首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of the bacterial cytolytic toxin, streptolysin S, on liposomes composed of various phospholipids was investigated. Large unilamellar vesicles containing [14C]sucrose were prepared by reverse-phase evaporation, and membrane damage produced by the toxin was measured by following the release of labeled marker. The net charge of the liposomes had little or no effect on their susceptibility to steptolysin S and the toxin was about equally effective on liposomes composed of phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine and phosphatidylglycerol. Experiments with liposomes composed of synthetic phospholipids showed that the ability of the toxin to produce membrane damage depended on the degree of unsaturation of the fatty acyl chains. The order of sensitivity was C18 : 2 phosphatidylcholine greater than C18: I phosphatidylcholine greater than C18 : 0 phosphatidylcholine = C16 : 0 phosphatidylcholine. Liposomes containing the latter two phospholipids were virtually unaffected by streptolysin S, and experiments with C18 : 0 phosphatidylcholine suggested that toxin activity does not bind to liposomes composed of phospholipids with saturated fatty acyl chains. The inclusion of 40 mol% cholesterol in C16 : 0 phosphatidylcholine and C18 : 0 phosphatidylcholine liposomes made these vesicles sensitive to streptolysin S. Egg phosphatidylcholine liposomes, which were unaffected at 0 degrees C and 4 degrees C became susceptible to the toxin at these temperatures when cholesterol was included. Liposomes composed of C14 : 0 phosphatidylcholine were unaffected by streptolysin S at temperatures below the chain-melting transition temperature (23 degrees C) of this phospholipid, but became increasingly susceptible above this temperature. The results suggest that the fluidity of the phospholipid hydrocarbon chains in the membrane is important in streptolysin S action.  相似文献   

2.
In the first paper of this series, it was shown that a toxin from the sea anemone Stoichactis helianthus increased the permeability of black lipid membranes due to transmembrane channel formation. In the present study, we have used liposomes to examine the reactivity of the toxin with different phospholipids. Membrane damage was assessed by measuring the release of 86Rb+ and 14C-labeled membrane lipid. For the different lipids, the rank order of marker release was: sphingomyelin > C18: 2 phosphatidylcholine > C18: 1 phosphatidylcholine > C18: 0 phosphatidylcholine > C16: 0 phosphatidylcholine = C14: 0 phosphatidylcholine. In C14: 0 and C16: 0 phosphatidylcholine liposomes there was no 14C-labeled lipid release and only 13 to 16% 86Rb+ release which corresponds to the 86Rb+ content in the outermost aqueous shell of multilamellar liposomes. This indicates that membrane damage was limited to the outermost bilayer. In liposomes prepared with the other lipids, the extent of release of both markers increased proportionately with the length and the degree of unsaturation of the lipids' acyl side chains. Sphingomyelin liposomes were the most susceptible with 47% of the 14C-labeled lipid marker and 90% of the 86Rb+ marker being released. The large extent of 14C-labeled lipid release is attributed to a detergent-like activity of the toxin which presumably is due to the amphipathic nature of the protein. Thus, the toxin can inflict membrane damage in two ways: (1) channel formation, and (2) detergent action. The importance of one mechanism or the other apparently varies depending on membrane structure and lipid composition.  相似文献   

3.
We have previously suggested the existence of two distinct states for cholesterol in cell membranes as revealed by high- and low-affinity binding sites for theta-toxin of Clostridium perfringens. In liposomes, phospholipid and cholesterol compositions, but not membrane protein composition, have been shown to be major determinants for the topology of membrane cholesterol. The effects of lipidic factors on cholesterol topology were investigated in detail by analyzing toxin binding to large unilamellar liposomes composed of cholesterol and phospholipids (neutral phospholipids/phosphatidylglycerol = 82:18, mol/mol). The numbers of high- and low-affinity toxin-binding sites depend strictly on the cholesterol mole percentage in liposomes. High-affinity toxin-binding sites appear only in liposomes with high cholesterol contents. Liposomes whose cholesterol/phospholipid ratio is 0.4 or less have no high-affinity sites regardless of their phospholipid compositions, while low-affinity sites appear in liposomes with lower cholesterol contents. The threshold values for the cholesterol mole percentage above which high-affinity toxin-binding sites appear were examined. The values decrease in accordance with the increase in the mole fraction of 18-carbon hydrocarbon chains among the total 14-18 carbon-hydrocarbon chains of the liposomal phospholipids. Furthermore, both the partial replacement of phosphatidylcholine with phosphatidylethanolamine and the digestion of phospholipids with phospholipase C also affect the threshold values. Thus the cholesterol mole percentage, in combination with phospholipid chain length and other factors, determines the topology of membrane cholesterol providing distinctively different affinity sites for theta-toxin.  相似文献   

4.
We have previously suggested the existence of two distinctive states of cholesterol in erythrocyte and lymphoma cell membranes as revealed by high- and low-affinity binding sites for theta-toxin of Clostridium perfringens [Ohno-Iwashita, Y., Iwamoto, M., Mitsui, K., Ando, S., & Nagai, Y. (1988) Eur. J. Biochem. 176, 95-101; Ohno-Iwashita, Y., Iwamoto, M., Ando, S., Mitsui, K., & Iwashita, S. (1990) Biochim. Biophys. Acta 1023, 441-448]. To understand factor(s) which determine membrane cholesterol heterogeneity, we analyzed toxin binding to large unilamellar liposomes composed of cholesterol and phospholipids (phosphatidylcholine/phosphatidylglycerol = 82:18, mol/mol). Liposomes containing phospholipids with 18-carbon hydrocarbon chains at both positions 1 and 2 of the glycerol have both high- and low-affinity toxin-binding sites with Kd values similar to those of intact erythrocytes, whereas liposomes with hydrocarbon chains containing 16 or fewer carbons at either position 1 or 2 have only low-affinity toxin-binding sites. The cholesterol/phospholipid ratio, in addition to the length of phospholipid hydrocarbon chain, also determines the number of toxin-binding sites, indicating that at least these two factors determine the topology of membrane cholesterol by creating distinctively different affinity sites for the toxin. Since theta-toxin binding detects specific populations of membrane cholesterol that are not detectable by the measurements of susceptibility to cholesterol oxidase and cholesterol desorption from membranes, the toxin could provide a unique probe for studying the organization of cholesterol in membranes.  相似文献   

5.
By use of carboxyfluorescein-loaded multilamellar liposomes prepared from synthetic phosphatidylcholine (PC) or sphingomyelin and cholesterol in a molar ratio of 1:1, we studied whether or not fatty acyl domain of the phospholipids affects the membrane-damaging action (or channel formation) of Staphylococcus aureus alpha-toxin on the phospholipid-cholesterol membranes. Our data indicated: (1) that toxin-induced carboxyfluorescein-leakage from the liposomes composed of saturated fatty acyl residue-carrying PC and cholesterol was decreased with increasing chain length of the acyl residues between 12 and 18 carbon atoms, although toxin-binding to the liposomes was not significantly affected by the length of fatty acyl residue; (2) that unsaturated fatty acyl residue in PC or sphingomyelin molecule conferred higher sensitivity to alpha-toxin on the phospholipid-cholesterol liposomes, compared with saturated fatty acyl residues; and (3) that hexamerization of alpha-toxin, estimated by SDS-polyacrylamide gel electrophoresis, occurred more efficiently on the liposomes composed of PC with shorter fatty acyl chain or unsaturated fatty acyl chain. Thus, hydrophobic domain of the phospholipids influences membrane-channel formation of alpha-toxin in the phospholipid-cholesterol membrane, perhaps by modulating packing of phospholipid, cholesterol and the toxin in membrane.  相似文献   

6.
Unilamellar liposomes composed of natural phospholipids provide a new promising class of protective agents for hypothermic storage, cryopreservation, or freeze-drying of red blood cells (RBCs). In this study, FTIR spectroscopy, MALDI-TOF MS, and colorimetric assays were used to investigate the effects of liposomes composed of a homologous series of linear saturated phosphatidylcholine phospholipids (18:0; 16:0; 14:0; 12:0) on RBC membranes. RBCs were incubated with liposomes at 37°C and both the liposomal and the RBC fraction were analyzed after incubation. FTIR studies showed that liposomes composed of short acyl chain length lipids cause an increase in RBC membrane conformational disorder at suprazero temperatures, whereas long acyl chain length lipids were found to have little effects. The increased lipid conformational disorder in the RBC membranes coincided with a decrease in the cholesterol-to-phospholipid ratio. The opposite effects were found in the liposomes after incubation with RBCs. MALDI-TOF MS analysis showed the presence of short acyl chain length lipids (14:0 and 12:0) in RBC membranes after incubation, which was not observed after incubation with liposomes containing long acyl chain length lipids (18:0 and 16:0). Liposomes alter RBC membrane properties by cholesterol depletion and lipid addition.  相似文献   

7.
Small unilamellar liposomes containing carboxyfluorescein (CF) and composed of various unsaturated and saturated phospholipids with or without cholesterol were incubated in the presence of mouse serum at 37°C. Liposomes composed of egg L-α-phosphatidylcholine (PC), L-α-dioleoylphosphatidylcholine (DOPC) or sphingomyelin (SM) became rapidly permeable to entrapped CF but incorporation of cholesterol into such liposomes reduced CF leakage. Under similar conditions, CF leakage from cholesterol-free liposomes composed of saturated phospholipids of increasing fatty acid chain length was dependant on the liquid-crystalline phase transition temperature (Tc) of the phospholipid component. Thus, L-α-dilaureoylphos-phatidylcholine (DLPC), L-α-dimyristoyl phosphatidylcholine (DMPC) and L-α-dipalmitoylphosphatidylcholine (DPPC) with Tc's below or near the temperature of the incubation (37°C) released CF rapidly whereas L-α-diheptedecanoyl phosphatidylcholine (DHPC), L-α-distearoylphosphatidylcholine (DSPC) and hydrogenated egg PC (HPC) liposomes with Tc's above 37°C retained the dye quantitatively. After incorporation of cholesterol into liposomes composed of saturated phospholipids, CF release was reduced for DLPC and DMPC and increased for DPPC, DSPC, DHPC and HPC vesicles. Liposomes with or without cholesterol exhibiting greatest stability (in terms of CF retention) in the presence of serum were injected intravenously into mice and rates of clearance of quenched CF from the circulation measured. Observed clearance rates were linear and, when liposomes contained tritiated phospholipid, identical to those of the radiolabel suggesting retention of liposomal integrity in the intravascular space. However, half-lifes of liposomes ranging from 0.1 to 16 h did not correlate with the physical characteristics of their phospholipid component. After intraperitoneal injection, there was quantitative entry of quenched CF (stable liposomes) into the blood from which it was eliminated at rates corresponding to those observed after intravenous injection. These results suggest that solute retention by liposomes and their half-life in the circulation can be controlled by the appropriate manipulation of liposomal membrane fluidity and composition.  相似文献   

8.
The properties of multibilayered liposomes formed from mixtures of sphingomyelin and phosphatidylcholine in varying mole ratio (all containing one mole dicetylphosphate per 10 moles of phospholipids) have been studied. The principal findings are: (1) Over the range 0 to 1 mole fraction sphingomyelin the liposomes exhibit multibilayer structure as visualized by electron microscopy using negative staining. (2) The two phospholipids differ in their interaction with dicetylphosphate in a bilayer structure. In mixtures of the two the effect of sphingomyelin is dominant. (3) The ability of sphingomyelin to form osmotically active liposomes depends on its fatty acid's composition. (4) Liposomes of all mole fractions of sphingomyelin are osmotically active if the C24: 1 fatty acid content of sphingomyelin exceeds 10% of the total acyl residues. The degree of osmotic activity, however, depends upon the molar ratio between the two phospholipids. The highest initial rate of water permeability was found for lecithin liposomes. The maximal change of volume by osmotic gradients was obtained for liposomes composed of 1:1 lecithin to sphingomyelin (mole ratio). (5) Permeability to glucose increased with increasing lecithin mole fraction. (6) Liposomes composed of 1:1 lecithin to sphingomyelin have the largest aqueous volume per mole of phospholipid as measured by glucose trapping. (7) The osmotic fragility of liposomes made of sphingomyelin is higher than for those made of lecithin but the highest osmotic fragility was obtained for liposomes containing lecithin and sphingomyelin in 1:1 molar ratio. (8) When the temperature is abruptly lowered to about 2 degrees C, lipsomes formed from phosphatidylcholine release about 20% of trapped glucose during a transient increase in permeability. Liposomes containing 0.5 mole fraction sphingomyelin release about 30% of the trapped glucose under these conditions. Liposomes composed of sphingomyelin alone do not exhibit this phenomenon.  相似文献   

9.
α-Parinaric acid has been used to determine the degree of ordering of the hydrocarbon region of purified intracytoplasmic membranes of Rhodopseudomonas sphaeroides. The usefulness of α-parinaric acid as a probe of membrane fluidity was established by comparison of its fluorescent properties in phosphatidylcholine vesicles with those of the more commonly used fluorescent probe, 1,6-diphenyl-1,3,5-hexatriene. Both fluorescent probes were shown to monitor similar environments in the phosphatidylcholine vesicles when the phospholipids were maintained at temperatures above their phase transition temperature.The rotational mobility of α-parinaric acid in the intracytoplasmic membranes was determined from 0 to 50°C, a region where no phase transitions were detectable. The rotational mobility of α-parinaric acid dissolved in vesicles formed from total extracted intracytoplasmic membrane phospholipids, was 2–3-fold greater than that measured in the intact intracytoplasmic membranes; demonstrating that the presence of protein greatly reduces the mobility of the phospholipid acyl chains of the intracytoplasmic membranes. Due to the high protein content of these membranes, the perturbing effect of protein on acyl chain mobility may extend to virtually all the intracytoplasmic membrane phospholipid.  相似文献   

10.
The mechanism of membrane damage by staphylococcal alpha-toxin was studied using carboxyfluorescein (internal marker)-loaded multilamellar liposomes prepared from various phospholipids and cholesterol. Liposomes composed of phosphatidylcholine or sphingomyelin and cholesterol bound alpha-toxin and released carboxyfluorescein in a dose dependent manner, when they were exposed to alpha-toxin of concentrations higher than 1 or 8 micrograms/ml, respectively. In contrast, the other liposomes composed of phosphatidylethanolamine, phosphatidylserine, phosphatidylglycerol or phosphatidylinositol plus cholesterol were not susceptible to the toxin even at high concentrations up to 870 micrograms/ml. The insensitive liposomes containing either phosphatidylserine or phosphatidylglycerol were made sensitive to alpha-toxin by inserting phosphatidylcholine into the liposomal membranes. In addition, phosphorylcholine inhibited the toxin-induced marker release from liposomes. These results indicated that the choline-containing phospholipids are required for the interaction between alpha-toxin and liposomal membranes. Susceptibility of liposomes containing phosphatidylcholine or sphingomyelin increased with the increase in cholesterol contents of the liposomes. Based on these results, we propose that the choline-containing phospholipids are possible membrane components or structures responsible for the toxin-membrane interaction, which leads to damage of membranes. Furthermore, cholesterol may facilitate the interaction between alpha-toxin and membrane as a structural component of the membrane.  相似文献   

11.
The effect of acyl-chain length of phospholipid on the membrane permeabilizing activity of amphotericin B (AmB) was examined using egg phosphatidylcholine (eggPC) liposomes containing 5% or 20% phosphatidylcholine with various lengths of fatty acyl chains from C(10) to C(18); 1,2-dicapryloyl-sn-glycero-3-phosphocholine (DCPC), 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC). The membrane activity of AmB was evaluated by two methods; the drug was added to a liposome suspension (added-via-aqua), or mixed with lipids prior to liposome preparation (mixed-with-lipid). In both cases, K(+) influx by AmB was measured as pH change inside liposomes by 31P-NMR. The C(10) and C(12) acyl phospholipids markedly enhanced the activity of AmB, the C(14) and C(16) lipids virtually showed no effect, and the C(18) lipid was inhibitory to the AmB's action. Clear distinction between the C(12) and C(14) lipids, which differ only in acyl chains by two carbons, implies that molecular interaction between phospholipid and AmB is partly due to the matching of their hydrophobic length.  相似文献   

12.
alpha-Parinaric acid has been used to determine the degree of ordering of the hydrocarbon region of purified intracytoplasmic membranes of Rhodopseudomonas sphaeroides. The usefulness of alpha-parinaric acid as a probe of membrane fluidity was established by comparison of its fluorescent properties in phosphatidylcholine vesicles with those of the more commonly used fluorescent probe, 1,6-diphenyl-1,3,5-hexatriene. Both fluorescent probes were shown to monitor similar environments in the phosphatidylcholine vesicles when the phospholipids were maintained at temperatures above their phase transition temperature. The rotational mobility of alpha-parinaric acid in the intracytoplasmic membranes was determined from 0 to 50 degrees C, a region where no phase transitions were detectable. The rotational mobility of alpha-parinaric acid dissolved in vesicles formed from total extracted intracytoplasmic membrane phospholipids, was 2--3-fold greater than that measured in the intact intracytoplasmic membranes; demonstrating that the presence of protein greatly reduces the mobility of the phospholipid acyl chains of the intracytoplasmic membranes. Due to the high protein content of these membranes, the perturbing effect of protein on acyl chain mobility may extend to virtually all the intracytoplasmic membrane phospholipid.  相似文献   

13.
Murine leukemia EL4 cells were modified by supplementation of culture media with fatty acids for 24 h. A plasma membrane-enriched fraction was prepared from substituted and normal cells. Analyses were performed to determine fatty acyl composition, phospholipid headgroup composition and cholesterol content. The two major membrane phospholipids, phosphatidylethanolamine (PE) and phosphatidylcholine (PC) were isolated by thin-layer chromatography and ESR measurements were done on liposomes prepared from these lipids as well as on the intact plasma membrane preparations. Slight perturbations in overall plasma membrane lipid composition were observed when EL4 cells were supplemented with a single exogenous fatty acid. This may be consistent with the idea that the incorporation of exogenous fatty acid induces compensatory changes in membrane lipid composition. On the other hand, we observed no significant difference in two ESR motional parameters between the unsubstituted control and various fatty acid-substituted plasma membranes. ESR measurements carried out on PE and PC liposomes derived from 17:0- and 18:2c-substituted membranes also failed to detect major differences between these liposomes and those made from normal EL4 phospholipids. In the case of liposomes prepared from 18:2t,-substituted membranes, the order parameter was significantly changed from the normal. However, the change was in opposite directions in PE and PC, perhaps accounting for the fact that no change parameter is seen in intact 18:2t-substituted plasma membrane. Measurements of order parameter (S) in mixed lipid vesicles showed that at up to 50 mol% mixture of a synthetic PC with plasma membrane PC, the value of S was only marginally different from that of the plasma membrane PC vesicles. We interpret these data as an indication that the two ESR parameters used are not sufficiently sensitive to detect changes due to modifications of the acyl chain composition of a complex biological membrane.  相似文献   

14.
During senescence of cut carnation flowers, there is extensive breakdown of microsomal phospholipid. This is attributable, at least in part, to lipolytic activity associated directly with the microsomal membranes. Evidence indicating that one or more of the lipid-degrading enzymes in these membranes preferentially degrade phospholipid molecular species containing two diunsaturated acyl chains or at least one polyunsaturated acyl chain has been obtained by using radiolabeled phosphatidylcholine substrates. 16:0*/16:0*, 16:0/18:2*, and 18:1*/18:1* phosphatidylcholine were degraded only minimally over a 3 hour period by microsomes isolated from senescing flowers. By contrast, [U-14C]phosphatidylcholine, which comprises various molecular species including those containing polyunsaturated acyl chains, and 18:0/20:4* phosphatidylcholine were extensively degraded. Under identical conditions, but in the absence of added radiolabeled substrate, endogenous 18:2/18:2, 18:1/18:3, and 18:2/18:3 phosphatidylcholine were selectively depleted from the membranes. During natural senescence of the flowers, there was a sharp decline in microsomal 16:0/18:1 and 18:1/18:2 phosphatidylcholine, whereas molecular species containing two diunsaturated acyl chains or at least one polyunsaturated acyl chain remained unchanged or decreased only slightly. The data have been interpreted as indicating that provision of particular molecular species susceptible to lipase attack is a prerequisite to phospholipid catabolism in senescing membranes.  相似文献   

15.
In order to obtain more information on membrane phenomena occurring at the cell surface of rabbit thymocytes we have performed experiments aimed at altering the lipid composition of the plasma membrane. Thymocytes were incubated at 37°C with phospholipid vesicles of different compositions. Vesicle-cell interaction was followed by measuring the degree of fluorescence polarization and the uptake of vesicle-entrapped carboxyfluorescein. Neutral and negatively charged liposomes prepared from egg phosphatidylcholine are currently used in investigations of vesicle-cell interaction. In this report we show that these liposomes do not interact with rabbit thymocytes as is evident from unaltered lipid fluidity measured in whole cells and in isolated plasma membranes. This was confirmed by experiments with vesicle-entrapped carboxyfluorescein showing hardly any uptake of the fluorophor from neutral and negatively charged egg phosphatidylcholine liposomes. Using both techniques substantial interaction was found with positively charged egg phosphatidylcholine liposomes and with liposomes prepared from soybean lecithin which is composed of a variety of phospholipids. The results of these experiments were supported by lipid analysis of cells treated with soybean lecithin liposomes. Increase in phosphatidylcholine contents of mixed phospholipid vesicles was further shown to result in decreased vesicle-cell interaction. From measurements of the quantity of carboxyfluorescein inside cells and the total amount of cell-associated carboxyfluorescein it is concluded that adsorption plays a prominent role in interaction between liposomes and rabbit lymphocytes. The grade of maturation of lymphocytes was also found to affect vesicle-cell interaction. The more mature thymocytes took up more vesicle-entrapped carboxyfluorescein from soybean liposomes than immature thymocytes. Mesenteric lymph node cells exhibited a still stronger interaction. The role of vesicle and cell surface charge and membrane fluidity of both vesicles and cells in interaction between liposomes and rabbit thymocytes is discussed.  相似文献   

16.
Niu SL  Litman BJ 《Biophysical journal》2002,83(6):3408-3415
Lateral domain or raft formation in biological membranes is often discussed in terms of cholesterol-lipid interactions. Preferential interactions of cholesterol with lipids, varying in headgroup and acyl chain unsaturation, were studied by measuring the partition coefficient for cholesterol in unilamellar vesicles. A novel vesicle-cyclodextrin system was used, which precludes the possibility of cross-contamination between donor-acceptor vesicles or the need to modify one of the vesicle populations. Variation in phospholipid headgroup resulted in cholesterol partitioning in the order of sphingomyelin (SM) > phosphatidylserine > phosphatidylcholine (PC) > phosphatidylenthanolamine (PE), spanning a range of partition DeltaG of -1181 cal/mol to +683 cal/mol for SM and PE, respectively. Among the acyl chains examined, the order of cholesterol partitioning was 18:0(stearic acid),18:1n-9(oleic acid) PC > di18:1n-9PC > di18:1n-12(petroselenic acid) PC > di18:2n-6(linoleic acid) PC > 16:0(palmitic acid),22:6n-3(DHA) PC > di18:3n-3(alpha-linolenic acid) PC > di22:6n-3PC with a range in partition DeltaG of 913 cal/mol. Our results suggest that the large differences observed in cholesterol-lipid interactions contribute to the forces responsible for lateral domain formation in plasma membranes. These differences may also be responsible for the heterogeneous cholesterol distribution in cellular membranes, where cholesterol is highly enriched in plasma membranes and relatively depleted in intracellular membranes.  相似文献   

17.
The effect of Clostridium perfringens alpha-toxin on liposomes prepared from phosphatidylcholine (PC) containing the fatty acyl residues of 18 carbon atoms was investigated. The toxin-induced carboxyfluorescein (CF) leakage and phosphorylcholine release from multilamellar liposomes increased as the phase transition temperature of the phosphatidylcholines containing unsaturated fatty acyl residues decreased. However, there was no difference between the sensitivity of the different phosphatidylcholines solubilized by deoxycholate to the phospholipase C (PLC) activity of the toxin. However, the toxin did not hydrolyze solubilized distearoyl-l -α-phosphatidylcholine (DSPC) or phosphatidylcholine containing saturated fatty acyl residue, and caused no effect on liposomes composed of DSPC. These results suggest that the activity of the toxin is closely related to the membrane fluidity and double bond in PC. The N-terminal domain of alpha-toxin (AT1-246) and variant H148G did not induce CF leakage from liposomes composed of dioleoyl-l -α-phosphatidylcholine (DOPC). H148G bound to the liposomes, but AT1-246 did not. However, the C-terminal domain (AT251-370) conferred binding to liposomes and the membrane-damaging activity on AT1-246. These observations suggest that the membrane-damaging action of alpha-toxin is due to the binding of the C-terminal domain of the toxin to the double bond in the PC in the bilayer and hydrolysis of the PC by the N-terminal domain.  相似文献   

18.
The effect of the phospholipid acyl chain carbon number on the activity of the branched-chain amino acid transport system of Lactococcus lactis has been investigated. Major fatty acids identified in a total lipid extract of L. lactis membranes are palmitic acid (16:0), oleic acid (18:1) and the cyclopropane-ring containing lactobacillic acid (19 delta). L. lactis membrane vesicles were fused with liposomes prepared from equimolar mixtures of synthetic phosphatidylethanolamine (PE) and phosphatidylcholine (PC) with cis mono-unsaturated acyl chains. The activity of the branched-chain amino acid carrier is determined by the bulk properties of the membrane (Driessen, A.J.M., Zheng, T., In 't Veld, G., Op den Kamp, J.A.F. and Konings, W.N. (1988) Biochemistry 27, 865-872). PE acts as an activator and PC is ineffective. Counterflow and protonmotive-force driven transport of leucine is sensitive to changes in the acyl chain carbon number of both phospholipids and maximal with dioleoyl-PE/dioleoyl-PC. Above the gel to liquid-crystalline phase transition temperature of the lipid species, membrane fluidity decreased with increasing acyl chain carbon number. Our data suggest that the carbon number of the acyl chains of PE and PC determine to a large extent the activity of the transport system. This might be relevant for the interaction of PE with the transport protein. Variations in the acyl chain composition of PC exert a more general effect on transport activity. The acyl chain composition of phospholipids determines the membrane thickness (Lewis, B.A. and Engelman, D.M. (1983) J. Mol. Biol. 166, 211-217). We therefore propose that the degree of matching between the lipid-bilayer and the hydrophobic thickness of the branched-chain amino acid carrier is an important parameter in lipid-protein interactions.  相似文献   

19.
Although some of the membrane glycoproteins that serve as activators or regulators of C activation have been identified, the influence of membrane lipids has not been studied extensively. A model of alternative C pathway activation was established using liposomes composed of cholesterol and synthetic phospholipids. Liposomes containing phosphatidylcholine (PC) as the sole phospholipid did not activate C as measured by C3 binding after incubation in normal human serum containing 2.5 mM MgCl2 and 10 mM EGTA. When phosphatidylethanolamine (PE) was included as 20% or more of the phospholipid, C3 binding was observed. C3 binding to liposomes was inhibited by salicylhydroxamic acid indicating binding through the C3 thioester bond. The phospholipid composition did not influence C3 binding to liposomes in an unregulated system of C3, B, D, and P indicating equivalent C3b binding sites on activating and nonactivating liposomes. When the regulatory proteins H and I were added to the other components, liposomes containing PE bound three times more C3 than PC liposomes suggesting that the phospholipid affects C3 regulation. This was tested directly in a radiolabeled H binding assay. In the presence of equal amounts of C3b, PC liposomes showed a greater number of high affinity H binding sites than PE liposomes. Using different PE derivatives, C activation could be directly related to the phospholipid polar head group. Liposomes containing PE, trinitrophenyl-PE or monomethyl-PE did activate the alternative C pathway, whereas those containing dimethyl-PE, PC, or phosphatidylserine did not. These studies provide evidence that primary and secondary amino groups on lipid membranes can decrease the interaction between H and C3b and provide sites for alternative pathway activation.  相似文献   

20.
Vesicles composed of phospholipids with different fatty acyl side chains have been utilized to examine the importance of the nonpolar membrane region for the prothrombin-converting activity of procoagulant phospholipid vesicles. Membranes composed of phosphatidylserine (PS) and phosphatidylcholine (PC) with unsaturated fatty acyl side chains were more active in prothrombin activation than membranes composed of phospholipids with saturated fatty acyl chains. This phenomenon was observed above the phase transition temperature, i.e., on membranes in the liquid-crystalline state. The prothrombin-converting activity of saturated phospholipids approached the activity of unsaturated phospholipids at high factor Va concentrations, which is indicative for a less favorable equilibrium constant for prothrombinase assembly on membrane surfaces composed of saturated phospholipids. The difference between saturated and unsaturated phospholipids was annulled on membranes with high mole percentages of PS. This may result from a compensating contribution of electrostatic forces to the binding equilibria involved in prothrombinase assembly. Additional effects on the prothrombin-converting activity were observed when membranes containing saturated phospholipids were studied below their phase transition temperature. In agreement with Higgins et al. [(1985) J. Biol. Chem. 260, 3604-3612], we found that the time required for the assembly of prothrombinase from membrane-bound factors Xa and Va is considerably prolonged on solid membranes. However, we also observed an effect of membrane fluidity on the steady-state rate of prothrombin activation. Kinetic experiments at saturating factor Va concentrations showed that the transition from the liquid-crystalline to the gel state caused a more than 9-fold decrease of the kcat of prothrombin activation without affecting the Km for prothrombin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号