首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of islet-activating protein (IAP), a Bordetella pertussis toxin, on insulin- and isoprenaline-stimulated glucose transport were studied in isolated rat adipocytes. Basal as well as insulin-stimulated glucose transport were not affected when cells were pretreated with IAP. In contrast, IAP pretreatment abolished the stimulatory effect of isoprenaline. When IAP-pretreated cells were exposed to a combination of insulin and isoprenaline, the catecholamine significantly reduced the stimulatory effect of insulin. Since IAP is supposed to specifically block the inhibitory component Ni of adenylate cyclase, the results suggest that: (a) the effect of insulin is unrelated to the regulation of adenylate cyclase; (b) isoprenaline may exert both stimulatory and inhibitory effects depending on activation of Ni. The inhibitory regulation of adenylate cyclase may thus be a pivotal link in the regulation of glucose transport.  相似文献   

2.
《Phytomedicine》2014,21(2):118-122
Curcumin has been reported to inhibit insulin signaling and translocation of GLUT4 to the cell surface in 3T3-L1 adipocytes. We have investigated the effect of curcumin on insulin signaling in primary rat adipocytes. Curcumin (20 μM) inhibited both basal and insulin-stimulated glucose transport (2-deoxyglucose uptake), but had no effect on insulin inhibition of lipolysis. Dose–response experiments demonstrated that curcumin (0–100 μM) inhibited basal and insulin-stimulated glucose transport, but even at the highest concentration tested did not affect lipolysis. Inhibition was equal in cells that had been pre-incubated with curcumin and in cells to which curcumin was added immediately before the glucose transport assay. Similarly, time-course experiments revealed that the inhibitory effect of curcumin was evident at the earliest time point tested (30 s). Thus it is unlikely that inhibition of insulin signaling or of translocation of GLUT4 to the cell surface is involved in the inhibitory effect of curcumin. Curcumin did not affect the stimulatory action of insulin on phosphorylation of Akt at serine 473. We conclude that curcumin is a direct inhibitor of glucose transporters in rat adipocytes.  相似文献   

3.
Cardiac myocytes were isolated from adult rat ventricles by a method which preserves their functional integrity, including long survival in physiological concentrations of Ca2+. Sarcolemmal glucose transport was assessed by measuring linear initial uptake rates of the nonmetabolized glucose analog3-O-methyl-d-glucose. Transport was saturable and showed competition byd-glucose and other features of chemical and stereo-selectivity. Transport was stimulated by insulin in a dose-dependent manner, resulting in an almost 5-fold increase inVmax, with little change inKm. Stimulation of 3-methylglucose transport by insulin was largely Ca2+ -dependent. Omission of Ca2+ from the incubation medium caused a minor rise in basal 3-methylglucose uptake but the insulin-stimulated rise inVmax was only 30%. The Ca2+ antagonist D600 also antagonized stimulation of hexose transport by insulin. In all the above respects, 3-methylglucose transport in myocytes is identical to that in intact heart muscle. In addition, the decrease in insulin response by Ca2+ emission was partially reversed by subsequent return to a Ca2+ -containing medium. ATP levels remained stable in the absence of Ca2+, showing that the Ca2+ dependence did not reflect nonspecific cell damage.  相似文献   

4.
Previous research has shown that the CAMK (calcium/calmodulin dependent protein kinase) inhibitor, KN62, can lead to reductions in insulin stimulated glucose transport. Although controversial, an L-type calcium channel mechanism has also been hypothesized to be involved in insulin stimulated glucose transport. The purpose of this report was to determine if 1) L-type calcium channels and CAMK are involved in a similar signaling pathway in the control of insulin stimulated glucose transport and 2) determine if insulin induces an increase in CAMKII phosphorylation through an L-type calcium channel dependent mechanism. Insulin stimulated glucose transport was significantly (p<0.05) inhibited to a similar extent ( approximately 30%) by both KN62 and nifedipine in rat soleus and epitrochelaris muscles. The new finding of these experiments was that the combined inhibitory effect of these two compounds was not greater than the effect of either inhibitor alone. To more accurately determine the interaction between CAMK and L-type calcium channels, we measured insulin induced changes in CAMKII phosphorylation using Western blot analysis. The novel finding of this set of experiments was that insulin induced an increase in phosphorylated CAMKII ( approximately 40%) in rat soleus muscle that was reversed in the presence of KN62 but not nifedipine. Taken together these results suggest that a CAMK signaling mechanism may be involved in insulin stimulated glucose transport in skeletal muscle through an L-type calcium channel independent mechanism.  相似文献   

5.
(1) The t12 for 1.3 mM D-allose uptake and efflux in insulin-stimulated adipocytes is 1.7 ± 0.1 min. In the absence of insulin mediated uptake of D-allose is virtually eliminated and the uptake rate (t12 = 75.8 ± 4.99 min) is near that calculated for nonmediated transport. The kinetic parameters for D-allose zero-trans uptake in insulin-treated cells are Kztoi = 271.3 ± 34.2 mM, Vztoi = 1.15 ± 0.12 mM · s?1. (2) A kinetic analysis of the single-gate transporter (carrier) model interacting with two substrates (or substrate plus inhibitor) is presented. The analysis shows that the heteroexchange rates for two substrates interacting with the transporter are not unique and can be calculated from the kinetic parameters for each sugar acting alone with the transporter. This means that the equations for substrate analogue inhibition of the transport of a low affinity substrate such as D-allose can be simplified. It is shown that for the single gate transporter the Ki for a substrate analogue inhibitor should equal the equilibrium exchange Km for this analogue. (3) Analogues substituted at C-1 show a fused pyranose ring is accepted by the transporter. 1-Deoxy-D-glucose is transported but has low affinity for the transporter. High affinity can be restored by replacing a fluorine in the β-position at C-1. The Ki for d-glucose = 8.62 mM; the Ki for β-fluoro-d-glucose = 6.87 mM. Replacing the ring oxygen also results in a marked reduction in affinity. The Ki for 5-thio-d-glucose = 42.1 mM. (4) A hydroxyl in the gluco configuration at C-2 is not required as 2-deoxy-d-galactose (Ki = 20.75 mM) has a slightly higher affinity than d-galactose (Ki = 24.49 mM). A hydroxyl in the manno configuration at C-2 interferes with transport as d-talose (Ki = 35.4 mM) has a lower affinity than d-galactose. (5) d-Allose (Km = 271.3 mM) and 3-deoxy-d-glucose (Ki = 40.31 mM) have low affinity but high affinity is restored by substituting a fluorine in the gluco configuration at C-3. The Ki for 3-fluoro-d-glucose = 7.97 mM. (6) Analogues modified at C-4 and C-6 do not show large losses in affinity. However, 6-deoxy-d-glucose (Ki = 11.08 mM) has lower affinity than d-glucose and 6-deoxy-d-galactose Ki = 33.97 mM) has lower affinity than d-galactose. Fluorine substitution at C-6 of d-galactose restores high affinity. The Ki for 6-fluoro-d-galactose = 6.67 mM. Removal of the C-5 hydroxymethyl group results in a large affinity loss. The Kid-xylose = 45.5 mM. The Ki for l-arabinose = 49.69 mM. (7) These results indicate that the important hydrogen bonding positions involved in sugar interaction with the insulin-stimulated adipocytes transporter are the ring oxygen, C-1 and C-3. There may be a weaker hydrogen bond to C-6. Sugar hydroxyls in non-gluco configurations may sterically hinder transport.  相似文献   

6.
Abe D  Saito T  Sekiya K 《Life sciences》2006,79(11):1027-1033
A novel small molecule compound which exerts insulin mimetic is desirable. Dozens of natural products that have quinone, naphthoquinone, or anthraquinone structure, were tested by a glucose incorporation assay. We found that sennidin A, anthraquinone derivative, stimulated glucose incorporation to near level of maximal insulin-stimulated and sennidin B, a stereoisomer of sennidin A, also stimulated, but the activity of sennidin B was lower than sennidin A. Sennidin A-stimulated glucose incorporation was completely inhibited by wortmannin. Sennidin A did not induce tyrosine phosphorylation of insulin receptor (IR) and insulin receptor substrate-1 (IRS-1), but induced phosphorylation of Akt and glucose transporter 4 (GLUT4) translocation. Our results suggest that in rat adipocytes, sennidin A stimulates glucose incorporation in the phosphatidylinositol 3-kinase (PI3K)- and Akt-dependent, but in the IR/IRS1-independent manner.  相似文献   

7.
Isolated rat adipocytes were incubated with 15 nM [3-3H]glucose or 100 nM [U-14C]glucose with or without insulin and in the absence or presence of unlabelled glucose. Following a 2 h incubation with 15 nM [3-3H]glucose, about two thirds of the cell-associated 3H-labelled metabolic products were hydrophilic largely anionic intermediates and about one third was lipids. The equivalent values were 40 and 60%, respectively, when using 100 nM [U-14C]glucose. The only 14C-labelled metabolite escaping to the incubation medium was 14CO2, which accounted for about 15% of the rate of metabolism. Therefore, the rate of incorporation of 100 nM [U-14C]glucose into the cell-associated metabolites was quite a good measure of its net influx rate. The conversion of the two tracers to the sum of the metabolic products in cells treated with a maximally stimulating insulin concentration remained constant with glucose concentrations up to about 100 μM and then decreased progressively. The incorporation of radioactivity into the different metabolites varied markedly over the glucose concentration range 0–100 μM, presumably due to the saturation of different metabolic pools at different glucose concentrations. This variation was much less in cells not stimulated with insulin. Consequently, the maximal effect of insulin on the incorporation of the tracers into a given metabolite (e.g., labelled lipids) varied over the entire glucose concentration range. In addition, the apparent sensitivity (ED50) with respect to the incorporation into a given metabolite was also dependent on the glucose concentration.  相似文献   

8.
The glucose transport system, isolated from rat adipocyte membrane fractions, was reconstituted into phospholipid vesicles. Vesicles composed of crude egg yolk phospholipids, containing primarily phosphatidylcholine (PC) and phosphatidylethanolamine (PE), demonstrated specific d-glucose uptake. Purified vesicles made of PC and PE also supported such activity but PC or PE by themselves did not. The modulation of this uptake activity has been studied by systematically altering the lipid composition of the reconstituted system with respect to: (1) polar headgroups; (2) acyl chains, and (3) charge. Addition of small amounts (20 mol%) of PS, phosphatidylinositol (PI), cholesterol, or sphingomyelin significantly reduced glucose transport activity. A similar effect was seen with the charged lipid, phosphatidic acid. In the case of PS, this effect was independent of the acyl chain composition. Polar headgroup modification of PE, however, did not appreciably affect transport activity. Free fatty acids, on the other hand, increased or decreased activity based on the degree of saturation and charge. These results indicate that glucose transport activity is sensitive to specific alterations in both the polar headgroup and acyl chain composition of the surrounding membrane lipids.  相似文献   

9.
Lysophosphatidylserine (LPS) is known to have diverse cellular effects, but although LPS is present in many biological fluids, its in vivo effects have not been elucidated. In the present study, we investigated the effects of LPS on glucose metabolism in vivo, and how skeletal muscle cells respond to LPS stimulation. LPS enhanced glucose uptake in a dose- and time-dependent manner in L6 GLUT4myc myotubes, and this effect of LPS on glucose uptake was mediated by a Gαi and PI 3-kinase dependent signal pathway. LPS increased the level of GLUT4 on the cell surface of L6 GLUT4myc myotubes, and enhanced glucose uptake in 3T3-L1 adipocytes. In line with its cellular functions, LPS lowered blood glucose levels in normal mice, while leaving insulin secretion unaffected. LPS also had a glucose-lowering effect in STZ-treated type 1 diabetic mice and in obese db/db type 2 diabetic mice. This study shows that LPS-stimulated glucose transport both in skeletal muscle cells and adipocytes, and significantly lowered blood glucose levels both in type 1 and 2 diabetic mice. Our results suggest that LPS is involved in the regulation of glucose homeostasis in skeletal muscle and adipose tissue.  相似文献   

10.
Insulin stimulates glucose transport in rat adipose cells through the translocation of glucose transporters from an intracellular pool to the plasma membrane. A detailed characterization of the morphology, protein composition and marker enzyme content of subcellular fractions of these cells, prepared by differential ultracentrifugation, and of the distribution of glucose transporters among these fractions is now described. Glucose transporters were measured using specific d-glucose-inhibitable [3H]cytochalasin B binding. In the basal state, roughly 90% of the cells' glucose transporters are associated with a low-density microsomal, Golgi marker enzyme-enriched membrane fraction. However, the distributions of glucose transporters and Golgi marker enzyme activities over all fractions are clearly distinct. Incubation of intact cells with insulin increases the number of glucose transporters in the plasma membrane fraction 4–5-fold and correspondingly decreases the intracellular pool, without influencing any other characteristics of the subcellular fractions examined or the estimated total number of glucose transporters (3.7·106/cell). Insulin does not influence the Kd of the glucose transporters in the plasma membrane fraction for cytochalasin B binding (98 nM), but lowers that in the intracellular pool (from 141 to 93 nM). The calculated turnover numbers of the glucose transporters in the plasma membrane vesicles from basal and insulin-stimulated cells are similar (15·103 mol of glucose/min per mol of transporters at 37°C), whereas insulin appears to increase the turnover number in the plasma membrane of intact cells roughly 4-fold. These results suggest that (1) the intracellular pool of glucose transporters may comprise a specialized membrane species, (2) intracellular glucose transporters may undergo conformational changes during their cycling to the plasma membrane in response to insulin, and (3) the translocation of glucose transporters may represent only one component in the mechanism through which insulin regulates glucose transport in the intact cell.  相似文献   

11.
Chronically administered insulin returns enhanced maximal glucose transport capacity induced by diabetes to its normal state. In this study, the direct and acute effects of insulin on glucose transport in different parts of isolated small intestine were investigated. Mucosal Fluid Transport (MFT), Mucosal Glucose Transport (MGT) and Serosal Glucose Transport (SGT) were measured in the presence and absence of insulin in averted sacs, prepared from female Wistar rats. This study shows that the presence of insulin in vitro (40 and 80 microU/mL) can reduce MGT and SGT in different segments of the small intestine (duodenum, jejunum and ileum) after 30 min whereas it had no effect on MFT. Mucosal glucose transfer rates in the duodenum, jejunum and ileum of the controls were 6.07+/-0.4, 6.34+/-0.62 and 6.43+/-0.47 mg/g tissue respectively which were significantly reduced to 3.82+/-0.93, 3.60+/-0.50 and 1.17+/-0.45 in the presence of 80 microU/mL of insulin. Serosal glucose transfer too was decreased significantly from 0.3+/-0.05, 0.57+/-0.07 and 0.43+/-.07 in the duodenum, jejunum and ileum to 0.16+/-0.03, 0.16+/-0.04 and .07+/-.02 respectively. Mucosal fluid transfer was not affected by insulin. Insulin was as effective whether it was added on the mucosal or the serosal side. The results of this study show that insulin can directly affect glucose transport in the small intestine; its physiological role must be examined. Direct effect of insulin deficiency on glucose absorption in diabetic patients may play a role in the pathophysiology of the disease.  相似文献   

12.
Depletion of energy stores of human red cells decreases the maximum transport capacity, Jm, for glucose transport to a value one-third or less of that found in red cells from freshly drawn blood. There is no change in Km. Hemolysis and resealing of red cells with ATP or ADP reverses the decrease in Jm. The maximum effect occurs at concentrations of ATP in the normal range for red cells, however, there is little effect from ADP concentrations in its normal range in freshly drawn red cells. Hemolysis and resealing with ATP gives an increase in Jm and an increase in differential labeling by photolytic labeling with tritiated cytochalasin B. Most of the activation is lost after a second hemolysis-reseal without ATP but about 25% of the activation remains.  相似文献   

13.
The major glucose transporter protein expressed in skeletal muscle is GLUT4. Both muscle contraction and insulin induce translocation of GLUT4 from the intracellular pool to the plasma membrane. The intracellular pathways that lead to contraction- and insulin-stimulated GLUT4 translocation seem to be different, allowing the attainment of a maximal effect when acting together. Insulin utilizes a phosphatidylinositol 3-kinase-dependent mechanism, whereas the exercise signal may be initiated by calcium release from the sarcoplasmic reticulum or from autocrine- or paracrine-mediated activation of glucose transport. During exercise skeletal muscle utilizes more glucose than when at rest. However, endurance training leads to decreased glucose utilization during sub-maximal exercise, in spite of a large increase in the total GLUT4 content associated with training. The mechanisms involved in this reduction have not been totally elucidated, but appear to cause the decrease of the amount of GLUT4 translocated to the plasma membrane by altering the exercise-induced enhancement of glucose transport capacity. On the other hand, the effect of resistance training is controversial. Recent studies, however, demonstrated the improvement in insulin sensitivity correlated with increasing muscle mass. New studies should be designed to define the molecular basis for these important adaptations to skeletal muscle. Since during exercise the muscle may utilize insulin-independent mechanisms to increase glucose uptake, the mechanisms involved should provide important knowledge to the understanding and managing peripheral insulin resistance.  相似文献   

14.
Uptake and efflux of 6-deoxy-d-[3H]glucose and of 2-deoxy-d-[14C]glucose by the yeast Kluyveromyces lactis was studied. The tritiated, nonphosphorylatable hexose analogue leaves the cell in the absence and presence of intracellular 2-deoxy-d-glucose 6-phosphate. In energy-rich cells containing pools of hexose 6-phosphate, 2-deoxy-d-glucose is trapped in the cells, for it neither effluxes into glucose-free medium nor exchanges with external, free sugar. In starved, poisoned cells containing negligible amounts of 2-deoxy-d-glucose 6-phosphate, 2-deoxy-d-glucose does leave the cells upon transfer to glucose-free medium. An involvement of analogue structure and availability of metabolites of energy-rich cells in hexose retention is suggested. An internal pool of 6-deoxy-d-glucose does not affect the rate of uptake of 6-deoxy-d-[3H]glucose, nor does internal 2-deoxy-d-[14C]glucose 6-phosphate influence that rate. Hence, transport of glucose by this yeast is probably not regulated by internal pools of glucose 6-phosphate.  相似文献   

15.
Insulin-stimulated glucose uptake requires the activation of several signaling pathways to mediate the translocation and fusion of GLUT4 vesicles to the plasma membrane. Our previous studies demonstrated that GLUT4-mediated glucose uptake is a myosin II-dependent process in adipocytes. The experiments described in this report are the first to show a dual role for the myosin IIA isoform specifically in regulating insulin-stimulated glucose uptake in adipocytes. We demonstrate that inhibition of MLCK but not RhoK results in impaired insulin-stimulated glucose uptake. Furthermore, our studies show that insulin specifically stimulates the phosphorylation of the RLC associated with the myosin IIA isoform via MLCK. In time course experiments, we determined that GLUT4 translocates to the plasma membrane prior to myosin IIA recruitment. We further show that recruitment of myosin IIA to the plasma membrane requires that myosin IIA be activated via phosphorylation of the RLC by MLCK. Our findings also reveal that myosin II is required for proper GLUT4-vesicle fusion at the plasma membrane. We show that once at the plasma membrane, myosin II is involved in regulating the intrinsic activity of GLUT4 after insulin stimulation. Collectively, our results are the first to reveal that myosin IIA plays a critical role in mediating insulin-stimulated glucose uptake in 3T3-LI adipocytes, via both GLUT4 vesicle fusion at the plasma membrane and GLUT4 activity.  相似文献   

16.
(1) The effects of vanadate of hexose transport, 45Ca-exchange and (Na+, K+)-contents have been characterized in isolated adipose tissue and skeletal muscles of the rat. (2) In whole epididymal fat pads, vanadate (0.5–5.0 mM) markedly stimulated the uptake of 2-deoxyl[14C]glucose as well as the efflux of 3-O-[14C]methylglucose. (3) Within the same concentration range, vanadate induced an early increase in 45Ca-washout from preloaded fat pads. The maximum increases in the fractional losses of 3-O-[14C]methylglucose and 45Ca were significantly correlated (P < 0.001, r = 0.98). (4) In extensor digitorum longus and soleus muscles, vanadate (0.5–5.0 mM) stimulated the efflux of 3-O-[14C]methylglucose and this effect was preceded by a rise in the washout of 45Ca. The maximum increases in the fractional losses of 3-O-[14C]methyglucose and 45Ca were significantly correlated (P < 0.005, r = 0.98). (5) In extensor digitorum longus and soleus muscles, vanadate increased K+-contents and decreased Na+ contents. (6) The stimulation of 45Ca-washout presumably reflects an increase in the cytoplasmic Ca2+ level, brought about by an inhibitory effect of vanadate on the Ca2+-sensitive ATPase of the sarcoplasmic or the endoplasmic reticulum. As demonstrated for most other insulin-like agents (Sørensen, S.S., Christensen, F. and Clausen, T. (1980) Biochim. Biophys. Acta 602, 433–445), the stimulating effect of vanadate on glucose transport appears to be associated with or mediated by a rise in the cytoplasmic Ca2+ level.  相似文献   

17.
18.
(1) Alkyl sugar inhibition of d-allose uptake into adipocytes has been used to explore the spatial requirements of the external sugar transport site in insulin-treated cells. α-methyl and β-methyl glucosides show low affinity indicating very little space around C-1. The high affinity of d-glucosamine (Ki = 9.05 ± 0.66 mM) is lost by N-acetylation. N-Acetyl-d-glucosamine shows no detectable affinity, indicating that a bulky group at C-2 is not accepted. Similarly 2,3-di-O-methyl-d-glucose (Ki = 42.1 ± 7.5 mM) has lower affinity than 3-O-methyl-d-glucose (Ki = 5.14 ± 0.32 mM) indicating very little space around C-2 but much more around C-3. A reduction in affinity does occur if a propyl group is introduced into the C-3 position. The Ki for 3-O-propyl-d-glucose is 11.26 ± 2.12 mM. 6-O-Methyl-d-galactose (Ki = 87.2 ± 17.9 mM) and 6-O-propyl-d-glucose (Ki = 78.07 ± 12.6 mM) show low affinity compared with d-galactose and d-glucose, indicating steric constraints around C-6. High affinity is restored in 6-O-pentyl-d-galactose (Ki = 4.66 ± 0.23 mM) possibly indicating a hydrophobic binding site around C-6). (2) In insulin treated cells 4,6-O-ethylidene-d-glucose (Ki = 6.11 ± 0.5 mM) and maltose (Ki = 23.5 ± 2.1 mM) are well accommodated by the site but trehalose shows no detectable inhibition. These results indicate that the site requires a specific orientation of the sugar as it approaches the transporter from the external solution. C-1 faces the inside while C-4 faces the external solution. (3) To determine the spatial and hydrogen bonding requirements for basal cells 40 μM 3-O-methyl-d-glucose was used as the substrate. Poor hydrogen bonding analogues and analogues with sterically hindering alkyl groups showed similar Ki values to those determined for insulin-treated cells. These results indicate that insulin does not change the specificity of the adipocyte transport system.  相似文献   

19.
The effects of cholinergic stimulation on glucose equilibrium exchange rate have been studied in human erythrocytes. Carbamylcholine increases the V of equilibrium exchange by 20% but has no significant effect on Km. The cholinergic effect is abolished by the muscarinic antagonist atropine or by alterations in intracellular calcium concentrations induced by the calcium ionophore A23187.  相似文献   

20.
The effect of glucose on the Ca2+-activated K+ permeability in pancreatic islet cells was investigated by measuring the rate of 86Rb efflux, 45Ca efflux and insulin release from perifused rat pancreatic islets exposed to step-wise increased in glucose concentration. When the glucose concentration was raised from intermediate (8.3 or 11.1 mM) to higher values, a rapid and sustained increase in 86Rb outflow, 45Ca outflow and insulin release was observed. Likewise, in the presence of 8.3 or 16.7 mM glucose, tolbutamide increased 86Rb and 45Ca efflux, as well as insulin release. In the two series of experiments, a tight correlation was found between the magnitude of the changes in 86Rb and 45Ca outflow, respectively. It is concluded that, at variance with current ideas, glucose does not inhibit the response to cytosolic Ca2+ of the Ca2+-sensitive modality of K+ extrusion. On the contrary, as a result of its effect upon Ca2+ handling, glucose stimulates the Ca2+-activated K+ permeability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号