首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
(1)‘Uptake’ of phlorizin by intestinal brush border membrane vesicles is stimulated, much as that of d-glucose, by the simultaneous presence of Naout+ and Δψ?0. However, phlorizin contrary to d-glucose, fulfills all criteria of a non-translocated ligand (i.e., of a fully competitive inhibitor) of the Na+,d-glucose cotransporter. (2) The stoicheiometry of Na+/phlorizin binding is 1, as shown by a Hill coefficient of approx. 1 in the Naout+-dependence of phlorizin binding. (3) The preferred order of binding at Δψ?0 is Na+ first, phlorizin second (4) The velocity of association of phlorizin to the cotransporter, but not the velocity of its dissociation therefrom, responds to Δψ. These observations while agreeing with the effect of Δψ?0 on the Kd of phlorizin binding in the steady-state time range, also confirm that the mobile part of the cotransporter bears a negative charge of 1. (5) A model is proposed describing the Na+,Δψ-dependent interaction of phlorizin with the cotransporter and agreeing with a more general model of Na+,d-glucose cotransport. (6) The kon, koff and Kd constants of phlorizin interaction with the Na+,d-glucose cotransporter are smaller in the kidney than in the small-intestinal brush border membrane, which results in a number of quantitative differences in the overall behaviour of the two systems.  相似文献   

3.
The effects of d-glucose addition to a glucose-free luminal perfusate were investigated in the proximal tubule of Necturus kidney, by electrophysiological techniques. The main findings are: (1) In the presence of sodium, d-glucose produces 10.5 mV ± 1.1 (S.E.) depolarization. (2) Phlorizin reduces the magnitude of this response to 2.1 ± 0.1 mV. (3) The glucose-evoked depolarization, ΔVG, does not alter the intracellular K+ activity nor is it affected by peritubular addition of ouabain. (4) Isosmotic reduction of Na+ concentration in luminal perfusate from 95 to 2 mmol/l (choline or Li+ substituting for Na+) does not change the magnitude of ΔVG; complete removal of sodium from the lumen lowers the value of ΔVG (3.2 ± 0.2 mV) but the response is not abolished. This observation suggests that the d-glucose carrier of renal tubules in Necturus is poorly specific with regard to the cotransported cation species.  相似文献   

4.
The Na+-independent leucine transport system is resolved into two components by their different affinity (Km about 44 μM and 8.0 mM) for leucine in the Chang liver cell. Treatment of the cells with N-ethylmaleimide (1 mM) specifically stimulates the high-affinity component of the Na+-independent system by greatly increasing its Vmax value, whereas the Vmax value of the low-affinity component is markedly lowered. The stimulatory effect of N-ethylmaleimide on leucine transport is reduced by prior treatment of the cells with 2,4-dinitrophenol, but this phenomenon seems to be irrelevant to the ATP-depleting action of the uncoupler. The treatment with 2,4-dinitrophenol has been found not to be inhibitory on the subsequent Na+-independent leucine uptake itself. Treatment with dibucaine, a phospholipid-interacting drug, also reduces to varying degrees (depending on its concentration) the stimulatory effect of N-ethylmaleimide on the subsequent leucine uptake, although pretreatment with dibucaine can stimulate the Na+-independent leucine uptake itself. We conclude that the stimulatory effect of N-ethylmaleimide on leucine transport is not correlated with the energy level of cell, but involves the perturbation of the membrane bilayer structures.  相似文献   

5.
The transport of d-glucose by brush border membranes isolated from the rabbit renal cortex was studied. At concentrations less than 2 mM, the rate of d-glucose uptake increased linearly with the concentration of the sugar. No evidence was found for a “high-affinity” (μM) saturable site. Saturation was indicated at concentrations of d-glucose greater than 5 mM. The uptake of d-glucose was stereospecific and selectively inhibited by d-galactose and other sugars. Phlorizin inhibited the uptake of d-glucose in the presence and absence of Na+. The glycoside was a potent inhibitor of the efflux of d-glucose. Preloading the brush border membrane vesicles with d-glucose, but not with l-glucose, accelerated exchange diffusion of d-glucose. These results demonstrate that the uptake of d-glucose by renal brush borders represents transport into an intravesicular space rather than solely binding. The rate of d-glucose uptake was increased when the Na+ in the extravesicular medium was high and the membranes were preloaded with a Na+-free medium. The rate of d-glucose uptake was inhibited by preloading the brush border membranes with Na+. These results are consistent with the Na+ gradient hypothesis for d-glucose transport in the kidney. Thus, the presence of a Na+-dependent facilitated transport of d-glucose in isolated renal brush border membranes is indicated. This finding is consistent with what is known of the transport of the sugar in more physiologically intact preparations and suggests that the membranes serve as an effective model system in examining the mechanism of d-glucose transport in the kidney.  相似文献   

6.
This paper describes the characteristics of Na+-dependent d-glucose transport into liposomes made from soybean phospholipids into which have been reconstituted detergent-solubilized components from the rabbit renal proximal tubular brush border membrane. Conditions for optimal and quantitative reconstitution of glucose carriers are defined. Na+-dependent d-glucose uptake occurs via a saturable system with a Km of 0.125–0.135 mM, is responsive to the volume of the internal liposomal space, and shows ‘overshoot’ as seen in natural membranes. The rate of Na+-dependent d-glucose uptake and the magnitude of the ‘overshoot’ are proportional to the concentration of protein used in reconstitution.  相似文献   

7.
Na+-independent l-arginine uptake was studied in rabbit renal brush border membrane vesicles. The finding that steady-state uptake of l-arginine decreased with increasing extravesicular osmolality and the demonstration of accelerative exchange diffusion after preincubation of vesicles with l-arginine, but not d-arginine, indicated that the uptake of l-arginine in brush border vesicles was reflective of carrier-mediated transport into an intravesicular space. Accelerative exchange diffusion of l-arginine was demonstrated in vesicles preincubated with l-lysine and l-ornithine, but not l-alanine or l-proline, suggesting the presence of a dibasic amino acid transporter in the renal brush border membrane. Partial saturation of initial rates of l-arginine transport was found with extravesicular [arginine] varied from 0.005 to 1.0 mM. l-Arginine uptake was inhibited by extravesicular dibasic amino acids unlike the Na+-independent uptake of l-alanine, l-glutamate, glycine or l-proline in the presence of extravesicular amino acids of similar structure. l-Arginine uptake was increased by the imposition of an H+ gradient (intravesicular pH<extravesicular pH) and H+ gradient stimulated uptake was further increased by FCCP. These findings demonstrate membrane-potential-sensitive, Na+-independent transport of l-arginine in brush border membrane vesicles which differs from Na+-independent uptake of neutral and acidic amino acids. Na+-independent dibasic amino acid transport in membrane vesicles is likely reflective of Na+-independent transport of dibasic amino acids across the renal brush border membrane.  相似文献   

8.
The Michaelis-Menten parameters, JM and Km of the initial 1-min fluxes of uptake of l-phenylalanine and of α-aminoisobutyric acid were determined for extracellular concentrations of Na+ ranging from 0.5 to 110 mequiv/l for Ehrlich ascites tumor cells. The maximal initial flux, JM, decreased with decrease in extracellular Na+ for both α-aminoisobutyric acid and phenylalanine but the Km for α-aminoisobutyric acid increased markedly as the Na+ concentration fell whereas the Km for phenylalanine decreased. Cycloleucine behaved like phenylalanine.The data provides strong evidence that the Na+-independent flux of phenylalanine is an exchange diffusion flux that can be varied by changing the intracellular level of amino acids such as phenylalanine. For phenylalanine, cyclolcucine, and methionine this exchange diffusion flux appears to be additive with the Na+-dependent initial flux. α-Aminoisobutyric acid also has an exchange diffusion that is Na+-independent but it has a high Km and is not additive with the Na+-dependent flux.  相似文献   

9.
l-Ascorbate is taken up into brush border vesicles from kidney cortex of rat, rabbit and guinea pig by an efficient, Na+-dependent and potential-sensitive transport process. This uptake shows saturation (Km:0.1–0.3 mM) and is strongly stimulated by low concentrations of N3?. Erythorbate (d-isoascorbate) seems to be another, but poorer, substrate of the same transporter.  相似文献   

10.
11.
Inhibition of the (Na+ + K+)-dependent ATPase by inorganic phosphate, Pi, was examined in terms of product inhibition of the various activities catalyzed by an enzyme preparation from rat brain, and considered in terms of the specific transport processes of the membrane Na+,K+-pump that these activities reflect. The K+-dependent phosphatase activity of the enzyme was most sensitive to Pi, and inhibition was competitive toward the substrate, nitrophenyl phosphate, as would be expected if Pi were released from the same enzyme form that bound substrate. However, this enzymatic activity does not seem to represent a transport process, and thus a cyclical discharge of K+ may not be involved. The Na+-dependent exchange activity was unaffected by Pi, in accord with the absence of Pi release in the reaction sequence. For the corresponding Na+/Na+ exchange function of the pump, which reportedly does not involve ATP hydrolysis either, prior release of Pi obviously cannot be required for Na+ discharge. With the Na+-dependent ATPase activity, measured using micromolar concentrations of ATP, Pi inhibited, but far less than with the phosphatase activity, and inhibition was not competitive toward ATP. Moreover, inhibition decreased as the Na+ concentration was raised from 10 to 100 mM. This elevated concentration of Na+ also led to substrate inhibition. For this ATPase activity, and the corresponding transport process, uncoupled Na+ efflux, the findings suggest that Na+ discharge follows Pi release, in contrast to Na+/Na+ exchange. The (Na+ + K+)-dependent ATPase activity, measured with millimolar concentrations of ATP and reflecting the coupled Na+,K+-transport function, was similarly sensitive to Pi, and again inhibition was not competitive toward ATP. However, in this case inhibition did not increase as the Na+ concentration was lowered. For this activity, and the associated transport process, the site of Na+ discharge in the overall reaction sequence remains unresolved.  相似文献   

12.
(1) A membrane fraction enriched in (Na+ + K+)-ATPase (EC 3.6.1.3) was obtained from optic ganglia of the squid (Loligo pealei) by density gradient fractionation of membranes followed by treatment with either SDS or Brij-58. The resulting membrane had an (Na+ + K+)-ATPase specific activity of approx. 2 units/mg and was >95% ouabain-sensitive. (2) The (Na+ + K+)-ATPase had a Km for ATP of 0.42 ± 0.04 mM and a pH optimum of 7.0. It was inhibited by ouabain with a Ki of 0.32 ± 0.04 μM. (3) Optimum monovalent cation concentrations were: 240 mM NaCl, 60 mM KCl, tested with NaCl + KCl = 300 mM. (4) The Mg2+ dependence of hydrolysis varied with the absolute ATP concentration. At 3 mM ATP, theKm for Mg2+ was 0.86 ± 0.10 mM, and at 6 mM ATP, the Km was 1.86 ± 0.44 mM. High levels of Mg2+ caused inhibition of hydrolysis. (5) The interactions of Na+ and K+ were examined over a range of conditions. K+ levels caused modulations in the Na+ dependence in the range of 1–150 mM. (6) The (Na+ + K+)-ATPase prepared from squid optic ganglion displays properties similar to those of the sodium pump in injected nerves.  相似文献   

13.
The influence of Tl+ on Na+ transport and on the ATPase activity in human erythrocytes was studied. 0.1–1.0 mM Tl+ added to a K+-free medium inhibited the ouabain-sensitive self-exchange of Na+ and activated both the ouabain-sensitive 22Na outward transport and the transport related ATPase. 5–10 mM external Tl+ caused inhibition of the ouabain-sensitive 22Na efflux as well as the (Na+ + Tl+)-ATPase. Competition between the internal Na+ and rapidly penetrating thallous ions at the inner Na+-specific binding sites of the erythrocyte membrane could account for the inhibitory effect of Tl+. An increase of the internal Na+ concentration in erythrocytes or in ghosts protected the system against the inhibitory effect of high concentration of Tl+. A protective effect of Na+ was also demonstrated on the (Na+ + Tl+)-ATPase of fragmented erythrocyte membranes studied at various Na+ and Tl+ concentrations.  相似文献   

14.
In the presence of an Na+- or a K+-gradient (outside > inside), l-phenylalanine uptake exhibited an overshoot phenomenon indicating active transport. The amplitudes of the overshoots were increased by increasing either Na+ or K+ concentrations in the incubation media, indicating that binding alone cannot account for the K+ effect. The K+-induced overshoot is not due to the presence of a membrane potential alone, as a gradient of choline chloride failed to produce it. Li+ could also substitute for Na+ though less potent than Na+ in inducing an overshoot. Uptake of l-leucine also showed Na+- and K+-effects and l-leucine and l-alanine could inhibit the Na+- and K+-overshoots obtained with phenylalanine. These results lead us to postulate the presence of a carrier for neutral amino acids dependent on monovalent cation with higher affinity for Na+ in mouse intestine. The Na+- and K+-driven active transport of l-phenylalanine were shown to be dependent on the presence of a membrane potential, as short-circuiting the membrane with FCCP reduced the amplitude of the overshoots seen with both ions. However, substitution of Cl? by more lipophilic anions (NO3?, SCN?) produced an inhibition of uptake. A preliminary analysis of the interrelations between Na+ and K+ for l-phenylalanine uptake showed complex interactions which can be best explained by mutual competition for a common carrier at both sides of the membrane. These results suggest the presence of a new transport system or a variant of an ASC-type system for l-phenylalanine (and neutral amino acids) in the mouse intestine. However, our studies do not rule out the possible involvement of more than one system for neutral amino acid uptake.  相似文献   

15.
The uptake of d-glucose, 2-aminoisobutyric acid and glycine was studied with intestinal brush border membrane vesicles of a marine herbivorous fish: Boops salpa. The uptake of these three substances is stimulated by an Na+ electrochemical gradient (CoutCin). For glucose, an increase of the electrical membrane potential generated by a concentration gradient of the liposoluble anion, SCN?, increases the Na+-dependent transport. This responsiveness to the membrane potential was confirmed by valinomycin. Differently from glucose, uptake of glycine and 2-aminoisobutyric acid requires, besides the Na+ gradient, the presence of Cl? on the external side of the vesicles. In the absence of Cl?, amino acid uptake is not stimulated by the Na+ gradient and is not influenced by an electrical membrane potential generated by SCN? gradient (Cout>Cin) or by a K+ diffusion potential (Cin>Cout). This Cl? requirement differs from the Na+ requirement, since a Cl? gradient (Cout>Cin) does not result in an accumulation of glycine or 2-aminoisobutyric acid similar to that produced by an Na+ gradient.  相似文献   

16.
17.
The technique of laser Doppler electrophoresis was applied for the study of the surface charge properties of (Na+,+)-ATPase containing microsomal vesicles derived from guinea-pig kidney. The influence of pH, the screening and binding of uni- and divalent cations and the binding of ATP show: (1) one net negative charge per protein unit with a pK = 3.9; (2) deviation from the Debye relation between surface potential and ionic strength for univalent cations, with no difference in the effect of Na+ and K+; (3) Mg2+ binds with an association constant of Ka = 1.1 · 102M?1 while ATP binds with an apparent Ka = 1.1 · 104M?2 for 1 mM Nacl, 0.2 mM KCI, 0.1 mM MgCl2, 0.1 mM Tris-HCI (pH 7.3). The binding is weaker at higher Mg2+ concentrations. There is no ATP binding in the absence of Mg2+. In addition, the average vesicle size derived from the linewidth of the quasi-elastic light scattering spectrum is 203.7 ± 15.2 nm. In the presence of ATP a reduction in size is observed.  相似文献   

18.
It has previously been shown that mercurials acting from the cytoplasmic side or from within the hydrophobic part of the membrane inactivate the small intestinal Na+/d-glucose cotransporter by blocking essential SH-groups (Klip, A., Grinstein, S. and Semenza, G. (1979) Biochim. Biophys. Acta 558, 233–245). Another (set of) sulfhydryl(s) which are critical for phlorizin binding and sugar transport function and which may lie on the luminal side of the brush border membrane, can be blocked by DTNB and 4,4′-dithiopyridine but not by N-ethylmaleimide. In addition, modification of amino groups by fluorescamine, reductive methylation and (under certain conditions) DIDS also lead to inactivation of the carrier's binding and transport functions. No evidence was obtained that any of the above groups is directly involved in the binding of either Na+/d-glucose or phlorizin, since none of these compounds prevented inactivation of the cotransporter.  相似文献   

19.
Previous studies support the validity of a linear thermodynamic formalism relating the rates of active Na+ transport and oxygen consumption Jr to the electrical potential difference ΔΨ an the affinity α (negative free energy) of the metabolic driving reaction. The formulation was further tested in paired control and experimental hemiskins by the use of two inhibitors of Na+ transport. Ouabain, a specific inhibitor of the Na+ pump, might be expected to diminish the dependence of Jr on ΔΨ without affecting α, whereas 2-deoxy-d-glucose, a competitive inhibitor of glucose metabolism, should be expected to diminish α. Both inhibitors were used at concentrations adequate to depress Na+ transport (i.e. short-circuit current Jo) to some 50°o of control level. Measurements were made of Io and dJrd(ΔΨ), and the apparent value of the affinity αapp was calculated according to the thermodynamic formulation. Ouabain depressed dJrd(ΔΨ) without affecting αapp whereas 2-deoxy-d-glucose depressed αapp without affecting dJrd(αΨ). The demonstration of these effects indicates the utility of the formalism.  相似文献   

20.
The transport of the bile salt, glycodeoxycholate, was studied in vesicles derived from rat jejunal and ileal brush border membranes using a rapid filtration technique. The uptake was osmotically sensitive, linearly related to membrane protein and resembled d-glucose transport. In ileal, but not jejunal, vesicles glycodeoxycholate uptake showed a transient vesicle/medium ratio greater than 1 in the presence of an initial sodium gradient. The differences between glycodeoxycholate uptake in the presence and absence of a Na+ gradient yielded a saturable transport component. Kinetic analysis revealed a Km value similar to that described previously in everted whole intestinal segments and epithelial cells isolated from the ileum. These findings support the existence of a transport system in the brush border membrane that: (1) reflects kinetics and characteristics of bile salt transport in intact intestinal preparations, and (2) catalyzes the co-transport of Na+ and bile salt across the ileal membrane in a manner analogous to d-glucose transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号