首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The expressions for the kinetic constants corresponding to the steady state model for hydrolysis of ATP catalyzed by (Na+ + K+)-ATPase proposed recently are analyzed with the object of determining the rate constants. The theoretical background for the necessary procedures is described. The results of this analysis are: (1) A small class (four) of rate constants are determined directly by the previously published values of the kinetic constants. (2) For a somewhat larger class of rate constants upper and lower bounds may be established. For several rate constants the upper and lower bounds differ by less than a factor 1.6 (for the "(Na+ + K+)-enzyme", i.e. the enzyme activity with K+ and millimolar substrate concentration) and 1.2 (for the "Na+-enzyme",i.e. the activity at micromolar substrate concentrations). (3) Experiments on inhibition by K+ of the Na+-enzyme at various Mg2+ concentrations are reported and analyzed. With the additional assumption that the rate constants governing the addition to ATP of Mg2+ is independent of whether or not ATP is bound to an enzyme molecule, a set of consistent values for all the 23 rate constants in the mechanism may be obtained. (4) The values of some rate constants lend further support to the contention discussed in a previous paper that the enzyme hydrolyzes ATP along two kinetically distinct pathways, depending on the presence of K+ and on the concentration of substrate, without the necessity of having more than one active substrate site per enzyme unit at any time. (5) The results show that while the two enzyme forms, the "Na+-enzyme" E1 and the "K+-enzyme" E2K, add substrate with (second order) rate constants of the same order of magnitude (differing only by a factor of four in favor of the former), the rate constants for the reverse processes differ by a factor of 100, being largest for the K+-enzyme. This is the main reason for the large difference in the Michaelis constants for the two forms reported previously. (6) Compatibility of the model with the well-known rapid dephosphorylation of the phosphorylated enzyme in the presence of K+ requires the presence, at non-zero steady state concentration, of an enzyme-potassium-phosphate intermediate, which is acid labile and is therefore not detected as a phosphorylated enzyme using conventional methods.  相似文献   

4.
A detailed steady-state kinetic investigation of the hydrolysis of ATP catalyzed by (Na+ + K+)-ATPase is reported. The activity was studied in the presence of (i) Na+ (130 mM), K+ (20 mM) and micromolar ATP concentrations and Na+ (150 mM) the ('Na+-enzyme'). The data obtained lead to the following results: 1. The action of each enzyme may be described by a simple kinetic mechanism with one (Na+-enzyme) or two ((Na+ + K+)-enzyme) dead-end Mg complexes. 2. For both enzymes, both MgATP and free ATP are substrates, with Mg2+, in the latter case, as the second substrate. 3. For each enzyme, the complete set of kinetic constants (seven for the Na+-enzyme, eight for the (Na+ + K+)-enzyme) are determined from the data. 4. For each enzyme it is shown that, in the alternate substrate mechanism obtained, the ratio of net steady-state flux along the 'MgATP pathway' to that of the 'ATP-Mg pathway' increases linearly with the concentration of free Mg2+. The parameters of this function are determined from the data. As a result of this, at high (greater than 3 mM) free Mg2+ concentrations the alternate substrate mechanism degenerates into a 'limiting' kinetic mechanism, with MgATP as the (essentially) sole substrate, and Mg2+ as an uncompetitive (Na+-enzyme) or non-competitive ((Na+ + K+)-enzyme) inhibitor.  相似文献   

5.
A steady-state kinetic investigation of the effect of K+ on the Na+-enzyme activity of the (Na+ + K+)-ATPase in broken membrane preparations is reported. Analysis of the kinetic patterns obtained, together with the results reported in the first two articles of this series permit the following conclusions. 1. K+ inhibits the Na+-enzyme (the enzyme activity measured at micromolar substrate concentrations in the presence of Na+). The inhibition of non-competitive at low and competitive at higher K+ concentrations and is enhanced by free Mg2+. 2. The results indicate that the Na+-enzyme at steady-state tends to be accumulated in an enzyme-potassium complex when K+ is added. 3. The enzyme-potassium complex, in turn, binds Mg2+ in a dead-end fashion. The dissociation constant for the enzyme-K-Mg complex, estimated from the data, is 7.2 mM. The same value was obtained earlier for the Mg2+ inhibition constant of the substrate-free form of the (Na+ + K+)-enzyme (the enzyme activity measured with Na+ and K+ and at millimolar substrate concentrations) suggesting that the two constants describe the same equilibrium. 4. On the basis of the known (optimal) activity of the (Na+ + K+)-ATPase, relative to that of the Na+-ATPase, a rate constant condition is found which must be met if the Post-Albers kinetic scheme is to satisfy the data. Kinetic data for the phosphoenzyme indicate that this condition is not satisfied. 5. On the basis of the kinetic results a model for the hydrolytic action of (Na+ + K+)-ATPase is proposed. This model encompasses the Post-Albers scheme but contains two distinctive hydrolysis cycles (an 'Na+-enzyme cycle' and a '(Na+ + K+)-enzyme cycle') with widely different affinities for the substrates. Only one of the cycles (the Na+-enzyme cycle) involves acid-stable phosphorylated enzyme intermediates at discernible steady-state concentrations. Which of the two main cycles is predominant in any particular system is determined by the concentration of ligands and substrates. 6. According to this scheme, an enzyme preparation may exhibit both a high (Na+-enzyme) and a low ((Na+ + K+)-enzyme) substrate affinity, without the necessity of assigning more than one substrate site to a particular enzyme unit at any one time.  相似文献   

6.
(1) The kinetics of the phosphorylated enzymic intermediates of (Na+ + K+)-ATPase from ox brain, which are formed by incubation of the enzyme with 25 microM AT32P, 150 mM Na+ and 1 mM Mg2+, have been studied in dephosphorylation experiments at 1 degree C. The dephosphorylation of the 32P-labelled enzyme was initiated by addition of either 1 mM unlabelled ATP, 2.5 mM ADP or 1 mM unlabelled ATP + ADP in concentrations from 25 to 1000 microM. (2) In the absence of ADP the dephosphorylation curve was linear in a semilogarithmic plot almost from t = 0, whereas by addition of ADP a biphasic behaviour was obtained. The slope of the slow phase of dephosphorylation was virtually independent of the ADP concentration. (3) The results were analysed by the mathematical equation corresponding to the simplest possible model for the interconversion and breakdown of the phosphointermediates: (formula: see text) where alpha, beta, H and G are functions of all the rate constants and H and G furthermore are functions of the initial values for [E1P] and [E2P]. (4) The analysis confirmed the model and enabled the determination of all the rate constants. (5) k-1 was found to be equal to k'-1 + k"-1 . [ADP] indicating an ADP-independent 'spontaneous' dephosphorylation of E1P. The rate constant for this process was close to that for dephosphorylation of E2P, i.e., k'-1 congruent to k3. Also the value of k"-1 was determined. (6) k3 was found to be at least 10 . k-2. The implication of this for the role of the E1P to E2P transition in the Na+ + K+)-stimulated ATP hydrolysis will be discussed in detail in the following paper (Plesner, I.W., Plesner, L., N?rby, J.G. and Klodos, I. (1981) Biochim. Biophys. Acta 643, 483--494). (7) A refinement of the model, accounting for the effect of Na+ on the steady-state ratio between [E1P] and [E2P] is proposed: (formula: see text). At [Na+] = 150 mM as used here, E1P(Na) and E'1P are assumed to be in rapid equilibrium. (8) Comparison of our results with those of others underlines the general validity of the conclusions of the present paper.  相似文献   

7.
The effects of the solvents deuterated water (2H2O) and dimethyl sulfoxide (Me2SO) on [3H]ouabain binding to (Na+,K+)-ATPase under different ligand conditions were examined. These solvents inhibited the type I ouabain binding to the enzyme (i.e., in the presence of Mg2++ATP+Na+). In contrast, both solvents stimulated type II (i.e., Mg2++Pi-, or Mn2+-dependent) binding of the drug. The solvent effects were not due to pH changes in the reaction. However, pH did influence ouabain binding in a differential manner, depending on the ligands present. For example, changes in pH from 7.05 to 7.86 caused a drop in the rate of binding by about 15% in the presence of Mg2++Na++ATP, 75% in the Mg2++Pi system, and in the presence of Mn2+ an increase by 24% under similar conditions. Inhibitory or stimulatory effects of solvents were modified as various ligands, and their order of addition, were altered. Thus, 2H2O inhibition of type I ouabain binding was dependent on Na+ concentration in the reaction and was reduced as Na+ was elevated. Contact of the enzyme with Me2SO, prior to ligands for type I binding, resulted in a greater inhibition of ouabain binding than that when enzyme was exposed to Na++ATP first and then to Me2SO. Likewise, the stimulation of type II binding was greater when appropriate ligands acted on enzyme prior to addition of the solvent. Since Me2SO and 2H2O inhibit type I ouabain binding, it is proposed that this reaction is favored under conditions which promote loss of H2O, and E1 enzyme conformation; the stimulation of type II ouabain binding in the presence of the solvents suggests that this type of binding is favored under conditions which promote the presence of H2O at the active enzyme center and E2 enzyme conformation. This postulation of a role of H2O in modulating enzyme conformations and ouabain interaction with them is in concordance with previous observations.  相似文献   

8.
It is not known whether ouabain injected into the kidney in vivo is bound exclusively to the (Na+ + K+)-ATPase and whether the reduction of sodium pumping capacity is large enough to account for the reduction in sodium reabsorption. In the present study on dogs the total amount of parenchymal ouabain was therefore estimated and the specific renal binding compared to the reduction in (Na+ + K+)-ATPase activity. Ouabain, 120 nmol/kg body weight, was injected into the renal artery in vivo reducing the (Na+ + K+)-ATPase activity by 3lmost 80%. After nephrectomy, tissue ouabain could be quantified by radioimmunoassay after heating the homogenate to 70°C for 30 min; negligible amounts were detectable without heating. No correlation between ouabain binding and tissue volume, protein content, DNA content or Mg2+-ATPase content could be found when comparing the following four fractions of the kidney: outer cortex, inner cortex, outer medulla and papilla. For the whole kidney, mean parenchymal tissue concentration of ouabain equalled 0.58 ± 0.03 μmol/100 g wet tissue. Only 21.3 ± 1.2% of the ouabain was confined to the outer medulla corresponding to 54 ± 4 nmol giving a tissue concentration of 1.08 ± 0.05 μmol/100 g wet tissue. The renal ouabain concentrations were highly correlated to the reduction in (Na+ + K+)-ATPase activity, giving a ratio between the reduction in hydrolysis rate and bound ouabain (turnover number) of 6105 min?1 which is close to the value of 7180 min?1 found by in vitro Scatchard analysis. No ouabain seems to be bound to other tissue components than the (Na+ + K+)-ATPase and the present method is therefore a simple way of measuring the number of inhibited (Na+ + K+)-ATPase molecules after in vivo injection of ouabain.  相似文献   

9.
10.
(Na+,K+)-ATPase is able to catalyze a continuous ATP?Pi exchange in the presence of Na+ and in the absence of a transmembrane ionic gradient. At pH 7.6 the Na+ concentration required for half-maximal activity is 85 mM and at pH 5.1 it is 340 mM. In the presence of optimal Na+ concentration, the rate of exchange is maximal at pH 6.0 and varies with ADP and Pi concentration in the assay medium. ATP?Pi exchange is inhibited by K+ and by ouabain.  相似文献   

11.
The effect of l-3,5,3′-triiodothyronine (T3) and thyroxine (T4) on (Na+ + K+)-ATPase activities was examined in rabbit kidneys because in this tissue almost 80% of the metabolism is connected to active sodium transport. T3-receptor concentrations were estimated as 0.62 and 0.80 pmol/mg per DNA in the cortex and outer medulla, respectively. A dose of 0.5 mg T3/kg body weight for 3 days increased basal metabolic rate by almost 60%, and the mitochondrial 1-α-glycerophosphate dehydrogenase activity was increased by 50% in both the cortex and medulla. (Na+ + K+)-ATPase activity in the liver was raised by almost 50%. However, no changes in (Na+ + K+)-ATPase activities or binding sites for [3H]ouabain in either the kidney cortex or medulla could be observed. T4 at 16 mg/kg daily for 14 days was also without effect on renal (Na+ + K+)-ATPase activities. Furthermore, the response to T3 was absent at high sodium excretion rates induced by unilateral nephrectomy and extracellular volume expansion. Thus, despite stimulation of basal metabolic rate and renal 1-α-glycerophosphate dehydrogenase activity by T3 and T4, the (Na+ + K+)-ATPase activity in the rabbit kidney is identical in euthyroid and hyperthyroid states. However, thyroid hormones prevent the normal natriuretic response to extracellular volume expansion.  相似文献   

12.
Na+-ATPase activity of a dog kidney (Na+ + K+)-ATPase enzyme preparation was inhibited by a high concentration of NaCl (100 mM) in the presence of 30 μM ATP and 50 μM MgCl2, but stimulated by 100 mM NaCl in the presence of 30 μM ATP and 3 mM MgCl2. The K0.5 for the effect of MgCl2 was near 0.5 mM. Treatment of the enzyme with the organic mercurial thimerosal had little effect on Na+-ATPase activity with 10 mM NaCl but lessened inhibition by 100 mM NaCl in the presence of 50 μM MgCl2. Similar thimerosal treatment reduced (Na+ + K+)-ATPase activity by half but did not appreciably affect the K0.5 for activation by either Na+ or K+, although it reduced inhibition by high Na+ concentrations. These data are interpreted in terms of two classes of extracellularly-available low-affinity sites for Na+: Na+-discharge sites at which Na+-binding can drive E2-P back to E1-P, thereby inhibiting Na+-ATPase activity, and sites activating E2-P hydrolysis and thereby stimulating Na+-ATPase activity, corresponding to the K+-acceptance sites. Since these two classes of sites cannot be identical, the data favor co-existing Na+-discharge and K+-acceptance sites. Mg2+ may stimulate Na+-ATPase activity by favoring E2-P over E1-P, through occupying intracellular sites distinct from the phosphorylation site or Na+-acceptance sites, perhaps at a coexisting low-affinity substrate site. Among other effects, thimerosal treatment appears to stimulate the Na+-ATPase reaction and lessen Na+-inhibition of the (Na+ + K+)-ATPase reaction by increasing the efficacy of Na+ in activating E2-P hydrolysis.  相似文献   

13.
1. Addition of 3.5 mM ATP to mouse neuroblastoma Neuro-2A cells results in a selective enhancement of the plasma membrane permeability for Na+ relative to K+, as measured by cation flux measurements and electro-physiological techniques. 2. Addition of 3.5 mM ATP to Neuro-2A cells results in a 70% stimulation of the rate of active K+ -uptake by these cells, partly because of the enhanced plasma membrane permeability for Na+. Under these conditions the pumping activity of the Neuro-2A (Na++K+)-ATPase is optimally stimulated with respect to its various substrate ions. 3. External ATP significantly enhances the affinity of the Neuro-2A (Na++K+)-ATPase for ouabain, as measured by direct [3H]ouabain-binding studies and by inhibition studies of active K+ uptake. In the presence of 3.5 mM ATP and the absence of external K+ both techniques indicate an apparent dissociation constant for ouabain of 2·10?6 M. Neuro-2A cells contain (3.5±0.7)·105 ouabain-binding sites per cell, giving rise to an optimal pumping activity of (1.7±0.4)·10?20 mol K+/min per copy of (Na++K+)-ATPase at room temperature.  相似文献   

14.
The K+-dependent p-nitrophenylphosphatase activity catalyzed by purified (Na+ + K+)-ATPase from pig kidney shows substrate inhibition (Ki about 9.5 mM at 2.1 mM Mg2+). Potassium antagonizes and sodium favours this inhibition. In addition, K+ reduces the apparent affinity for substrate activation, whereas p-nitrophenyl phosphate reduces the apparent affinity for K+ activation. In the absence of Mg2+, p-nitrophenyl phosphate, as well as ATP, accelerates the release of Rb+ from the Rb+ occluded unphosphorylated enzyme. With no Mg2+ and with 0.5 mM KCl, trypsin inactivation of (Na+ + K+)-ATPase as a function of time follows a single exponential but is transformed into a double exponential when 1 mM ATP or 5 mM p-nitrophenyl phosphate are also present. In the presence of 3 mM MgCl2, 5 mM p-nitrophenyl phosphate and without KCl the trypsin inactivation pattern is that described for the E1 enzyme form; the addition of 10 mM KCl changes the pattern which, after about 6 min delay, follows a single exponential. These results suggest that (i) the shifting of the enzyme toward the E1 state is the basis for substrate inhibition of the p-nitrophenulphosphatase acitivy of (Na+ + K+)-ATPase, and (ii) the substrate site during phosphatase activity is distinct from the low-affinity ATP site.  相似文献   

15.
Increasing concentrations of dopamine fail to give a biphasic response to (Na+ + K+)-ATPase activity in various subcellular fractions of rat brain preincubated with monoamine oxidase inhibitors, viz. 1·10?4 M clorgyline and 1·10?4 M deprenyl. The product of the monoamine-oxidase-catalysed reaction with dopamine as substrate is 3-methoxy-4-hydroxyphenylacetaldehyde. An analogue of this product is 3-methoxy-4-hydroxybenzaldehyde. This analogue, when incubated with the subcellular fractions which had been preincubated with monoamine oxidase inhibitors and dopamine, gave a more pronounced biphasic response to (Na+ + K+)-ATPase activity than that observed in the fractions incubated with dopamine alone.  相似文献   

16.
The (Na+ + K+)-stimulated ATPase activity decreases with increasing pressure and a plot of the logarithm of the activity versus pressure shows a change in slope at a defined breakpoint pressure (Pb). The value of Pb increases linearly with increasing temperature. A dTdP value of 27.7 ± 0.4 (S.D.) K/1000 atm is obtained. This is in very good agreement with the pressure shift for the melting transitions in phospholipids and aliphatic chains. This strongly indicates that an aliphatic chain melting process is involved in the breakpoint in the Arrhenius plot and pressure dependence of (Na+ + K+)-ATPase. The p-nitrophenyl phosphatase activity of this enzyme also decreases with pressure. In this case the plot of the logarithm of the activity versus pressure is linear without a break-point. The temperature dependence for (Na+ + K+)-ATPase was also studied in the presence of fluidizing drugs: desipramine and benzylalcohol. The presence of these drugs had no effect on the inflection point in the Arrhenius plot.  相似文献   

17.
Beef brain microsomes bound approximately 180–220 pmoles of [3H]ouabain per mg of protein in the presence of either MgCl2 and inorganic phosphate or ATP, MgCl2 and NaCl. The ouabain-binding capacity and the ouabain-membrane complex were more stable than the (Na+,K+)-ATPase activity to treatment with agents known to affect the membrane integrity, such as, NaClO4, sodium dodecyl sulfate, p-chloromercuribenzoate, urea. ultrasonication, heating, pH and phospholinase C.The presence of binding sites that were normally inaccessible to ouabain in brain microsomes was demonstrated. These sites appeared after disruption of microsomes with 2 M NaClO4 as evidenced by increased binding of [3H]ouabain. These sites may be buried during the subcellular fractionation procedure and could be accessible in the intact cell.  相似文献   

18.
Chick brain microsomal ATPase was strongly inhibited by Cu2+. (Na+ + K+)-ATPase was more susceptible to low levels of Cu2+ than Mg2+-ATPase. The inhibition of (Na+ + K+)-ATPase could be partially protected from Cu2+ in the presence of ATP in the preincubation period. When Cu2+ (6 μM) was preincubated with the enzyme in the absence of ATP, only sulfhydryl-containing amino acids (d-penicillamine and l-cysteine) could reverse the inhibition. At lower concentrations of Cu2+ (< 1.4 μM), in the absence of ATP during preincubation, the inhibition could be completely reversed by the addition of 5 mM l-phenylalanine and l-histidine as well as d-penicillamine and l-cysteine.Kinetic analysis of action of Cu2+ (1.0 μM) on (Na+ + K+)-ATPase revealed that the inhibition was uncompetitive with respect to ATP. At a low concentration of K+ (5 mM), V with Na+ was markedly decreased in the presence of Cu2+ and Km was about twice that of the control. However, at high K+ concentration (20 mM), the Km for Na+ was not affected. At both low (25 mM) and high (100 mM) Na+, Cu2+ displayed non-competitive inhibition of the enzyme with respect to K+.On the basis of these data, we suggest that Cu2+ at higher concentrations (> 6 μM) inactivates the enzyme irreversibly, but that at lower concentrations (< 1.4 μM), Cu2+ interacts reversibly with the enzyme.  相似文献   

19.
A ouabain-insensitive Mg2+-ATPase present in a microsomal fraction prepared from the dog submandibular gland was studied. This Mg2+-ATPase was inhibited by increasing concentrations of NaCl, KCl, RbCl and CsCl. The addition of an osmotically equal amount of sucrose was without effect. This inhibition was obtained over a pH range of from 6.3 to 8.8. The Mg2+-ATPase present in microsomes treated with NaI showed a similar inhibition. These results indicate that it is advisable to keep the ionic strength constant in solutions used to obtain (Na++K+)-ATPase activities.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号