首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The stoichiometry of free NADPH oxidation in phenobarbital induced rabbit liver microsomes was measured by means of registering the rates of NADPH, H+ and O2 consumption and O2? and H2O2 production. ΔO2?:ΔH2O2 ratio is approximately I indicating that about half H2O2 results from O2? dismutation, the second half being formed directly. ΔNADPH:ΔH2O2 and ΔO2:ΔH2O2 ratios exceed I and therefore another product of the reaction is water. The fact that the ratio (ΔNADPH-ΔH2O2):(ΔO2-ΔH2O2) is 2 allows one to consider direct 4-electron O2 reduction as the major way of water formation rather than endogenous substrate hydroxylation.  相似文献   

2.
《Inorganica chimica acta》1986,115(2):169-172
2-(Methylamino)pyridine reacts with RuCl2(CO)3 to give a carbamoyl complex, [Ru(C(O)N(CH3)(C5H4N)Cl(CO)2], which yields with pyridine (py) and acetylacetone (Hacac), respectively, [Ru(C(O)N(CH3)C5H4N)Cl(CO)2(py)] and [Ru(C(O)N(CH3)C5H4N)(CO)2(acac)]. These complexes are characterized spectroscopically. The amino group of the ligand is carbonylated and the resulted carbamoyl ligand is chelating through a pyridine ring-N and a carbamoyl-C atom. 2-Aminopyridine and 2-aminopyrimidine react similarly with RuCl2(CO)3 to give the corresponding carbamoyl complexes.  相似文献   

3.
The relative effectiveness of oxidizing (.OH, H2O2), ambivalent (O2?) and reducing free radicals (e? and CO2?) in causing damage to membranes and membrane-bound glyceraldehyde-3-phosphate dehydrogenase of resealed erythrocyte ghosts has been determined. The rates of damage to membranebound glyceraldehyde-3-phosphate dehydrogenase (R(enz)) were measured and the rates of damage to membranes (R(mb)) were assessed by measuring changes in permeability of the resealed ghosts to the relatively low molecular weight substrates of glyceraldehyde-3-phosphate dehydrogenase. Each radical was selectively isolated from the mixture produced during gamma-irradiation, using appropriate mixtures of scavengers such as catalase, superoxide dismutase and formate. .OH, O2? and H2 O2 were approximately equally effective in inactivating membrane-bound glyceraldehyde-3-phosphate dehydrogenase, while e? and CO2? were the least effective. R(enz) values of O2? and H2O2 were 10-times and of .OH 15-times that of e?. R(mb) values were quite similar for e? and H2O2 (about twice that of O2?), while that of .OH was 3-times that of O2?. Hence, with respect to R(mb): .OH >e? = H2O2 >O2? , and with respect to R(enz): .OH >O2? = H2O2 >e?. The difference between the effectiveness of the most damaging and the least damaging free radicals was more than 10-fold greater in damage to the enzyme than to the membranes. Comparison between H2O2 added as a chemical reagent and H2O2 formed by irradiation showed that membranes and membrane-bound glyceraldehyde-3-phosphate dehydrogenase were relatively inert to reagent H2O2 but markedly susceptible to the latter.  相似文献   

4.
The action of xanthine oxidase upon acetaldehyde or xanthine at pH 10.2 has been shown to be accompanied by substantial accumulation of O2? during the first few minutes of the reaction. H2O2 decreases this accumulation of O2? presumably because of the Haber-Weiss reaction (H2O2+O2?OH?+OH+O2) and very small amounts of superoxide dismutase eliminate it. This accumulation of O2? was demonstrated in terms of a burst of reduction of cytochrome c, seen when the latter compound was added after aerobic preincubation of xanthine oxidase with its substrate. The kinetic peculiarities of the luminescence seen in the presence of luminol, which previously led to the proposal of H2O4?, can now be satisfactorily explained entirely on the basis of known radical intermediates.  相似文献   

5.
R.L. Pan  S. Izawa 《BBA》1979,547(2):311-319
NH2OH-treated, non-water-splitting chloroplasts can oxidize H2O2 to O2 through Photosystem II at substantial rates (100–250 μequiv · h?1 · mg?1 chlorophyll with 5 mM H2O2) using 2,5-dimethyl-p-benzoquinone as an electron acceptor in the presence of the plastoquinone antagonist dibromothymoquinone. This H2O2 → Photosystem II → dimethylquinone reaction supports phosphorylation with a Pe2 ratio of 0.25–0.35 and proton uptake with H+e values of 0.67 (pH 8)–0.85 (pH 6). These are close to the Pe2 value of 0.3–0.38 and the H+e values of 0.7–0.93 found in parallel experiments for the H2O → Photosystem II → dimethylquinone reaction in untreated chloroplasts. Semi-quantitative data are also presented which show that the donor → Photosystem II → dibromothymoquinone (→O2) reaction can support phosphorylation when the donor used is a proton-releasing reductant (benzidine, catechol) but not when it is a non-proton carrier (I?, ferrocyanide).  相似文献   

6.
(1) H+/electron acceptor ratios have been determined with the oxidant pulse method for cells of denitrifying Paracoccus denitrificans oxidizing endogenous substrates during reduction of O2, NO?2 or N2O. Under optimal H+-translocation conditions, the ratios H+O, H+N2O, H+NO?2 for reduction to N2 and H+NO?2 for reduction to N2O were 6.0–6.3, 4.02, 5.79 and 3.37, respectively. (2) With ascorbate/N,N,N′,N′-tetramethyl-p-phenylenediamine as exogenous substrate, addition of NO?2 or N2O to an anaerobic cell suspension resulted in rapid alkalinization of the outer bulk medium. H+N2O, H+NO?2 for reduction to N2 and H+NO?2 for reduction to N2O were ?0.84, ?2.33 and ?1.90, respectively. (3) The H+oxidant ratios, mentioned in item 2, were not altered in the presence of valinomycinK+ and the triphenylmethylphosphonium cation. (4) A simplified scheme of electron transport to O2, NO?2 and N2O is presented which shows a periplasmic orientation of the nitrite reductase as well as the nitrous oxide reductase. Electrons destined for NO?2, N2O or O2 pass two H+-translocating sites. The H+electron acceptor ratios predicted by this scheme are in good agreement with the experimental values.  相似文献   

7.
α-Chymotrypsin, converted to the acetyl enzyme by the p-nitrophenyl esters of CH3COOH, CH2DCOOH, CHD2COOH, and CD3COOH, undergoes deacetylation at pH 7.6 (phosphate buffer) and 25°C with secondary isotope effects of k(CH3)k(CH2D) = 0.985 ± 0.006, k(CH3)k(CHD2) = 0.971 ± 0.010, and k(CH3)k(CD3) = 0.956 ± 0.008. These isotope effects obey the simple additivity rule (“Rule of the Geometric Mean”) to within 20 J/mol, corresponding to about 5–6% of the maximum isotope effect for carbonyl addition. Thus, to this level, the three hydrogenic sites of the acetyl group are not rendered distinct in their contributions to the overall isotope effect even in the chiral environment of the chymotrypsin active site.  相似文献   

8.
The changes in polymer-solvent interactions that occur when native calf thymus DNA is dialyzed against Na2SO4 solutions of a given ionic strength and buffer concentration but of varying concentrations in methylmercuric hydroxide have been investigated with the help of solution density measurements at 25 °C and pH 6.8–7.0. From measurements executed under equilibrium dialysis conditions at the three salt levels 5 mm, 0.05 m, and 0.5 m Na2SO4 (m refers to molality) and in the presence of 5 mm cacodylic acid buffer, the density increments (???c2)μ0 for native calf thymus DNA were determined as a function of CH3HgOH concentration. (???c2)μ0 was found not to vary with organomercurial concentration, irrespective of the concentration of supporting electrolyte, until a certain CH3HgOH concentration level has been reached, viz., pM1 ? 3.5 (pM1 = ?log mCH3HgOH), beyond which (???c2)μ0 increases strongly with increasing concentration of CH3HgOH. As is shown by optical melting, (???c2)μ0 becomes a function of organomercurial concentration the moment DNA undergoes denaturation brought about by the complexing of CH3HgOH with the various N-binding sites of the base residues in the DNA double helix.Polymer-solvent interactions, expressed in terms of preferential water interactions (“net hydration”) and preferential salt interactions (“salt solvation”), were derived from the (???c2)μ0 data in combination with data obtained on the preferential interaction of CH3HgOH with denatured DNA and data on the partial specific volumes of all major solution components, gathered from density measurements on solutions with fixed concentrations of diffusible components. Evidence is presented which shows that denaturation in general decreases the net hydration while salt becomes preferentially associated with the polyelectrolyte. This process is further amplified by the interaction of CH3HgOH with denatured DNA: Methylmercurated DNA alters the redistribution of diffusible components at dialysis equilibrium to such an extent that in a formal sense large amounts of water are rejected from the immediate vicinity of the polymer. The molecular implications of these findings are explored. The results are further discussed in the light of previous findings where the methylmercury-induced denaturation of DNA had been studied with the help of buoyant density measurements in a Cs2SO4 density gradient and by velocity-sedimentation in a variety of sulfate media.  相似文献   

9.
The kinetics of bisulfite addition to 5-fluorouracil were studied as a function of increasing concentrations of potential general acids. Values of kobsd[SO3=] measured at 25°C and ionic strength 1.0 M increased linearly and then became invariant with increasing concentrations of either HSO3? or (OHCH2CH2)2N+C(CH2OH)3 HCl (BisTris+HCl). A small kinetic hydrogen-deuterium isotope effect (kHSkDS = 1.10) was observed for the general acid catalysed portion of the addition reaction. The kinetics of bisulfite elimination from 5-fluoro-5,6-dihydrouracil-6-sulfonate were studied in ethanolamine buffers. As previously observed with 1,3-dimethyl-5,6-dihydrouracil-6-sulfonate, this reaction is subject to general base catalysis and exhibits a large kinetic hydrogen-deuterium isotope effect (k2H2Ok2D2O = 3.8). The kinetic results for the addition reaction are consistent with a multistep reaction pathway involving the initial formation of an oxyanion sulfite addition intermediate (II) which subsequently adds a proton and undergoes tautomerization to yield the final 5-fluoro-5,6-dihydrouracil-6-sulfonate product. Thus the elimination of bisulfite from 5-fluoro-5,6-dihydrouracil-6-sulfonate probably proceeds by an ElcB mechanism which involves, at relatively low concentrations of general base, rate determining general base catalyzed proton abstraction from carbon 5 to yield intermediate II followed by the rapid elimination of sulfite to yield 5-fluorouracil. These results may be related to both the enzymatically catalyzed dehalogenation of bromoand iodouracil and the methylation of deoxyuridylate by thymidylate synthetase.  相似文献   

10.
11.
The electronic structure of 19 established and potential biological oxidants has been studied by semiempirical all-valence-electron quantum-chemical methods. Electronic ground and excited states of O2, HO2, HO, H2O2, H3O, H4O2 and their (radical) ions have been investigated in order to get information on the geometry, vertical ionization potentials, vertical electron affinities and low-lying electronic excited states. The actual aim has been (i) to arrange the studied species according to their oxidizing power as given by gas-phase electron affinity.
9·HO·OH2O12>(1?+g).·OH>O12(1δ+g) >HO12(2A′)>O12(2A′)>O2(3?-g>HO·2)
and (ii) to contribute to the thermodynamics of early changes of the O2 molecule
O2+e→O?2·;O?2·+H+→HO·2
. Moreover, it has been found theoretically that the hydrated form of the hydroxyl radical (·HO.OH2) should be a relatively stable species with very high electron affinity (2·4 eV, INDO method). This circumstance and the theoretically predicted, extraordinarily low-lying, excited doublet state of the peroxyl radical (about 6000 cm?1) could be of biological significance.  相似文献   

12.
13.
Five species of cockroach were tested on a miniature treadmill at three velocities as O2 consumption (V?O2) was measured: Gromphadorhina chopardi, Blaberus discoidalis, Eublaberus posticus, Byrsotria fumagata and Periplaneta americana. All cockroaches showed a classical aerobic response to running: V?O2 increased rapidly from a resting rate to a steady-state (V?O2ss): t12 on-response varied from under 30 s to 3 min. Recovery after exercise was rapid as well; t12 off-response varied from under 30 s to 6 min. These times are faster or similar to mammalian values. V?O2 varied directly with velocity as in running mammals, birds and reptiles. V?O2 during steady-state running was only 4–12 times higher than at rest. Running is energetically much less costly per unit time than flying, but the cost of transport per unit distance is much more expensive for pedestrians. The minimal cost of transport (Mrun), the lowest V?O2 necessary to transport a given mass a specific distance, is high in cockroaches due to their small size. The new data suggest that insects may be less economical than comparable sized vertebrates.  相似文献   

14.
The rate of reaction of ferro- and ferricytochrome c (C(II) and C(III)) with ferri- and ferrocyanide and of C(III) with O2? and CO2? was determined in H2O and in 2H2O in the temperature range 5–35 °C. No isotope effect was evident in any of the reductions of C(III); the apparent energy of activation was identical in H2O and 2H2O. An isotope effect with kH2Ok2H2O = 1.25 to 1.85, depending on pH for instance was observed in the oxidation of C(II), in the slow phase of oxidation which involves conformational changes. An interpretation (supported by evidence from previous work) involving water molecules in the close vicinity of the reaction site on the protein is discussed.  相似文献   

15.
Respiration (O), ammonium (NH4), phosphate (PO4), total nitrogen (NT) and phosphorus (PT) excretions were measured on mixed zooplankton during 3-, 6-, 9-, 12-, 21-, and 24-h incubation periods at 20–23 C. The excretion rates of PO4, NT. and PT decrease during a 21-h period, while rates of respiration and excretion of NH{IN4} are constant. The percentage of inorganic nitrogen excreted increases regularly from 3 h (30–40% of total nitrogen) to 21 h (70–80%) and it could be either due to a bacterial activity which was measured or to a decrease with time of organic nitrogen excreted because of starvation. ONT, OPO4, OPT, and NH4PO4 ratios increase during the first 9 h of incubation; the percentage of inorganic phosphorus excreted is higher at the very beginning and then remains constant from 6 to 24 h. ONH4 and NTPT ratios are constant during a 24-h term, which makes them useful metabolic indexes.  相似文献   

16.
The interaction of |CnH2n+1N+(CH3)3| · I? (n = 3, 6, 9, 12, 14, 16 or 18) with egg-yolk phosphatidylcholine-water dispersions has been studied by 31P-NMR spectroscopy. It is shown that the effective anisotropy of 31P chemical shift (?Δσeff) of the lamellar phospholipid liquid-crystalline phase Lα increases with increasing concentration and alkyl chain length of the drug. Addition of |C6H13N+(CH3)3| ·I ? or |C9H19N+(CH3)3I? to the phospholipid-water dispersion at a molar ratio ammonium salt:phospholipid > 0.8 induces in the dispersion a structure with an effective isotropic phospholipid motion. This structure is unstable and slowly transforms into the hexagonal phase. These effects have not been observed in phospholipid-water dispersions mixed with the ammonium derivatives with the longer alkyl chains n  12, 14, 16 or 18. It is proposed that these results might explain the effects of the investigated drugs on the nerve, muscle and bacterial cells.  相似文献   

17.
Human copper-zinc superoxide dismutase undergoes inactivation when exposed to O2? and H2O2 generated during the oxidation of acetaldehyde by xanthine oxidase at pH 7.4 and 37° C. In contrast, human manganese superoxide dismutase is not inactivated under the same conditions. Catalase and Mn-superoxide dismutase protect CuZn superoxide dismutase from inactivation. Similar protection is observed with hydroxyl radical (OH.) scavengers, such as formate and mannitol. In contrast, other OH. scavengers such as ethanol and tert-butyl alcohol, have no protective action. The latter results indicate that “free OH.” is not responsible for the inactivation. Furthermore, H2O2 generated during the oxidation of glucose by glucose oxidase, i.e., without production of O2?, does not induce CuZn superoxide dismutase inactivation. A mechanism accounting for this O2?H2O2-dependent inactivation of CuZn superoxide dismutase is proposed.  相似文献   

18.
G. Peters  M.A.J. Rodgers 《BBA》1981,637(1):43-52
Laser flash photolysis techniques have yielded rate constants for physical and reactive quenching modes of O2(1Δg) by nicotine, nicotinamide adenine dinucleotide (oxidized and reduced forms) and the reduced forms of nicotinamide mononucleotide, nicotinamide adenine dinucleotide phosphate and nicotinamide hypoxanthine dinucleotide. In the case of the last four named compounds, kinetic spectroscopy furnished evidence for one-electron transfers to O2(1Δg). Specifically, production of O?2 was demonstrated unequivocally by reaction with 1,4-benzoquinone. Quantitative determinations revealed the extent of reactive quenching to be near 60% in each case.  相似文献   

19.
Fourteen derivatives of l-alanine of the type CH3CH(NHCO-3-C5H4N)COOR3 have been synthesized and their hydrolysis by chymotrypsin was studied with the object of characterizing enzymic space (?3) to which R3 binds. The binding of R3 (log1Km) was shown via correlation analysis to correlate with molar refractivity (MR) of R3 rather than hydrophobicity (π). The results confirmed our earlier predictions. A correlation equation for the hydrolysis of 77 acyl-amino acid esters of the general formula R2CH(NHCOR1)COOR3 relating log(kcatkm) to molar refractivity of R1, R2, and R3 and to σ1 (Taft's polar parameter) of R3 was formulated. The general picture of ligand interactions with chymotrypsin as seen with correlation analysis is discussed.  相似文献   

20.
The anomerase (1-epimerase) activity of phosphoglucose isomerase (d-glucose 6-phosphate ketol-isomerase EC 5.3.1.9) has been studied. The pH-Vmax profile, assayed by two different methods, shows a dependence on two ionizable groups in the enzyme with pK values of 7.0 and 9.3 at 0 °C. Additionally, an unusual reversal of the basic leg of the normal profile to yield a large increase in Vmax is observed above pH 9.5. Deuterium solvent isotope effects of Vmax(H2O)Vmax(D2O) = 1.39 and 2.07 are observed for isomerase and anomerase activities respectively. An anomerase mechanism similar to noncatalyzed anomerization is postulated with a discussion of the catalytic groups involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号