首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
A general method has been developed for determining the rate of entry of lactose into cells of Escherichia coli that contain β-galactosidase. Lactose entry is measured by either the glucose or galactose released after lactose hydrolysis. Since lactose is hydrolyzed by β-galactosidase as soon as it enters the cell, this assay measures the activity of the lactose transport system with respect to the translocation step. Using assays of glucose release, lactose entry was studied in strain GN2, which does not phosphorylate glucose. Lactose entry was stimulated 3-fold when cells were also presented with readily metabolizable substrates. Entry of o-nitrophenyl-β-d-galactopyranoside (ONPG) was only slightly elevated (1.5-fold) under the same conditions. The effects of arsenate treatment and anaerobiosis suggest that lactose entry may be limited by the need for reextrusion of protons which enter during H+/sugar cotransport. Entry of o-nitrophenyl-β-d-galactopyranoside is less dependent on the need for proton reextrusion, probably because the stoichiometry of H+/substrate cotransport is greater for lactose than for ONPG.  相似文献   

2.
Accumulation by the lactose transport system of Escherichia coli has been measured in cells induced so as to contain increasing numbers of membrane carriers. Carrier activity was assayed both by the rate of o-nitrophenyl-β-d-galactopyranoside entry and the initial rate of accumulation of methyl-1-thio-gb-d-galactopyranoside. At the steady-state cells with a low number of carriers accumulated considerable amounts of substrate when compared to the fully induced control. This is consistent with the hypothesis that there are two distinct routes of both entry and of exit: a carrier mediated pathway and a diffusion component. When these two factors are evaluated quantitatively they account for the observed relationship between the number of carriers and the steady-state accumulation achieved.  相似文献   

3.
When the two main energy yielding pathways, respiration and the membrane ATPase of Escherichia coli are poisoned, the lactose permease is unable to accomplish accumulative transport of thiogalactosides, but the efflux of pre-loaded substrate can be coupled to a transiently uphill transport of exogenous substrate. This transient uphill transport, called overshoot has been reexamined with the possibility of an obligate H+ cotransport in mind. Overshoot can be diminished but not suppressed by a proton-conducting uncoupler, carbonyl cyanide m chlorophenylhydrazone, (CCCP) and by a liposoluble cation, triphenyl-methyl phosphonium (TPMP+). The effect of other factors, such as temperature, amount of permease and pH were also explored. The overshoot was found to decrease with increasing pH, until at pH 8 it became negligible. This is in sharp contrast with the relatively flat pH dependence of uphill and downhill transport in unpoisoned cells. CCCP and TPMP+ had no inhibitory effect on the overshoot at pH 6 and below.  相似文献   

4.
5.
Aminoglycoside antibiotics exhibit a markedly reduced antibacterial activity under anaerobic conditions. Anaerobiosis or inhibitors of electron transport produced an extensive decrease in the uptake of dihydrostreptomycin in Escherichia coli K-12. Uptake of proline or putrescine were only slightly impaired under anaerobic conditions in the presence of glucose. Both the susceptibility to and the uptake of dihydrostreptomycin under anaerobic conditions were partially restored by addition of the alternative electron acceptor, nitrate. This stimulation required functional nitrate reductase activity. Abolition of uptake by 2,4-dinitrophenol under both aerobic and anaerobic conditions indicates that streptomycin uptake requires electron transport as well as a sufficient membrane potential. In addition, the initial rate of dihydrostreptomycin uptake was competitively and reversibly inhibited by added salts. The inhibition was relatively nonspecific with respect to the identity of salt added, being approximately dependent on the ionic strength. Although dihydrostreptomycin and polyamines mutually inhibited each other's uptake, several conditions (polyamine limitation, streptomycin uptake-deficient mutants) were found in which uptake of these two substrates was oppositely affected. Aminoglycosides thus do not appear to enter on one of the usual cellular transport systems, but perhaps utilize a component of the electron transport system.  相似文献   

6.
Niacin significantly reduced the bacteristatic effect of 1 mM paraquat for Escherichia coli. Without niacin (an intermediate in the salvage pathway for pyridine nucleotide coenzyme biosynthesis), the NAD concentration was decreased rapidly and significantly in E. coli during paraquat poisoning. Niacin prevented the decline in NAD in paraquat-poisoned cells; quinolinate (an intermediate in de novo NAD biosynthesis prior to the entry point of niacin) did not. These data suggest that paraquat poisons the de novo pathway of pyridine nucleotide coenzyme biosynthesis. Similar consequences have been reported to result from hyperbaric oxygen poisoning of E. coli; thus, there is growing evidence for a common mechanism of toxicity for hyperoxia and paraquat.  相似文献   

7.
Plasmids of the N incompatibility group have been found to decrease or virtually eliminate the synthesis of the 36 500 dalton outer membrane matrix protein of their Escherichia coli B/r hosts (Iyer, R. (1977) Biochim. Biophys. Acta 470, 258–272 and Iyer, R., Darby, V. and Holland, I.B. (1978) FEBS Lett. 85, 127–132) or modify its composition. Although the 34 000 dalton tol G protein is slightly increased in some strains, it is identical in composition to the homologous protein from the plasmidless host. In three of five N+ strains, the synthesis of the modified matrix proteins depends on the temperature of cultivation of the strains in which they occur. The alterations to the matrix proteins are non-identical and do not affect the expression of several plasmid-coded functions including those of sensitivity to the N plasmid-specific filamentous bacteriophage IKe (Khatoon, H. and Iyer, R. (1971) Can. J. Microbiol. 17, 669–675), or their interbacterial transfer via conjugation to appropriate recipient strains. Thus, although the significance of the variant matrix proteins in N+ strains with respect to plasmid-mediated functions remains unclear, N plasmids nevertheless provide a convenient system which might be used to elucidate the events that precede the insertion of this protein into the outer membrane of E. coli B/r hosts.  相似文献   

8.
9.
We determine the kinetic parameters V and KT of lactose transport in Escherichia coli cells as a function of the electrical potential difference (Δψ) at pH 7.3 and ΔpH = 0. We report that transport occurs simultaneously via two components: a component which exhibits a high KT (larger than 10 mM) and whose contribution is independent of Δψ, a component which exhibits a low KT independent of Δψ (0.5 mM) but whose V increases drastically with increasing Δψ. We associate these components of lactose transport with facilitated diffusion and active transport, respectively. We analyze the dependence upon Δψ of KT and V of the active transport component in terms of a mathematical kinetic model developed by Geck and Heinz (Geck, P. and Heinz, E. (1976) Biochim. Biophys. Acta 443, 49–63). We show that within the framework of this model, the analysis of our data indicates that active transport of lactose takes place with a H+/lactose stoichiometry greater than 1, and that the lac carrier in the absence of bound solutes (lactose and proton(s)) is electrically neutral. On the other hand, our data relative to facilitated diffusion tend to indicate that lactose transport via this mechanism is accompanied by a H+/lactose stoichiometry smaller than that of active transport. We discuss various implications which result from the existence of H+/lactose stoichiometry different for active transport and facilitated diffusion.  相似文献   

10.
11.
The effects of two polypeptide antibiotics, polymixin B and gramicidin S, on the intracellular pool size and turnover of guanosine tetraphosphate (ppGpp) were analyzed in stringent (relA+) and relaxed (relA) strains of Escherichia coli. When either one of these two drugs was added to stringent bacteria cultures at a final concentration that blocked protein and RNA synthesis, ppGpp was found to accumulate. Under similar conditions of inhibition of macromolecular synthesis, ppGpp also appeared to accumulate in relaxed bacteria. Moreover, in either type of strain, no significant accumulation of guanosine pentaphosphate (pppGpp) could be detected upon drug treatment. It was, therefore, concluded that polymixin and gramicidin elicit ppGpp accumulation through a mechanism independent of the relA gene product and, consequently, quite distinct from the stringent control system triggered by amino acid starvation. Further experiments performed by using tetracycline as an inhibitor of ppGpp synthesis, showed that the increase in the level of this nucleotide induced by drug action was due, in fact, to a strong restriction of its degradation rate.  相似文献   

12.
The fluorodihydrouridine derivative previously detected in one of two isoaccepting forms of FUra-substituted Escherichia coli tRNAMetf has been further characterized. This substituent is responsible for the 19F resonance observed 15 ppm upfield from free FUra (= 0 ppm) in the high resolution 19F-NMR spectra of FUra-substituted tRNA purified by chromatography on DEAE-cellulose, at pH 8.9, to remove normal tRNA. Similar highfield 19F signals have now been observed in the spectra of two other purified fluorinated E. coli tRNAs, tRNAMetm and tRNAVall, as well as in unfractionated tRNA, indicating the widespread occurrence of the constituent. Comparison with 19F spectrum of the model compound 5′-deoxy-5-fluoro-5,6-dihydrouridine (dH56FUrd) (δFUra = ? 31.4 ppm; JHF = 48 Hz) indicates that the substituent does not contain an intact fluorodihydrouridine ring. dH56FUrd is considerably more alkali labile than 5,6-dihydrouridine (H56Urd). At pH 8.9, where H56Urd is stable, dH56FUrd is degraded to a derivative, presumably a fluoroureidopropionic acid, with a 19F resonance at ? 15.7 ppm that nearly coincides with the upfield peak in the spectrum of pH 8.9-treated tRNA. The 19F-NMR spectrum of fluorinated tRNA, not exposed to pH 8.9, exhibits two peaks 31 and 32 ppm upfield of FUra, in place of the 19F signal at ? 15 ppm. Hydrolysis of this tRNA with RNAase T2 produces a sharp doublet 33 ppm upfield (JHF = 45 Hz). Similarities of the 19F chemical shift and coupling constant to those of dH56FUrd, allows assignment of the peak at ? 33 ppm to an intact fluorodihydrouridine residue in the tRNA. Our results demonstrate that FUra residues incorporated into E. coli tRNA at sites normally occupied by dihydrouridine can be recognized by tRNA-modifying enzymes and reduced to fluorodihydrouridine. This substituent is labile at moderately alkaline pH values and undergoes ring-opening during purification of the tRNA.  相似文献   

13.
Binding and folding of substrate proteins by the molecular chaperone GroEL alternates between its two seven-membered rings in an ATP-regulated manner. The association of ATP and GroES to a polypeptide-bound ring of GroEL encapsulates the folding proteins in the central cavity of that ring (cis ring) and allows it to fold in a protected environment where the risk of aggregation is reduced. ATP hydrolysis in the cis ring changes the potentials within the system such that ATP binding to the opposite (trans) ring triggers the release of all ligands from the cis ring of GroEL through a complex network of allosteric communication between the rings. Inter-ring allosteric communication thus appears indispensable for the function of GroEL, and an engineered single-ring version (SR1) cannot substitute for GroEL in vivo. We describe here the isolation and characterisation of an active single-ring form of the GroEL protein (SR-A92T), which has an exceptionally low ATPase activity that is strongly stimulated by the addition of GroES. Dissection of the kinetic pathway of the ATP-induced structural changes in this active single ring can be explained by the fact that the mutation effectively blocks progression through the full allosteric pathway of the GroEL reaction cycle, thus trapping an early allosteric intermediate. Addition of GroES is able to overcome this block by binding this intermediate and pulling the allosteric pathway to completion via mass action, explaining how bacterial cells expressing this protein as their only chaperonin are viable.  相似文献   

14.
Cytochromes b of anaerobically nitrate-grown Escherichia coli cells are analysed. Ascorbate phenazine methosulfate distinguishes low and high potential cytochromes b. Reduction kinetics performed at 559 nm presents a very complex pattern which can be analysed assuming that at least four b-type cytochromes are present. The electron transport chain from formate to oxygen would contain a low potential cytochrome b-556, a cytochrome b-558 associated to the oxidase, and a cytochrome d as the principal oxidase. Cytochrome o is also present, but seems to be functional only at low oxygen concentrations. A cytochrome b-556 associated to nitrate reductase is shown to belong to a branch of the formate-oxidase chain.2-N-Heptyl-4-hydroxyquinoline-N-oxide affects the reduction kinetics in a very complex way. One inhibition site is in evidence between cytochrome b-558 and cytochrome d; another between the cytochrome associated to nitrate reductase and the nitrate reductase. A third inhibition site is located in the common part of the formate-nitrate and the formate-oxidase systems.Ascorbate phenazine methosulfate is shown to donate electrons near cytochrome b-558.  相似文献   

15.
16.
Cyclic AMP levels in glucose and succinate-fluid and ammonia-limited glucose-containing continuous cultures of Escherichia coli were measured at different bacterial growth rates. Intracellular cyclic AMP concentrations were fairly constant (about 5 μM) at all dilution rates used when glucose was limiting. In ammonia-limited glucose cultures the cyclic AMP content was much lower (about 0.3 μM). In succinate-limited cultures cyclic AMP levels fell from 2.7 to 0.8 μM as dilution rate increased from 0.05 to 0.4 h?1.The effects of cyclic AMP on respiratory and carbon catabolic enzyme levels were studied. There was no indication of a direct cyclic AMP involvement in the regulation of these cellular functions. It seems more likely that the variations in enzyme levles observed resulted from variation of the specific growth rate of cultures.  相似文献   

17.
Biotin uptake has been investigated using an Escherichia coli biotin requiring auxotroph grown under biotin-deficient conditions. This strain accumulated biotin in the free and bound form. In agreement with a previous report by O. Prakash and M.A. Eisenberg (J. Bacteriol. 120 (1974) 785–791), the biotin entry proved to be an active process which depended on an energy source and was inhibited in the presence of uncouplers. The kinetic parameters have been determined (KM = 0.05 μM, Vmax = 7 pmol/min per mg dry weight). The pool of free biotin could be readily exchanged with external biotin and decreased to a very low level in the absence of an energy source. The use of several biotin analogues revealed that this transport system was quite specific for biotin: slight modifications, for instance in the valeric chain. lowered drastically the affinity for the carrier.  相似文献   

18.
An analytical technique for the in situ characterization of b- and c-type cytochromes has been developed. From evaluation of the results of potentiometric measurements and spectrum deconvolutions, it was concluded that an integrated best-fit analysis of potentiometric and spectral data gave the most reliable results. In the total cytochrome b content of cytoplasmic membranes from aerobically grown Escherichia coli, four major components are distinguished with α-band maxima at 77 K of 555.7, 556.7, 558.6 and 563.5 nm, and midpoint potentials at pH 7.0 of 46, 174, ?75 and 187 mV, respectively. In addition, two very small contributions to the α-band spectrum at 547.0 and 560.2 nm, with midpoint potentials of 71 and 169 mV, respectively, have been distinguished. On the basis of their spectral properties they should be designated as a cytochrome c and a cytochrome b, respectively. In Complex III, isolated from beef heart mitochondria, five cytochromes are distinguished: cytochrome c1 (Λm(25°C) = 553.5 nm; E0 = 238 mV) and four cytochromes bΛm(25°C) = 558.6, 561.2, 562.1, 566.1 nm and E0 = ?83, 26, 85, ?60 mV).  相似文献   

19.
Mutants of Escherichia coli, harbouring the uncA401 or uncB402 alleles, were found to take up streptomycin more rapidly than the coupled parent strains. The increased rate of uptake results in greater sensitivity of the uncoupled strains, compared to the parent strains, to low concentrations of streptomycin. Studies with unc+ revertants showed that hypersensitivity to streptomycin is attributable to the mutation causing uncoupling. The uptake of streptomycin in an unc? strain is abolished by addition of the chemical uncoupler carbonylcyanide m-chlorophenylhydrazone. The phenotype of hypersensitivity to streptomycin can be used as a selection procedure for the isolation of uncoupled strains. In an experiment reported here, nine out of 12 strains isolated as being sensitive to streptomycin (at 2.5 μg/ml), were found to be unable to grow on succinate as a sole source of carbon. Five of the nine Suc? strains were found to be uncoupled in oxidative phosphorylation, and two of the five uncoupled strains lacked Mg2+-ATPase activity. The mutations causing uncoupling were cotransducible with the ilv genes.  相似文献   

20.
Phenylalanyl-tRNA synthetase (EC 6.1.1.20) has been purified to homogeneity from a 100-fold overproducing Escherichia coli strain carrying a hybrid pBR322 plasmid containing the pheS-pheT locus. The purified enzyme is identical to the phenylalanyl-tRNA synthetase isolated from an haploid strain. The enzyme was found to dissociate in the presence of 0.5 M NaSCN and the α- and β-subunits composing the native α2β2 enzyme were separated by gel filtration. Neither isolated subunit showed significant catalytic activity. A complex indistinguishable from the native enzyme with full catalytic activity is recovered upon mixing the subunits. The N- and C-terminal sequences and the amino acid composition of each subunit were determined. They are compared to the available data concerning the primary structure of the subunits, as deduced from nucleotide sequencing of the pheS-pheT operon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号