首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rhodopsin from squid photoreceptor membranes was solubilized in octyl glucoside and purified to a single band on SDS-polyacrylamide gels of Mr 46 000. Purified rhodopsin was recombined with phospholipids to form vesicles by detergent dialysis. Spectroscopic analysis of the rhodopsin-lipid vesicles showed that the interconversion between acid and basic metarhodopsin had a pK of 8. Furthermore, rhodopsin in the vesicles could be photoregenerated from metarhodopsin in solutions of either neutral or alkaline pH. These two spectroscopic properties are comparable to those for rhodopsin in photoreceptor membranes. The results indicate that the native conformation of rhodopsin is preserved during purification and after recombination with phospholipids into vesicles. This preparation is, therefore, an active starting point for functional reconstitution studies.  相似文献   

2.
Arguments are presented which support the possibility that the unfolding of the rhodopsin molecule during photolysis up to the stage of metarhodopsin II is followed by a spontaneous refolding of the protein, once the isomerized retinaldehyde has left its original binding site. Such a transient conformational change might imply a very similar conformation for rhodopsin and opsin, apart from the presence of the chromophore.Presented at the EMBO-Workshop on Transduction Mechanism of Photoreceptors, Jülich, Germany, October 4–8, 1976  相似文献   

3.
Frog (Rana catesbeiana) rod outer segment membrane contains cyclic GMP phosphodiesterase (EC 3.1.4.1). Irradiation of dark-adapted rod outer segment membrane increased the enzyme activity by 5–20-fold in the presence of GTP. The phosphodiesterase in rod outer segment membrane is also activated by mixing a photo-product of 11-cis (regenerated), 9-cis or 7-cis rhodopsin which is stable at 0°C. However, neither opsin in the membrane nor all-trans retinal activates the enzyme. The phosphodiesterase in rod outer segment membrane is also activated by irradiation at ?4°C. Thus, we conclude that the phosphodiesterase is activated by a common photolysis intermediate of these rhodopsin isomers, perhaps before metarhodopsin II decays.  相似文献   

4.
The late photointermediates of rhodopsin photolysis have been analyzed spectrally and chemically in bovine rod outer segment membrane suspension at 25°C and pH 6.5. The decay of metarhodopsin II follows two spectrally distinct routes, resulting 40 min after illumination in a stable mixture of photoproducts with absorbance maxima around 380 and 452 nm, free retinal and metarhodopsin III, respectively. Chemical analysis shows that three different products are involved: free retinal (approx. 34%), protein-bound retinal (approx. 51%) and lipid-bound retinal (approx. 15%). The latter fraction consists of retinylidene-phosphatidylethanolamine exclusively.Photolysis of membranes reconstituted with various phospholipids gives a qualitatively normal spectral picture, but the production of metarhodopsin III may vary with the phospholipid composition, i.e. with the percent of phosphatidylethanolamine present. Chemical analysis shows that with increasing phosphatidylethanolamine content of the membrane, the retinylidene phosphatidylethanolamine fraction increases proportionally at the expense of free retinal, while the fraction of protein-bound retinal remains unaffected.The results indicate that under these conditions metarhodopsin III (defined as a long wavelength product of metahrodopsin II decay) is composed of two chemically distinct components: opsin-bound retinal and retinylidene phosphatidylethanolamine.  相似文献   

5.
The effects of internally applied 1 mM vanadate on the Na+ efflux in dialysed squid axons were found to depend on the presence of external K+. In K+-free artificial sea water, vanadate did not produce any change in the rate of Na+ efflux, whereas in the presence of 10 mM K+ the Na+ efflux was reduced to values even lower than those observed in the absence of K+ (inversion of the K+-free effect). In vanadate-poisoned axons, K+ and NH4+ at low concentrations activated Na+ efflux, but at high concentrations both cations were inhibitory. However, NH4+ was always a better activator and a poorer inhibitor than K+.  相似文献   

6.
A glycopeptide fraction containing glucuronic acid as a component sugar was extracted and purified from squid cartilage to give a single band migrating much slower than hyaluronic acid in cellulose acetate electrophoresis. The molecular weight of the glycopeptide was fairly large since its Kav value in Sephadex G-200 chromatography was 0.18; however, it was soluble in 66% ethanol. This glycopeptide contained glucuronic acid, glucosamine, galactosamine, galactose, and fucose. The total amino acid content was 1.87 μmol of amino acid per mg of the glycopeptide. Threonine, serine and proline represented 80% of the amino acids. Digestion with chondroitinase ABC or reaction with nitrous acid did not result in degradation of the glycopeptide; however, it was completely degraded by reaction with 0.5 M KOH at 37°C. Two hexasaccharides were separated from the alkaline degradation products, and they both contained glucuronic acid, fucose, galactosamine, and reducing terminal glucosamine in the molar ratio, 2:1:2:1. These results indicated that the glycopeptide contains glucuronic acid-containing sugar chains that are distinct from any known glycosaminoglycan.  相似文献   

7.
Microvillar membranes of octopus photoreceptor cells were treated with phospholipase A2, phospholipase C, hexane, or their combinations. By these means, various membrane preparations containing qualitatively and quantitatively different lipids were obtained. The lipid composition and phospholipid content of the membrane preparations obtained by the above methods were determined.Photochemical processes in the digitonin extract of the native and treated membranes have been studied by flash photometry. The results suggest that several different variations in the lipids can affect the rates of the photochemical transformations; these are: the content of phospholipid, the amount of unsaturated hydrocarbon chains and free fatty acids.  相似文献   

8.
Using frog rod outer segments, we measured changes of the absorption spectrum during the conversion of rhodopsin to a photosteady-state mixture composed of rhodopsin, isorhodopsin and bathorhodopsin by irradiation with blue light (440 nm) at ? 190°C and during the reversion of bathorhodopsin to a mixture of rhodopsin and isorhodopsin by irradiation with red light (718 nm) at ? 190°C. The reaction kinetics was expressed by one exponential in the former case and by two exponentials in the latter. These results suggest that rhodopsin is composed of a single molecular species, while bathorhodopsin is composed of two kinds of molecular species designated as batho1-rhodopsin and batho2-rhodopsin. On warming the two forms of bathorhodopsin, each bathorhodopsin converted to its own lumirhodopsin, metarhodopsin I and finally a free all-trans-retinal plus opsin. The absorption spectra of the two forms of bathorhodopsin, lumirhodopsin and metarhodopsin I were measured at ? 190°C. We infer that a rhodopsin molecule in the excited state relaxes to either batho1-rhodopsin or batho2-rhodopsin, and then converts to its own intermediates through one of the two parallel pathways.  相似文献   

9.
A quantum-classical model of photoisomerization of the visual pigment rhodopsin chromophore is proposed. At certain (and more realistic) parameter value combinations, the model is shown to accurately reproduce a number of independent experimental data on the photoreaction dynamics: the quantum yield, the time to reach the point of conical intersection of potential energy surfaces, the termination time of the evolution of quantum subsystem, as well as the characteristic low frequencies of retinal molecular lattice fluctuations during photoisomerization. In addition, the model behavior is in good accordance with experimental data about coherence and local character of quantum transition.  相似文献   

10.
AIM: To investigate the interaction of reconstituted rhodopsin, 9-cis-retinal-rhodopsin and 13-cis-retinal-rhodopsin with transducin, rhodopsin kinase and arrestin-1. METHODS: Rod outer segments(ROS) were isolated from bovine retinas. Following bleaching of ROS membranes with hydroxylamine, rhodopsin and rhodopsin analogues were generated with the different retinal isomers and the concentration of the reconstituted pigments was calculated from their UV/visible absorption spectra. Transducin and arrestin-1 were purified to homogeneity by column chromatography, and an enriched-fraction of rhodopsin kinase was obtainedby extracting freshly prepared ROS in the dark. The guanine nucleotide binding activity of transducin was determined by Millipore filtration using β,γ-imido-(3H)-guanosine 5'-triphosphate. Recognition of the reconstituted pigments by rhodopsin kinase was determined by autoradiography following incubation of ROS membranes containing the various regenerated pigments with partially purified rhodopsin kinase in the presence of(γ-32P) ATP. Binding of arrestin-1 to the various pigments in ROS membranes was determined by a sedimentation assay analyzed by sodium dodecyl sulphatepolyacrylamide gel electrophoresis. RESULTS: Reconstituted rhodopsin and rhodopsin analogues containing 9-cis-retinal and 13-cis-retinal rendered an absorption spectrum showing a maximum peak at 498 nm, 486 nm and about 467 nm, respectively, in the dark; which was shifted to 380 nm, 404 nm and about 425 nm, respectively, after illumination. The percentage of reconstitution of rhodopsin and the rhodopsin analogues containing 9-cis-retinal and 13-cis-retinal was estimated to be 88%, 81% and 24%, respectively. Although only residual activation of transducin was observed in the dark when reconstituted rhodopsin and 9-cis-retinal-rhodopsin was used, the rhodopsin analogue containing the 13-cis isomer of retinal was capable of activating transducin independently of light. Moreover, only a basal amount of the reconstituted rhodopsin and 9-cis-retinal-rhodopsin was phosphorylated by rhodopsin kinase in the dark, whereas the pigment containing the 13-cis-retinal was highly phosphorylated by rhodopsin kinase even in the dark. In addition, arrestin-1 was incubated with rhodopsin, 9-cis-retinal-rhodopsin or 13-cis-retinal-rhodopsin. Experiments were performed using both phosphorylated and non-phosphorylated regenerated pigments. Basal amounts of arrestin-1 interacted with rhodopsin, 9-cis-retinal-rhodopsin and 13-cis-retinal-rhodopsin under dark and light conditions. Residual arrestin-1 was also recognized by the phosphorylated rhodopsin and phosphorylated 9-cis-retinal-rhodopsin in the dark. However, arrestin-1 was recognized by phosphorylated 13-cis-retinal-rhodopsin in the dark. As expected, all reformed pigments were capable of activating transducin and being phosphorylated by rhodopsin kinase in a lightdependent manner. Additionally, all reconstituted photolyzed and phosphorylated pigments were capable of interacting with arrestin-1. CONCLUSION: In the dark, the rhodopsin analogue containing the 13-cis isomer of retinal appears to fold in a pseudo-active conformation that mimics the active photointermediate of rhodopsin.  相似文献   

11.
Activation of guanosine 3,5-cyclic monophosphate (cGMP) phosphodiesterase (EC 3.1.4.35.) in frog rod outer segment membrane by rhodopsin and its analogues was investigated. The Schiff-base linkage between opsin and retinal in rhodopsin was not always necessary for the phosphodiesterase activation. The binding of -ionone ring of retinal to a hydrophobic region of opsin was not enough to induce the enzyme activation. A striking photo-activation of the enzyme was induced by photo-isomerization of rhodopsin analogues from cis to trans form. It seems probable that an expanded conformation of opsin around the retinylidene chromophore induced by the cis to trans isomerization may be the trigger for the activation of phosphodiesterase. On the other hand, the phosphodiesterase in frog rod outer segment was activated by warming of bathorhodopsin to –12 C and then incubating it at the same temperature. Thus, metarhodopsin II or an earlier intermediate than metarhodopsin II should be a direct intermediate for the enzyme activation.Based on material presented at the Fifth International Congress of Eye Research, Eindhoven, October 1982  相似文献   

12.
Rhodopsins possess retinal chromophore surrounded by seven transmembrane α-helices, are widespread in prokaryotes and in eukaryotes, and can be utilized as optogenetic tools. Although rhodopsins work as distinctly different photoreceptors in various organisms, they can be roughly divided according to their two basic functions, light-energy conversion and light-signal transduction. In microbes, light-driven proton transporters functioning as light-energy converters have been modified by evolution to produce sensory receptors that relay signals to transducer proteins to control motility. In this study, we cloned and characterized two newly identified microbial rhodopsins from Haloquadratum walsbyi. One of them has photochemical properties and a proton pumping activity similar to the well known proton pump bacteriorhodopsin (BR). The other, named middle rhodopsin (MR), is evolutionarily transitional between BR and the phototactic sensory rhodopsin II (SRII), having an SRII-like absorption maximum, a BR-like photocycle, and a unique retinal composition. The wild-type MR does not have a light-induced proton pumping activity. On the other hand, a mutant MR with two key hydrogen-bonding residues located at the interaction surface with the transducer protein HtrII shows robust phototaxis responses similar to SRII, indicating that MR is potentially capable of the signaling. These results demonstrate that color tuning and insertion of the critical threonine residue occurred early in the evolution of sensory rhodopsins. MR may be a missing link in the evolution from type 1 rhodopsins (microorganisms) to type 2 rhodopsins (animals), because it is the first microbial rhodopsin known to have 11-cis-retinal similar to type 2 rhodopsins.  相似文献   

13.
The chromophores of rhodopsin and bacteriorhodopsin are believed to result from an electrostatic interaction between the protonated Schiff base of retinal and amino acid side chains. It has been proposed from ESR measurements on rhodopsin (Shirane, K. (1975) Nature, 254, 722–723) and model studies using retinal and tryptophan (Ishigami, M., Maeda, Y. and Mishima, K. (1966) Biochim. Biophys. Acta 112, 372–375) that the interaction is one of charge transfer and that the amino acid involved is tryptophan. Our re-examination of this work does not support the existence of a charge-transfer complex. However, additional similarities between the model system and bateriorhodopsin were observed. It is concluded that further studies in this area may yield information about the nature of the protein chromophores.  相似文献   

14.
Ab initio molecular dynamics (MD) calculations have been performed to study the photoisomerization of a 3-double-bond retinal model chromophore, the all-trans-4, 6-dimethylpenta-3, 5-dieniminium cation, and the possible influence of non-planar distortions on the product distribution. In total, 171 trajectories have been generated for four different conformations of the structure, a planar one and three in which the C4–C5 and the C5=C6 bonds were increasingly twisted out of plane. Starting geometries randomly distributed about the equilibrium geometry were generated by zero-point energy sampling; trajectories were calculated using CASSCF-BOMD methodology and were followed until the photoproduct and its configuration could be assigned. For the latter, two different approaches were applied, one involving the CASSCF configuration vectors, the other an analysis of the MD at the first possible hopping event. Isomerization was found to occur almost exclusively about the central C3=C4 double bond in the case of the planar model compound. Twisting the conjugated π-system shifts the isomerization site from the central double bond to the terminal C5=C6 double bond. With both the C4–C5 and the C5=C6 bonds twisted by 20°, about 35% of the trajectories lead to the configurationally inverted 5-cis product. The results are discussed with reference to the highly selective and efficient photo-induced isomerization of the retinal chromophore in rhodopsin. Figure Product distribution in the MD simulations of models 14. The percentage of trajectories that lead to either C3=C4 or C5=C6 rotation is given beside the bar graphs. The green and the red portions of the bars represent the productive and the unproductive events, respectively, with respect to that particular rotation estimated from the torsion angles at the first close approach of the energy surfaces Dedicated to Professor Dr. Paul von Ragué Schleyer on the occasion of his 75th birthday.  相似文献   

15.
Resting membrane potential and intracellular sodium and potassium concentrations were determined at 5 and 21°C in normal and veratridine-treated axons of the squid Doryteuthis plei. 300 μM veratridine produced an increase in the intracellular sodium concentration, which changed from 52 to 284 mM in 10 min of exposure at 21°C, and from 76 to 260 mM at 5°C. Under the same treatment the intracellular potassium concentration changed from 357 to 221 mM (21°C) and from 334 to 194 mM (5°C). All the changes could be prevented by adding 1 μM tetrodotoxin. Veratridine (30, 100 and 300 μM) increased the resting sodium permeability of the giant axon, and the effect was greater at 21°C. The affinity of the membrane for veratridine increases when the nerves are cooled, the three concentrations tested produce maximum activation of the sodium channels at 5°C. But only the higher two concentrations are saturating at 21°C.  相似文献   

16.
Photoreceptor loss causes irreversible blindness in many retinal diseases. Repair of such damage by cell transplantation is one of the most feasible types of central nervous system treatment. Retinal stem cells (RSC) are a substrate for cell-replacement therapy, and previous studies have shown that RSCs from different developmental stages have distinct properties in proliferative capacity and differentiation potential. The tailbud stage is of special interest in retinogenesis, because RSCs commence differentiation after this period. However, no information about the characteristics of RSCs from the tailbud stage is available. In this study, the characteristics of cell cultures from the rat optic cup (referred to as optic-cup-derived RSCs; OC-RSCs) at embryonic day 12.5 (tailbud stage) were analyzed. OC-RSCs grew either as monolayers or as neurospheres in the presence of basic fibroblast growth factor and could be dissociated into a single cell suspension. Using the MTT assay, immunochemistry, cytogenetic analysis, and flow cytometry, we found that OC-RSCs were easily enriched to 92% by three passages, had a normal diploid karyotype, and exhibited no obvious differences in proliferative rate during eight passages (doubling time: 36 h). OC-RSCs produced retinal specific cells after the addition of serum to the medium, but the differentiation potential was affected by serum concentration. Preliminary results showed that transplanted OC-RSCs were incorporated into the degenerated retina of RCS rats and differentiated into rhodopsin-positive cells. Thus, OC-RSCs, after suitable enrichment, provide a population of stem cells with distinct growth and differentiation properties that make them suitable for research into RSC differentiation and transplantation.  相似文献   

17.
Summary The deep-sea bioluminescent squid, Watasenia scintillans, has three visual pigments: The major one (A1 pigment) is based on retinal and has max = 484 nm, the second one (A2 pigment) is based on 3-dehydroretinal and has max = 500 nm, and the third one (A4 pigment) is based on 4-hydroxyretinal and has max = 470 nm. The distribution of these 3 visual pigments in the retina was studied by HPLC analysis of the retinals in retina slices obtained by microdissection. It was found that A1 pigment was not located in the specific region of the ventral retina receiving the down-welling light which contains very long photoreceptor cells, forming two strata. A2 and A4 pigment were found exclusively in the proximal pinkish stratum and in the distal yellowish stratum. The role of these pigments in the retina is hypothesized to involve spectral discrimination. The extraction and analysis of retinoids to determine the origin of 3-dehydroretinal and 4-hydroxyretinal in the mature squid showed only a trace amount of 4-hydroxyretinol in the eggs. Similar analysis of other cephalopods collected near Japan showed the absence of A2 or A4 pigment in their eyes.Abbreviations HPLC high-performance liquid chromatography - IS inner segment - OS outer segment  相似文献   

18.
The components of magnesium efflux in squid axons have been studied under internal dialysis and voltage clamp conditions. The present report rules out the existence of an ATP-dependent, Na0- and Mg0-independent Mg2+ efflux (ATP-dependent Mg2+ pump) leaving the Mg2+---Na+ exchange system as the only mechanism for Mg2+ extrusion. The main features of the Mg2+ efflux are: (1) The efflux is completely dependent on ATP. (2) The efflux can be activated either by external Na+ (forward Mg2+---Na+ exchange) or external Mg2+ (Mg2+---Mg2+ exchange). (3) The mobility of the Mg2+ exchanger in the Na0+-loaded form is greater than that in the Mg2+-loaded one. (4) In variance with the Na+---Ca2+ exchange mechanism, Mg2+---Mg2+ exchange is not activated by external monovalent cations. (5) ATPγS replaces ATP in activating Mg2+---Na+ exchange suggesting that a phosphorylation/dephosphorylation process regulates this transport mechanism.  相似文献   

19.
20.
The light-induced isomerization of the retinal from 11-cis to all-trans triggers changes in the conformation of visual rhodopsins that lead to the formation of the activated state, which is ready to interact with the G protein. To begin to understand how changes in the structure and dynamics of the retinal are transmitted to the protein, we performed molecular dynamics simulations of squid rhodopsin with 11-cis and all-trans retinal, and with two different force fields for describing the retinal molecule. The results indicate that structural rearrangements in the binding pocket, albeit small, propagate toward the cytoplasmic side of the protein, and affect the dynamics of internal water molecules. The sensitivity of the active-site interactions on the retinal force-field parameters highlights the coupling between the retinal molecule and its immediate protein environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号