首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fatty acid composition of plasma membrane phospholipids of the murine T lymphocyte tumor EL4 were systematically modified in an attempt to understand the relationship between lipid bilayer composition and plasma membrane physical and biological properties. Two plasma membrane enzyme activities, adenylate cyclase and ouabain-sensitive (Na+ + K+)-ATPase, were measured in normal and fatty acid-substituted EL4 plasma membrane fractions. The fatty acid effect on enzyme activities was similar to previously reported effects of fatty acids on cytotoxic T cell function. The activity of both enzymes was inhibited by saturated fatty acids, while unsaturated fatty acids had a moderate enhancing effect on both enzyme activities. Using two different nitroxide derivatives of stearic acid, the order parameter and approximate rotational correlation times were calculated from ESR spectra of normal and fatty acid-modified plasma membranes. No significant difference was found in either parameter in these membranes. These results, in conjunction with earlier data from our laboratory and others, suggest that caution should be exercised in inferring changes in membrane ‘fluidity’ based on lipid modulation of biological membranes.  相似文献   

2.
Both Chinese hamster ovary cells in culture and E.coli cells change their lipid composition when grown in the presence of ethanol, pentobarbital, and chlorpromazine. The effects of ethanol and the cross-tolerant drug, pentobarbital, are similar. Both cause a shift from 18:0 fatty acid to 16:0 fatty acids in CHO cells and a decrease in the proportion of saturated fatty acids in E.coli. Chlorpromazine, a non-cross-tolerant drug, causes the opposite effect in E.coli, a decrease in the proportion of unsaturated fatty acids. Chlorpromazine has little effect on the fatty acid composition of CHO cells. These changes in lipid composition are proposed as an adaptive response and a part of the mechanism for the development of drug tolerance.  相似文献   

3.
Previous studies suggest that the reduced amino acid accumulation capacity of pantothenate-deficient L. plantarum is caused by a lipid deficiency which results in membrane hyperpermeability. The accumulation defect can be reversed by supplying such cells with saturated or unsaturated fatty acids which are incorporated into the major lipid constituents. Simultaneous measurement of 3H-amino acid uptake and 14C-fatty acid incorporation revealed that some unsaturated fatty acids promote an 80% reversal of the amino acid accumulation deficit when the cells have taken up only enough fatty acid to replace 12 to 20% of the lipid deficit. Apparently, only a small fraction of the absent lipid plays a decisive role in membrane permeability.  相似文献   

4.
Studies of the influence of fatty acids, which were the component of intestinal mucosal lipids, on the permeability of several drugs across bilayer lipid membranes generated from egg phosphatidylcholine and intestinal lipid have been pursued. The permeability coefficients of p-aminobenzoic acid, salicylic acid and p-aminosalicylic acid (anionic-charged drug) increased when fatty acids such as lauric, stearic, oleic, linoleic and linolenic acid were incorporated into the bilayer lipid membranes generated from phosphatidylcholine. In the presence of methyl linoleate and oleyl alcohol, no enhancing effect on p-aminobenzoic acid transfer was obtained. The effect of fatty acids was more marked at pH 6.5 than at pH 4.5. In contrast, upon the addition of fatty acids to intestinal lipid membranes which originally contained fatty acids, the permeability coefficient of p-aminobenzoic acid tended to decrease, though the permeability through intestinal lipid membranes was larger than that of phosphatidylcholine membranes. The permeability of p-aminobenzoic acid across bilayer lipid membranes from intestinal phospholipids was significantly decreased to about equal that of phosphatidylcholine membranes, and reverted to the value of intestinal lipid membranes when fatty acids were added to intestinal phospholipids. It seemed reasonable to assume that free fatty acids in the intestinal neutral lipid fraction could contribute to the increase in the permeability of p-aminobenzoic acid. On the basis of above results, possible mechanisms for good absorbability of weakly acidic drugs from the intestine are discussed.  相似文献   

5.
Phloretin and phloretin-like dipolar non-electrolytes strongly quench the fluorescence of several membrane-bound probes, including 1,6-diphenylhexa-1,3,5-triene and anthroyl derivatives of long-chain fatty acids. Fluorescence intensity measurements therefore provide a simple and sensitive method to study the equilibrium binding properties and permeability of phloretin-like molecules in biological and artificial membrane systems. The dissociation constants for the binding of phloretin and naringenin to phosphatidylcholine vesicle membranes are determined, assuming the Stern-Volmer relation, from the fluorescence intensity of intramembrane probes as a function of phloretin and naringenin concentrations. Results (phloretin, 9 ± 1 μM; naringenin, 21 ± 4 μM) agree with the dissociation constants obtained using absorption titration performed in the absence of fluorescent probes. Fluorescence nanosecond lifetime measurements show that the mechanism of quenching of diphenylhexatriene and 16-anthroylpalmitic acid by phloretin and naringenin is largely diffusional in nature. The transmembrane movement of phloretin through phosphatidylcholine vesicles was observed by the stopped-flow technique, in which phloretin is mixed rapidly with a vesicle solution containing a membrane-bound fluorescent probe. The time course obtained by fluorescence measurements was identical to that obtained in a parallel measurement of the time course of optical absorption of phloretin. Stopped-flow data for the permeability of phosphatidylcholine liposomes and red blood cell membranes are also presented. The use of a membrane-bound indicator greatly extends the range of concentrations and pH values as well as the types of systems which can be characterized by optical means.  相似文献   

6.
The present study evaluates the unsaturated fatty acid requirement in Escherichia coli. A derivative of a double mutant defective both in unsaturated fatty acid biosynthesis and in fatty acid degradation has been selected which grows equally well on anteisopentadecanoate (12-Me-14:0) or cis-Δ9-octadecenoate (cis-δ9-18:1). When this strain is grown for many generations on 12-Me-14:0, there is extensive incorporation of this analogue into the membrane phospholipid and essentially no detectable unsaturated fatty acids residues in any lipid-containing structures of the cell envelope. Secondly, as the maximal growth temperature of E. coli is approached, the minimum content of unsaturated fatty acid required by this strain for growth decreases to a few percent and is associated with the appearance of substantial amounts of 12:0 (8%) and 14:0 (50%) in the phospholipid. These experiments demonstrate that the cis unsaturated fatty acids of E. coli phospholipids can be replaced by residues which possess no special electronic configuration. Hence, the unsaturated fatty acids do not participate in specific interactions with other membrane components but serve a general role of controlling the packing of paraffin chains in the membrane bilayer.  相似文献   

7.
The fatty acid composition of the major lipids of the chloroplast membranes, the mono- and digalactosyl diglycerides, can be definably altered with various substituted pyridazinones. Galactolipid fatty acid composition of wheat (Triticum aestivum L.) can be altered so that there is a decrease in linolenic acid accompanied by an increase in linoleic acid without a shift in the relative proportion of saturated to unsaturated fatty acids; the fatty acid composition can be shifted toward a higher proportion of saturated fatty acids; or the fatty acid composition of the monogalactosyl diglycerides can be altered in preference to the digalactosyl diglycerides. Also, the light-mediated parallel accumulation of chlorophyll and linolenic acid can be separated with a substituted pyridazinone. The substituted pyridazinones may be useful tools in clarifying the role the galactolipids and their component fatty acids play in the structure and function of chloroplast membranes in higher plants.  相似文献   

8.
AimAlthough unsaturated fatty acids are assumed to be protective against inflammatory disorders that include a pathway involving Toll-like receptor 4 (TLR4) activation, they might actually be toxic because of their high susceptibility to lipid peroxidation. Here we studied the effects of peroxidized unsaturated fatty acids on the TLR4–nuclear factor (NF)-κB pathway in endothelial cells.Main methodsConfluent cultured endothelial cells from bovine aorta were incubated for 1 h with fatty acids integrated into phosphatidylcholine vesicles. Lipopolysaccharide (LPS) or phosphatidylcholine vesicles without fatty acids were also applied as a positive control or a control for fatty acid groups, respectively. Activation of TLR4 and downstream signaling was assessed by membrane fractionation and Western blotting or immunofluorescent staining.Key findingsIn the same way as LPS, application of sufficiently peroxidized unsaturated fatty acids like oleic acid or docosahexaenoic acid, acutely caused TLR4 translocation to caveolae/raft membranes, leading to activation of NF-κB signaling in endothelial cells. In contrast, saturated fatty acids did not show such effects. Applying well-peroxidized unsaturated fatty acids, but not saturated fatty acids, acutely activates the TLR4/NF-κB pathway.SignificancePeroxidation of unsaturated fatty acid is essential for the acute activation of TLR4 by the fatty acids that follow the same pathway as the activation by LPS. Unsaturated fatty acids have been assumed to be protective against inflammatory disorders, and drugs containing unsaturated fatty acids are now developed and provided. Our result suggests that, for inflammatory disorders involving TLR4 signaling, using unsaturated fatty acids as anti-inflammatory drugs may cause contrary effects.  相似文献   

9.
Growth temperature-induced compositional changes in membranes of Fusarium oxysporum provided a test system for study of the relationship between physical properties and composition. Growth at 15 °C was characterized by a decrease in phospholipid content relative to sterol content, a shift on phospholipid composition from phosphatidylcholine to phosphatidylethanolamine and a marked enhancement in the amount of polyunsaturated fatty acids in the phospholipid and triglyceride classes.Uptake of a spin labelled analog of stearic acid during growth and subsequent solution of the probe in the membranes allowed estimation of viscosity and molecular order of the membranes of live cells and of isolated membrane preparations. Less than 120 of the intracellular label was accessible to sodium ascorbate while none was released by sodium dodecyl sulfate. All of the label in live cells was reduced by in vivo respiratory activity above 20 °C but this process could be reversed or avoided by added ferricyanide. A cholestane spin probe was also incorporated into the membranes. The probes were not reduced as readily in isolated membranes and hence fluidity of the membranes could be assessed over a wide temperature range. At low temperatures (?10 °C) a nonlethal, liquid-solid phase transition was indicated in isolated membrane lipids while at higher (lethal) temperatures (40–45 °C), discontinuities appeared in Arrhenius plots of rotational correlation time. Activation energies for isotropic rotation of the stearate probes in the membranes changed markedly in this temperature range and this effect correlated closely with loss of viability of conidial cells. Correlation times for stearate probes showed little variation with growth temperature nor were any breaks in Arrhenius plots of this parameter detected in the range 0–35 °C in whole cells or isolated membranes. The data indicated control of membrane physical properties within close tolerances throughout the physiological temperature range regardless of growth temperature. It was concluded that this homeostatic phenomenon was due to the counteractive effects of sterol/phospholipid ratio, phospholipid composition and fatty acid polyunsaturation since the condensing and fluidizing components of the isolated total membranes vary in a reciprocal manner.  相似文献   

10.
Amino acid transport rates in an E. coli unsaturated fatty acid auxotroph were non-uniformly affected by enrichment of membrane lipids in various unsaturated fatty acids. Proline and threonine transport rates were depressed much more than lysine and asparagine rates by trans unsaturated acids. Myristoleate and linolenate enrichment also produced non-uniform but lesser rate reductions. Although changes in the relative numoer of effective transport catalysts could account for these findings, comparisons of proline and lysine transport rates over a broad temperature range indicated that non-uniform alterations in transport catalyst reaction rates account at least partly for the activity changes associated with membrane lipid alterations.  相似文献   

11.
Time dependence of fluorescence enhancement of probes after addition to lipid vesicles has been used to investigate the position of chromophores in the lipid bilayer. Incorporation studies of a series of n-(9-anthroyloxy) fatty acids (n = 2, 2, 12 and 16) and 1,6-diphenylhexatriene in dipalmitoyl phosphatidylcholine vesicles are described. The activation energies for incorporation of these several lipid-mimic type fluorescent probes have been measured. Results show that the activation energy is a function of the distance of the anthracene moiety (chromophore) from the polar end of the probe and the length of the acyl portion of the probe. An average insertion energy of 0.6 kcal/carbon is seen for these fatty acid probes. The activation energy of 1,6-diphenylhexatriene, a factor of 2 greater than that of 16-(9-anthroyloxy)palmitic acid, is consistent with locating 1,6-diphenyl-hexatriene in the middle of the bilayer.  相似文献   

12.
The fatty acid composition of plasma membrane phospholipids of the murine T lymphocyte tumor EL4 were systematically modified in an attempt to understand the relationship between lipid bilayer composition and plasma membrane physical and biological properties. Two plasma membrane enzyme activities, adenylate cyclase and ouabain-sensitive (Na+ + K+)-ATPase, were measured in normal and fatty acid-substituted EL4 plasma membrane fractions. The fatty acid effect on enzyme activities was similar to previously reported effects of fatty acids on cytotoxic T cell function. The activity of both enzymes was inhibited by saturated fatty acids, while unsaturated fatty acids had a moderate enhancing effect on both enzyme activities. Using two different nitroxide derivatives of stearic acid, the order parameter and approximate rotational correlation times were calculated from ESR spectra of normal and fatty acid-modified plasma membranes. No significant differences was found in either parameter in these membranes. These results, in conjunction with earlier data from our laboratory and others, suggest that caution should be exercised in inferring changes in membrane 'fluidity' based on lipid modulation of biological membranes.  相似文献   

13.
Excised Trembler mouse sciatic nerves synthesize, from acetate, only minute amounts of C20 and C22 saturated fatty acids (about 110 of the normal value) and almost no lignoceric acid. The elongation activity is localized in the microsomal fraction. The microsomes from Trembler sciatic nerves can elongate stearoyl-CoA into C20, C22 and C24 saturated fatty acids. The elongation rate is only 13 of the normal value, whereas the stearoyl-CoA hydrolysis is 3 times higher than in the control; the malonyl-CoA concentration remains at the same level in microsomes from normal and trembler sciatic nerves. When ATP-Mg2+ is added to the Trembler microsomes, the stearoyl-CoA hydrolysis is reduced, the stearoyl-CoA concentration remains nearly normal and the elongation reaches an almost normal level.  相似文献   

14.
The soluble, cytochrome P-450 dependent fatty acid (ω-2) hydroxylase from Bacillus megaterium catalyzes the hydroxylation of both n-saturated and n-monohydroxyfatty acids. Continued hydroxylation of hydroxyfatty acids is dependent upon the position of the hydroxyl group since the ω-1, ω-2 and ω-3 monohydroxy products of the unsubstituted, saturated fatty acid series are not substrates. Utilizing a series of monohydroxystearate positional isomers this study demonstrates that there exists an optimal hydroxy position on the substrate's carbon chain. Competitive inhibition of palmitate hydroxylation by monohydroxystearates indicates that 6-hydroxystearate is a better substrate than palmitate, one of the more active substrates for hydroxylation. This suggests that substrate-binding at the active site is strongly influenced by a “non-hydrophobic” binding region on the enzyme.  相似文献   

15.
A soluble, cytochrome P-450-containing system from Bacillusmegaterium which catalyzes the monohydroxylation of long-chain saturated fatty acids has now been found to convert palmitoleic acid to 9,10-epoxypalmitate and 9,10-dihydroxypalmitate in addition to the expected isomeric mixture of monohydroxypalmitoleic acids.  相似文献   

16.
Conjugation in Tetrahymena pyriformis is induced by the mixing of two starved complementary mating types. Addition of the antibiotic cerulenin, a specific inhibitor of de novo lipid synthesis, upon mixing of the mating types inhibited the conjugation process. The inhibition of conjugation was found to be reversible upon washing the cells.Cerulenin inhibited [14C]acetate incorporation into the lipid fraction of the cells, while it did not affect the incorporation of [3H]leucine into proteins. Analysis of the fatty acid composition of the whole cells revealed that during conjugation the ratio of saturated to unsaturated fatty acids is markedly changed. While the ratio of saturated:unsaturated fatty acids is 0.30 in unconjugated cells, it reached a value of 0.45 in conjugated cells.  相似文献   

17.
The present study clearly shows that, by feeding rats a semi-synthetic diet of known composition enriched with saturated fatty acids, the epididymal fat pad responsiveness to norepinephrine invitro can be abolished relative to fat pads from animals fed a similar diet but enriched with polyunsaturated fatty acids. Addition of varying concentrations of norepinephrine to the incubation medium produced a clear dose-response relationship in fat pads from animals fed diet enriched with polyunsaturated fatty acids while no effect of norepinephrine was apparent at any dose level in fat tissue from animals fed saturated fatty acids. These changes in lipolytic responsiveness were concurrent with alterations in fatty acid compositions of adipose tissue phospholipids and triglycerides as well as in total tissue contents of phospholipids and cholesterol.  相似文献   

18.
We present a method by which it is possible to describe the binding of fatty acids to phospholipid bilayers. Binding constants for oleic acid and a number of fatty acids used as spectroscopic probes are deduced from electrophoresis measurements. There is a large shift in pK value for the fatty acids on binding to the phospholipid bilayers, consistent with stronger binding of the uncharged form of the fatty acid. For dansylundecanoic acid, fluorescence titrations are consistent with the binding constants derived from the electrophoresis experiments. For 12-(9-anthroyloxy)stearic acid, fluorescence and electrophoresis data are inconsistent, and we attribute this to quenching of fluorescence at high molar ratios of 12-anthroylstearic acid to phospholipid in the bilayer.  相似文献   

19.
Constant levels of cellular unsaturated fatty acids were obtained by growing a fatty acid desaturase mutant of Saccharomyces cerevisiae in glucose limited chemostat cultures supplemented with various concentrations of Tween 80. An increase in the frequency of cytoplasmic respiratory incompetent mutants was observed in cultures growing at low cellular levels of unsaturated fatty acids. This effect has been shown to result from an increase in the rate of mutation as the cellular unsaturated fatty acid level is decreased. The majority of induced petite mutants are ?° (contain no mitochondrial DNA).  相似文献   

20.
Insulin increased the lipid order of rat and mouse liver plasma membrane domains sampled by the hydrophobic fluorescent probe 1,6-diphenyl-1,3,5-hexatriene in a concentration-dependent saturable manner. The ordering is half maximal at 5.1 · 10?11M and fully saturated at 1.7 · 10?10M insulin. Membranes prepared from obese hyperglycemic (ob / ob) mice demonstrated a right-shift in the dose-dependent ordering induced by insulin, such that ordering was half maximal at 1.2 · 10?10M and fully saturated at 2.0 · 10?10M. Insulin also increased the order of rat liver plasma membranes labeled with the cis- and trans-parinaric acid methyl esters. The ordering caused by insulin as detected with cis methyl parinarate was complete within approx. 15 min. after hormone addition at 37°C, and the ordering was approximately double that observed with the trans isomer. Additional ESR experiments demonstrated that the addition of insulin increased the outer hyperfine splittings of spectra recorded from membranes labeled with the steroid-like spin labels, nitroxide cholestane and nitroxide androstane, but not the fatty acid spin probe, 5-nitroxide stearate. Studies utilizing model membrane systems strongly suggest that the 5-nitroxide stearate samples a cholesterol-poor domain of the membrane, while the steroid-like probes preferentially sample cholesterol-rich regions of the membrane. Finally, insulin-induced membrane ordering was dose-dependently inhibited by cytochalasin B in the range 1–50 μM. From these results, we conclude that (1) the ordering effect of insulin addition to isolated liver plasma membrane fractions occurs within the physiological range of hormone concentration, and the dose-response is right-shifted in membranes from ‘insulin resistant’ animals; (2) the relative responses of the fluorescent and spin probes suggest that the effects of insulin are confined to specific domains within the membrane matrix; and (3) the direct effects of insulin on the membranes may involve protein components having cytochalasin B binding sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号