首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 119 毫秒
1.
Fluorescence yield dependence on external magnetic field (0–600 G) was measured for chlorophyll-protein complexes enriched with Photosystem I. Maximal relative changes of fluorescence yield at room temperature (1.0–2.5%) were dependent on the chlorphyll a:P-700 ratio. Magnetic field-induced changes were observed only in the presence of dithionite. At low temperatures (down to ?160°C) the magnetic field-induced effect decreased. The effect is obviously connected with the functions of reaction centers in Photosystem I. An explanation of the effect is proposed based on the hypothesis of radical pairs recombination within the reaction center. For the radical pair (P-700 A), an intermediate acceptor, A, with a g-value approximately equal to that of P-700 is proposed.  相似文献   

2.
With the aid of measurements of the fluorescence yield, the efficiency of the various deexcitation mechanisms of an exciton in the light-harvesting system has been determined. For this purpose, the fluorescence of dark-adapted as well as of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU)-treated and preilluminated leaves of Zea mays L. was excited by single ultrashort laser pulses of different energies. The experimental results have served for the fitting of solutions of rate equations, which describe the deexcitation by linear relaxation processes like fluorescence and radiationless transitions, by annihiation of excitons, and by traps both in the ground state and in an excited state. We have obtained the following results: a ratio of antenna chlorophyll molecules to Photosystem II traps of 600:1, an annihilation constant γ = 2·10?8 cm3·s?1, a mean trapping time of t?=0.5 ns, a trapping probability for traps in the ground state of 2·10?8 cm3·s?1, and 6·10?9 cm3·s?1 for traps in an excited state.  相似文献   

3.
B.R. Velthuys  J. Amesz 《BBA》1975,376(1):162-168
Delayed fluorescence (luminescence) from spinach chloroplasts, induced by short saturating flashes, was studied in the temperature region between 0 and ?40 °C. At these temperatures, in contrast to what is observed at room temperature, luminescence at 40 ms after a flash was strongly dependent, with period four, on the number of preilluminating flashes (given at room temperature, before cooling). At ?35 °C luminescence of chloroplasts preilluminated with two flashes (the optimal preillumination) was about 15 times larger than that of dark-adapted chloroplasts. The intensity of luminescence obtained with preilluminated chloroplasts increased steeply below ?10 °C, presumably partly due to accumulation of reduced acceptor (Q?), and reached a maximum at ?35 °C.In the presence of 50 mM NH4Cl the temperature optimum was at ?15 °C; at this temperature luminescence was increased by NH4Cl; at temperatures below ?20 °C luminescence at 40 ms was decreased by NH4Cl. At room temperature a strongly enhanced 40-ms luminescence was observed after the third and following flashes. The results indicate that both the S2 to S3 and the S3 to S4 conversion are affected by NlH4Cl.Inhibitors of Q? reoxidation, like 3-(3, 4-dichlorophenyl)-1, 1- dimethylurea, did only slightly affect the preillumination dependence of luminescence at sub-zero temperatures if they were added after the preillumination. This indicates that these substances by themselves do not accelerate the deactivation of S2 and S3.  相似文献   

4.
The kinetics of the photoreduction of C-550, the photooxidation of cytochrome b559 and the fluorescence yield changes during irradiation of chloroplasts at ?196 °C were measured and compared. The photoreduction of C-550 proceeded more rapidly than the photooxidation of cytochrome b559 and the fluorescence yield increase followed the cytochrome b559 oxidation. These results suggest that fluorescence yield under these conditions indicates the dark reduction of the primary electron donor to Photosystem II, P680+, by cytochrome b559 rather than the photoreduction of the primary electron acceptor.The photoreduction of C-550 showed little if any temperature dependence over the range of ?196 to ?100 °C. The amount of cytochrome b559 photooxidized was sensitive to temperature decreasing from the maximal change at temperatures between ?196 to ?160 °C to no change at ?100 °C. To the extent that the reaction occurred at temperatures between ?160 and ?100 °C the rate was largely independent of temperature. The rate of the fluorescence increase was dependent on temperature over this range being 3–4 times more rapid at ?100 than at ?160 °C. At ?100 °C the light-induced fluorescence increase and the photoreduction of C-550 show similar kinetics. The temperature dependence of the fluorescence induction curve is attributed to the temperature dependence of the dark reduction of P680+.The intensity dependence of the photoreduction of C-550 and of the photooxidation of cytochrome b559 are linear at low intensities (below 200 μW/cm2) but fall off at higher intensities. The failure of reciprocity in the photoreduction of C-550 at the higher intensities is not explained by the simple model proposed for the Photosystem II reaction centers.  相似文献   

5.
Oxygen consumption rates (QO2) of laboratory reared stage one zoeae of Pandalus borealis (Krøyer) at 1.5, 3, 4.5, 6, and 9°C were 1.5, 2.2, 2.6, 3.6 and 4.1μ O2 · mg?1 · h?1, respectively. These values of QO2 correspond to 0.26, 0.38, 0.44, 0.60, and 0.70 μl O2 · individual?1 · h?1. At 10.5 °C oxygen consumption rates decreased suggesting thermally induced respiratory stress.The equation log10QO2 = 0.55 log10T°C + 0.086 describes the relationship between QO2 (μl O2 · mg?1 · h?1) and sea-water temperature between 1.5 and 9°C. Corresponding values of QO2 for an individual (μl O2 · h?1) exhibited the relationship log10QO2 = 0.55 log10T°C ?0.686.The minimum daily metabolic caloric requirements for an individual zoea ranged from 0.04 at 3 °C to 0.07 calories per day at 8 °C. The number of calories ingested daily ranged from 0.4 to 0.5 at 3 to 8 °C.  相似文献   

6.
P.Muir Wood  D.S. Bendall 《BBA》1975,387(1):115-128
The rates of electron transfer to P700 from plastocyanin and cytochrome f have been compared with those from three other c-type cytochromes and azurin, a copper protein resembling plastocyanin. Three different disruptive techniques were used to expose P700; digitonin, Triton X-100 and sonication. The following rate constants were measured at 25 °C, pH 7.0, with digitonin-treated chloroplasts: plastocyanin, 8 · 107 M?1 · s?1; red-algal cytochrome c-553, 1.9 · 107 M?1 · s?1; Pseudomonas cytochrome c-551, 8 · 106 M?1 · s?1; azurin, ? 3 · 105 M?1 · s?1; cytochrome f, ? 2 · 104 M?1 · s?1; mammalian cytochrome c, ? 2 · 104 M?1 · s?1. For electron transfer from plastocyanin, the effects of ionic strength, pH and temperature were also studied, and saturation effects found in earlier work were avoided by a full consideration of the various secondary reactions and inclusion of superoxide dismutase. The relative rates are discussed in relation to photosynthetic electron transport.  相似文献   

7.
Treatment of the S3G strain of HeLa cells with dexamethasone inhibits cholesterol synthesis and thus results in decreased plasma membrane cholesterol-to-protein ratios. Incubation of HeLa cells with dexamethasone for 24 h lowers the steady-state fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) in intact cell plasma membranes and isolated plasma membranes (Johnston, D. and Melnykovych, G. (1980) Biochim. Biophys. Acta 596, 320–324). We have examined the effect of dexamethasone treatment of S3G HeLa cells on the lateral diffusion of the fluorescent lipid analogue 3,3′-dioctadecylindocarbocyanine iodide (DiI) by the fluorescence photobleaching recovery technique. The lateral diffusion of DiI was measured in cells 0, 2, 6, 12, and 24 h following treatment with dexamethasone and in cells identically handled without dexamethasone at 37°C. The diffusion constants of DiI in the treated and untreated cell membranes at zero time were (4.52±0.30) · 10?9 cm2/s and (4.56±0.24) · 10?9 cm2/s, respectively. There was no significant change in the lateral diffusion of DiI in the untreated cells over the 24 h period. The lateral diffusion of the lipid probe in the dexamethasone-treated cells began to increase 6 h following treatment and reached (6.43±0.27) · 10?9 cm2/s at 24 h. The lateral diffusion of DiI was also measured at 25, 17, 10 and 4°C following 24 h incubation with and without dexamethasone. The effect of dexamethasone treatment on the lipid probe lateral diffusion observed at 37°C is decreased at 25°C and reversed in direction at 10 and 4°C. These results agree with those obtained in artificial systems containing varying amounts of cholesterol and support the suggestion that cholesterol acts to suppress phospholipid phase changes in animal cells. The lateral diffusion of DiI localized as a monolayer at a mineral oil-water interface was measured by fluorescence photobleaching recovery. The resulting data and the viscosity of the mineral oil were used to calculate the microviscosities of the plasma membranes of untreated and dexamethasone-treated cells at 25°C. Membrane microviscosities were also calculated from the fluorescence polarization studies cited above. In both cases the dexamethasone treatment reduced the apparent microviscosity by approximately 25%. However, the absolute microviscosity values obtained by the two techniques differ by a factor of 3.  相似文献   

8.
1. Using single chloroplasts of Peperomia metallica the kinetics of light-induced potential changes were studied. Three kinetic components (the initial fast rise, the decay in the light and the decay in the dark) were found to be characterized by time constants 4, 220 and 60 ms, respectively at light intensity 5000 lx and temperature 18 °C. After flash excitation the potential kept on rising for about 10 ms. Cooling of the medium down to 5 °C had no effect on the duration of potential rise after the flash.2. Variations in the medium temperature in the range 2–23 °C had little effect on photoresponse magnitude but resulted in significant acceleration of decay in the light.3. Addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (5 · 10?6 M) resulted in suppression of the magnitude of the photoresponse but was not accompanied by any change in the rate of initial rise of potential. 3-(3,4-Dichlorophenyl)-1,1-dimethylurea-inhibited photoresponse could be restored and even enhanced by subsequent addition of N-methylphenazonium methosulfate (10?4 M). N-Methylphenazonium methosulfate essentially influenced the time course and light-intensity curves of photoresponse.4. The chloroplast photoresponses were of different time-courses when elicited by red (640 nm) or far red (712 nm) light. This fact as well as an enhancement effect of combined illumination by two intermittent light beams indicate on the interaction of two photosynthetic pigment systems when the photoelectric response was formed.5. An imposed electrical field resulted in stimulation or suppression of chloroplast photoresponse depending on the polarity of the field. No indications for the existance of “reversal potential” for photoelectric response were obtained.6. A kinetic scheme of photoresponse formation is proposed, which includes two sequential photochemical reactions of photosynthesis.  相似文献   

9.
The rates of formation and dissociation of concanavalin A with some 4-methylumbelliferyl and p-nitrophenyl derivatives of α- and β-D-mannopyranosides and glucopyranosides were measured by fluorescence and spectral stopped-flow methods. All process examined were uniphasic. The second-order formation rate constants varied only from 6.8 · 104 to 12.8 · 104 M?. s?1, whereas the first-order dissociation rate constants ranged from 4.1. to 220 s?1, all at ph 5.0, I = 0.3 M, and 25°C. Dissociation rates thus controlled the value of binding constant. The effect of temperature on these reactions was examined, from which enthalpies and entropies of activation and of reaction could be calculated. The effects of pH at 25°C on the reaction rates of 4-methylumbelliferyl α-D-mannopyranoside and 4-methylumbelliferyl α-D-glucopyranoside with concanavalin A were examined. The value of the binding constant Kap (derived from the kinetics) at any pH could be related to the intrinsic binding constant K by the expression Kap = KaK(Ka + [H+])?1. The values of Ka, the ionization constant of the protein segment responsive to sugar binding, were 3 · 10?4 M and 1 · 10?4 M for 4-methylumbelliferyl α-D-mannopyranoside and 4-methylumbelliferyl α-D-glucopyranoside, respectively. The binding constant of p-nitrophenyl α-D-mannopyranoside is surprisingly much less sensitive to a pH change from 5.0 to 2.7. Ionic strength had little effect on the binding characteristics of 4-methylumbelliferyl α-D-mannopyranoside to concanavalin A at pH 5.2 and 25°C.  相似文献   

10.
Ventilation was measured directly in the hagfish, Myxine glutinosa L., by means of an electro-magnetic blood flowmeter. Ventilatory flow and frequency increased from 0.86 ± 0.27 ml·min?, and 18.2 ± 5.1·min?, respectively, at 7°C to 1.70 ± 0.20 ml·min?, and 70.1 ± 9.5·min? at 15 ·C.Standard oxygen consumption,V?O2, was measured in non-buried hagfish. V?O2 was 0.57 ± 0.17μl O2·g?1·min?1 at 7°C, and 0.85 ± 0.12μl O2·g?1·min?1 at 15°C.  相似文献   

11.
A study was made with a modulated oxygen electrode of the effect of variations of oxygen concentration on photosynthetic oxygen evolution from algal cells. When Chlorella vulgaris is examined with a modulated 650 nm light at 22°C, both the oxygen yield and the phase lag between the modulated oxygen signal and the light modulations have virtually constant values between 800 and 120 ergs · cm?1 · s?1 if the bathing medium is in equilibrium with the air. Similar results are obtained at 32°C between 1600 and 120 ergs · cm?2 · s?1. Under anerobic conditions both the oxygen yield and the phase lag decrease if the light intensity is lowered below about 500 ergs · cm?2 · s?1 at 22°C or about 1000 ergs · cm?2 · s?1 at 32°C. A modulated 706 nm beam also gives rise to these phenomena but only at significantly lower rates of oxygen evolution. The cells of Anacystis nidulans and Porphyridium cruentum appear to react in the same way to anaerobic conditions as C. vulgaris. An examination of possible mechanisms to explain these results was performed using a computer simulation of photosynthetic electron transport. The simulation suggests that a backflow of electrons from a redox pool between the Photosystems to the rate-limiting reaction between Photosystem II and the water-splitting act can cause a decrease in oxygen yield and phase lag. If the pool between the Photosystems is in a very reduced state a significant cyclic flow is expected, whereas if the pool is largely oxidized little or no cyclic flow should occur. It is shown that the effects of 706 nm illumination and removal of oxygen can be interpreted in accordance with these proposals. Since a partial inhibition of oxygen evolution by 3-(3.4-dichlorophenyl)-1,1-dimethylurea (10?8 M) magnifies the decreases in oxygen yield and phase lag, it is proposed that the pool which cycles back electrons is in front of the site of 3-(3,4-dichlorophenyl)-1,1-dimethylurea inhibition and is probably the initial electron acceptor pool after Photosystem II.  相似文献   

12.
Telemetered heart rate (fH) was examined as an indicator of activity and oxygen consumption rate (VO2) in adult, cultivated, Atlantic salmon, Salmo salar L. Heart rate was measured during sustained swimming in a flume for six fish at 10° C [mean weight, 1114 g; mean fork length (f. l.), 50·6 cm] and seven fish at 15° C (mean weight, 1119 g; mean f. l., 50·7 cm) at speeds of up to 2·2 body lengths/s. Semi–logarithmic relationships between heart rate and swimming speed were obtained at both temperatures. Spontaneously swimming fish in still water exhibited characteristic heart rate increases associated with activity. Heart rate and Vo2 were monitored simultaneously in a 575–1 circular respirometer for six fish (three male, three female) at 4° C (mean weight, 1804 g; mean F. L., 62· cm) and six fish (three male, three female) at 10° C (mean weight, 2045 g; mean f. l., 63·2 cm) during spontaneous but unquantified activity. Linear regressions were obtained by transforming data for both fH and Vo2 to log values. At each temperature, slopes of the regressions between fH and Vo2 for individual fishes were not significantly different, but in some cases elevations were. All differences in elevation were between male and female fish. There were no significant differences in regression slope or elevation for fish of the same sex at the two temperatures and so regressions were calculated for the sexes, pooling data from 4 and 10° C. There was no significant difference in the mean ± S. D. Vo2 between the sexes at 4° C (male, 66·0 ± 59·6 mgO2 kg?1 h?1; female, 88·0 ± 60·1 mgO2 kg?1 h?1) or 10° C (male, 166·2 ± 115·4 mgO2 kg?1 h?1; female, 169·2 ± 111–1 mgO2 kg?1h?1). Resting Vo2 (x?± s. d.) at 4°C was 36·7 ± 8.4 mgO2 kg?1 h?1, and 10° C was 72·8 ± 11·9 mgO2 kg?1 h?1. Maximum Vo2 (x?± S. D.) at 4° C was 250·6 ± 40·2 mgO2 kg?1 h?1, and at 10° C was 423·6 ± 25·2 mgO2 kg?1 h?1. Heart rate appears to be a useful indicator of metabolic rate over the temperature range examined, for the cultivated fish studied, but it is possible that the relationship for wild fish may differ.  相似文献   

13.
Three species of diatoms, Skeletonema costatum (Grev.) Cleve, Thalassiosira gravida Cleve, and T. pseudonana (Hustedt) Hasle et Heimdal, were grown in in situ dialysis culture in the Trondheimsfjord at depths of 0.5 and 4 m. The rates of growth and the chemical composition of exponentially growing cells were monitored and related to seasonal changes in illumination and temperature. Functions correlating growth rate with temperature were deduced. Growth took place from February to November. During this period temperature ranged from ?1 to 16°C, the average photon flux density (ifI) (per 24 h) from 9 to 570 μE · m?2 · s?1 (0.5 m depth), and the length of the days (I > 1 μE · m?2 · s?1) from 6 to 24 h. Light-limited growth was evident when the product of the average daily light and the chlorophyll/N ratio was < 10; this occurred mostly in early spring and late autumn. Peak densities (> 800 for the Thalassiosira spp. and > 1300–1400 μE · m?2 · s?1 for Skeletonema) seem to inhibit growth. The highest rates recorded were ≈1.6 doubl. · day?1 (July, 15–16°C).The three species exhibit different ecological behaviour. Skeletonema is eurythermal (Q10 = 1.8), whereas Thalassiosira pseudonana favours high temperatures, and T. gravida temperatures < 10°C. Moreover, Skeletonema has generally less chlorophyll and more phosphorus and ATP (≈ 1.4 ×) than the other two species. In Skeletonema, the ATP level seems related to the light-governed growth rate, and independent of temperature. In Thalassiosira no such correlation was found.  相似文献   

14.
The reductant of ferricytochrome c2 in Rhodopseudomonas sphaeroides is a component, Z, which has an equilibrium oxidation-reduction reaction involving two electrons and two protons with a midpoint potential of 155 mV at pH 7. Under energy coupled conditions, the reduction of ferricytochrome c2 by ZH2 is obligatorily coupled to an apparently electrogenic reaction which is monitored by a red shift of the endogeneous carotenoids. Both ferricytochrome c2 reduction and the associated carotenoid bandshift are similarly affected by the concentrations of ZH2 and ferricytochrome c2, pH, temperature the inhibitors diphenylamine and antimycin, and the presence of ubiquinone. The second-order rate constant for ferricytochrome c2 reduction at pH 7.0 and at 24°C was 2 · 109 M?1 · s?1, but this varied with pH, being 5.1 · 108 M?1 · s?1 at pH 5.2 and 4.3 · 109 M?1 · s?1 at pH 9.3. At pH 7 the reaction had an activation energy of 10.3 kcal/mol.  相似文献   

15.
Light intensity and temperature interactions have a complex effect on the physiological process rates of the filamentous bluegreen alga Anabaena variabilis Kütz. The optimum temperature for photosynthesis increased with increasing light intensity from 10°C at 42 μE·m?2·s?1 to 35°C at 562 μE·m?2·s?1. The light saturation parameter, IK, increased with increasing temperatures. The maximum photosynthetic rate (2.0 g C·g dry wt.?1·d?1) occurred at 35°C and 564 μE·m?2·s?1. At 15°C, the maximum rate was 1.25 g C·g dry wt.?1·d?1 at 332 μE·m?2·s?1. The dark respiration rate increased exponentially with temperature. Under favorable conditions of light intensity and temperature the percent of extracellular release of dissolved organic carbon was less than 5% of the total C fixed. This release increased to nearly 40% under combinations of low light intensity and high temperature. A mathematical model was developed to simulate the interaction of light intensity and temperature on photosynthetic rate. The interactive effects were represented by making the light-saturation parameters a function of temperature.  相似文献   

16.
Teruo Ogawa 《BBA》1982,681(1):103-109
Illumination of leaves of Vicia faba L. provoked oscillations in the rates of CO2 uptake and O2 evolution. The oscillations were marked under anaerobic conditions, but were absent at 20% O2. The minimum CO2 concentration required for the appearance of oscillations was 600 μl · l?1. The higher the CO2 concentration, the stronger the oscillations. The effect of CO2 concentration was saturated at 1000 μl CO2 · l?1. The period of the oscillations was 5–6 min at a light intensity of 80 nE · cm?2 · s?1 and became longer on lowering of the intensity. No oscillations appeared at intensities below 12 nE · cm?2 · s?1. Oscillations could also be generated by increasing the CO2 concentration in the atmosphere during strong illumination under anaerobic conditions. The chlorophyl a fluorescence yield showed oscillations, similar in shape and frequency to those of photosynthesis, after such an environmental change. Oscillations were also observed in photosynthesis of other C3 plants, Lycopersicon esulentum Mill and Glycine max Merrill, under the same conditions as those required for V. faba, but were absent for the C4 plants, Zea mays and Amaranthus retroflexus L.  相似文献   

17.
18.
Ulothrix zonata (Weber and Mohr) Kütz. is an unbranched filamentous green alga found in rocky littoral areas of many northern lakes. Field observations of its seasonal and spatial distribution indicated that it should have a low temperature and a high irradiance optimum for net photosynthesis, and at temperatures above 10°C it should show an increasingly unfavorable energy balance. Measurements of net photosynthesis and respiration were made at 56 combinations of light and temperature. Optimum conditions were 5°C and 1100 μE·m?2·s?1 at which net photosynthesis was 16.8 mg O2·g?1·h?1. As temperature increased above 5° C optimum irradiance decreased to 125 μE·m?2·s?1 at 30°C. Respiration rates increased with both temperature and prior irradiance. Light-enhanced respiration rates were significantly greater than dark respiration rates following irradiance exposures of 125 μE·m?2·s?1 or greater. Polynomials were fitted to the data to generate response surfaces. Polynomial equations represent statistical models which can accurately predict photosynthesis and respiration for inclusion in ecosystem models.  相似文献   

19.
Microalgae growing within brine channels (85 psu salinity) of the surface ice layers of Antarctic pack ice showed considerable photosynthetic tolerance to the extreme environmental condition. Brine microalgae exposed to temperatures above ?5°C and at irradiances up to 350 μmol photons·m?2·s?1 showed no photosynthetic damage or limitations. Photosynthesis was limited (but not photoinhibited) when brine microalgae were exposed to ?10°C, provided the irradiance remained under 50 μmol photons·m?2·s?1. The highest level of photosynthetic activity (maximum relative electron transport rate [rETRmax]) in brine microalgae growing within the surface layer of sea ice was at approximately 18 μmol electrons·m?2·s?1, which occurred at ?1.8°C. Effective quantum yield of PSII and rETRmax of the halotolerant brine microalgae exhibited a temperature‐dependent pattern, where both parameters were higher at ?1.8°C and lower at ?10°C. Relative ETRmax at temperatures above ?5°C were stable across a wide range of irradiance.  相似文献   

20.
In all larval stages of Carcinus maenas L. oxygen consumption was measured at three temperatures (12,18,25 °C). Values increased during development and were in the range of 0.037 ± 0.01 (zoea-1, 12°C, x? ± 95% CL) to 0.734 ± 0.047 μl O2 · h?1 · ind?1 (megalopa, 25 °C). Growing larvae showed temperature dependent trends in weight specific respiration rates (referred to dry wt; DW), with values between ≈2.4 and 9.4 μl O2· h?1·mg DW?1. Increase in oxygen consumption of megalops did not differ much at temperatures between 18 and 25 °C. This points to an exceptional physiological position of this stage. Fed zoea-1 of C. maenas (18 °C) revealed growth rates in terms of 40% DW, 20% carbon (C), 30% nitrogen (N) and 65% hydrogen (H). At the same time larvae gained individual energy by 13% (J · ind?1), while weight specific energy dropped by ≈ 19% (J · mg DW?1) during the first day and remained constant until the moult. Starved zoea-1 of C. maenas (18 ° C) gained ≈ 20 % in DW through the first day, probably caused by inorganic salts which enter the organism after the moult of the prezoea. DW dropped to ≈ 25 % of initial value, when starvation continued. Single components decreased by ≈50% (C), 54% (N), 57% (J · ind?1). Weight specific energy (J · mg DW?1) decreased by 40% during the first 4 days of starvation, remaining constant thereafter. Individual respiration rate (R) dropped by 61 %, weight specific respiration rate (QO2) by 55 %. Individual energy loss in starved zoea-1 was 0.077 J over a period of 11 days. In this period ≈ 9.3 μl O2·ind?1 were consumed. Thus effective oxygen capacity was lower than in growing larvae. It dropped to 5.3 J·mlO2?1 after 4 days and remained constant if starvation continued, i.e. 65 % of possible energy loss occurred during the first 4 days. Decrease in requirement for oxygen and its effective capacity were both recognized as independent components of survival during starvation. Partitioning of energy through individual larval development of C. maenas was investigated for all five larval stages. The cumulative budget could be calculated: consumption (C) = 28.23 J, growth (G) = 0.92 J, exoskeleton (Ex) = 0.20 J, metabolism (M) = 5.30 J, egestion and excretion (E) = 21.82 J. Mean gross and net growth efficiency were, K1 = 3.3% and K2 = 14.8%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号