acid uptake. Imposition of a K+ gradient ([Ki+] > [Ko+]) further enhances Na+-dependent l-glutamic acid uptake, but leaves K+-dependent glucose transport unchanged. If K+ is present only at the outside of the vesicles, transport is inhibited. Intravesicular Rb+ and, to a lesser extent, Cs+ can replace intravesicular K+ to stimulate l-glutamic acid uptake. Changes in membrane potential incurred by the imposition of an H+-diffusion potential or anion replacement markedly affect Na+-dependent glutamic acid uptake only in the presence of K+. Experiments with a potential-sensitive cyanine dye also indicate that, in the presence of intravesicular K+ a charge movement is involved in Na+-dependent transport of l-glutamic acid.The data indicate that Na+-dependent l-glutamic acid transport can be additionally energized by a K+ gradient. Furthermore, intravesicular K+ renders Na+-dependent l-glutamic acid transport sensitive to changes in the transmembrane electrical potential difference.  相似文献   

20.
Nuclear magnetic resonance spectroscopy has been applied as a method for studying manganous ions transport across the membrane of phosphatidylcholine vesicles. The rates of the ionophore X-537A (lasalocid A)-mediated Mn2+ transport have been measured as a function of ionophore concentration, pH of the vesicle suspension, and temperature. The translocation was found to occur via a neutral complex composed of one manganous ion bound in two ionized X-537A molecules (Mn X2). The activation energy for the overall transport process was determined to be 22 +/- 5 kcal/mol. Also a pKa of 5.0 +/- 0.2 was determined for the ionophore acid dissociation equilibrium in the vesicle suspension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号