首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spectacular recent progress in Arabidopsis thaliana molecular genetics furnishes outstanding tools for studying the formation and function of all metabolites in this cruciferous species. One of the major groups of secondary metabolites in A. thaliana is the glucosinolates. These hydrophilic, sulfur-rich glycosides appear to serve as defenses against some generalist herbivores and pathogens, and as feeding and oviposition stimulants to specialist herbivores. To help study their biosynthesis and role in plant-insect interactions, we wanted to determine the complete glucosinolate content of A. thaliana. In previous studies, 24 glucosinolates had been identified from ecotype Columbia. We reinvestigated Columbia as well as additional ecotypes and mutant lines, and identified 12 further glucosinolates, including five novel compounds. Structures were elucidated by MS and NMR spectroscopy of their desulfated derivatives, and by enzymatic cleavage of the attached ester moieties. Four of the novel glucosinolates are benzoate esters isolated from the seeds. In all but one of these compounds, esterification is on the glucose moiety rather than the side chain, a very unusual feature for glucosinolates. Among additional glucosinolates identified were the first non-chain elongated, methionine-derived glucosinolate from A. thaliana and the first compounds that appear to be derived from leucine.  相似文献   

2.
T Miura  H Takeuchi  I Harada 《Biochemistry》1991,30(24):6074-6080
The state of H-bonding and the hydrophobic interaction of six tryptophan side chains in lysozyme bound to substrate-analogous inhibitors were investigated by combining H----D exchange labeling and Raman difference spectroscopy. The frequency of the W17 band due to Trp-63 shifts downward upon inhibitor binding, indicating a specific and strong H-bond formation between the N1 site of the side chain and the inhibitor molecule. On the other hand, the H-bonding state of Trp-62 in the complex is as weak as that in inhibitor-free lysozyme, suggesting no contribution of this residue to the inhibitor binding. Intensity increases of W17 and W18 bands observed upon inhibitor binding are, respectively, ascribed to an increase at Trp-28 and a decrease at Trp-111 in hydrophobic interactions with the environment. The environmental changes are explained consistently by a movement of the Met-105 side chain sandwiched by two indole rings of Trp-28 and 111 in the direction from Trp-111 to Trp-28. The sandwich structure in a core domain, hydrophobic box, and its rearrangement are considered to play an important role in the enzymatic function of lysozyme.  相似文献   

3.
Arabidopsis and other Brassicaceae produce an enormous diversity of aliphatic glucosinolates, a group of methionine (Met)-derived plant secondary compounds containing a beta-thio-glucose moiety, a sulfonated oxime, and a variable side chain. We fine-scale mapped GSL-ELONG, a locus controlling variation in the side-chain length of aliphatic glucosinolates. Within this locus, a polymorphic gene was identified that determines whether Met is extended predominantly by either one or by two methylene groups to produce aliphatic glucosinolates with either three- or four-carbon side chains. Two allelic mutants deficient in four-carbon side-chain glucosinolates were shown to contain independent missense mutations within this gene. In cell-free enzyme assays, a heterologously expressed cDNA from this locus was capable of condensing 2-oxo-4-methylthiobutanoic acid with acetyl-coenzyme A, the initial reaction in Met chain elongation. The gene methylthioalkylmalate synthase1 (MAM1) is a member of a gene family sharing approximately 60% amino acid sequence similarity with 2-isopropylmalate synthase, an enzyme of leucine biosynthesis that condenses 2-oxo-3-methylbutanoate with acetyl-coenzyme A.  相似文献   

4.
Basic amino acids play a key role in the binding of membrane associated proteins to negatively charged membranes. However, side chains of basic amino acids like lysine do not only provide a positive charge, but also a flexible hydrocarbon spacer that enables hydrophobic interactions. We studied the influence of hydrophobic contributions to the binding by varying the side chain length of pentapeptides with ammonium groups starting with lysine to lysine analogs with shorter side chains, namely ornithine (Orn), α,γ-diaminobutyric acid (Dab) and α, β-diaminopropionic acid (Dap). The binding to negatively charged phosphatidylglycerol (PG) membranes was investigated by calorimetry, FT-infrared spectroscopy (FT-IR) and monolayer techniques. The binding was influenced by counteracting and sometimes compensating contributions. The influence of the bound peptides on the lipid phase behavior depends on the length of the peptide side chains. Isothermal titration calorimetry (ITC) experiments showed exothermic and endothermic effects compensating to a different extent as a function of side chain length. The increase in lipid phase transition temperature was more significant for peptides with shorter side chains. FTIR-spectroscopy revealed changes in hydration of the lipid bilayer interface after peptide binding. Using monolayer techniques, the contributions of electrostatic and hydrophobic effects could clearly be observed. Peptides with short side chains induced a pronounced decrease in surface pressure of PG monolayers whereas peptides with additional hydrophobic interactions decreased the surface pressure much less or even lead to an increase, indicating insertion of the hydrophobic part of the side chain into the lipid monolayer.  相似文献   

5.
The sweetness-suppressing polypeptide gurmarin isolated from Gymnema sylvestre consists of 35 amino acid residues and contains three intramolecular disulfide bonds. Nuclear magnetic resonance analysis showed that the hydrophobic side chains of Tyr-13, Tyr-14, Trp-28, and Trp-29 in gurmarin are oriented outwardly. Together with the hydrophobic side chains of Leu-9, Ile-11, and Pro-12, they form a hydrophobic cluster, and therefore these hydrophobic groups are assumed to act as the site for interaction with the receptor protein. To examine the roles of these hydrophobic amino acids, they were replaced by Gly. The resulting [Gly13,14,28,29]gurmarin and [Gly9,11,13,14,28,29]gurmarin did not suppress the responses to sucrose, glucose, fructose, or Gly. This result strongly suggests that these hydrophobic amino acids are involved in the interaction with the receptor protein. © 1998 John Wiley & Sons, Inc. Biopoly 45: 231–238, 1998  相似文献   

6.
The genetic variation that underlies the glucosinolate phenotype of Arabidopsis lyrata ssp. petraea was investigated between and within populations. A candidate glucosinolate biosynthetic locus (MAM, containing methylthioalkylmalate synthase genes) was mapped in A. lyrata to a location on linkage group 6 corresponding to the homologous location for MAM in A. thaliana. In A. thaliana MAM is responsible for side chain elongation in aliphatic glucosinolates, and the MAM phenotype can be characterized by the ratios of long- to short-chain glucosinolates. A quantitative trait loci (QTL) analysis of glucosinolate ratios in an A. lyrata interpopulation cross found one QTL at MAM. Additional QTL were identified for total indolic glucosinolates and for the ratio of aliphatic to indolic glucosinolates. MAM was then used as the candidate gene for a within-population cosegregation analysis in a natural A. lyrata population from Germany. Extensive variation in microsatellite markers at MAM was found and this variation cosegregated with the same glucosinolate ratios as in the QTL study. The combined results indicate that both between- and within-population genetic variation in the MAM region determines phenotypic variation in glucosinolate side chains in A. lyrata.  相似文献   

7.
We explored the unique substrate specificity of the primary S, subsite of human urinary kallikrein (hK1), which accepts both Phe or Arg synthesizing and assaying peptides derived from Phenylacetyl-Phe-Ser-Arg-EDDnp, a previously described inhibitor with analgesic and anti-inflammatory activities [Emim et al., Br. J. Pharmacol. 130 (2000), 1099-1107]. Phe was substituted by amino acids containing larger aliphatic or aromatic side chains as well as by non-natural basic amino acids, which were designed to combine a large hydrophobic and/or aromatic group with a positively-charged group at their side chains. In general, all peptides with basic amino acids represented better inhibitors than those with hydrophobic amino acids. Furthermore, the S1 subsite specificity proved to be much more selective than the mere distinction between Phe and Arg, for minor differences in the side chains of the non-natural amino acids resulted in major differences in the Ki values. Finally, we present a series of peptides that were assayed as competitive inhibitors for human tissue kallikrein that may lead to the development of novel peptides, which are both more potent and selective.  相似文献   

8.
A novel pseudo cyclic penta‐β‐peptide composed of a β‐naphthylalanine, two β‐alanines, and a sequence of ethylenediamine‐succinic acid (CP5ES) is synthesized and investigated on peptide nanotube (PNT) formation. When the PNT is formed with the maximum number of intermolecular hydrogen bonds between the cyclic peptides, the sequence enables the alignment of the side chains, naphthyl groups, on one side of the PNT. Microscopic and spectroscopic observations of CP5ES crystals reveal that CP5ES forms rod‐ or needle‐shaped molecular assemblies showing exciton coupling of the Cotton effect and predominant monomer emission, which are different from a reference cyclic tri‐β‐peptide composed of a β‐naphthylalanine and two β‐alanines. Insertion of a sequence of ethylenediamine‐succinic acid into β‐amino acids in the cyclic skeleton is therefore suggested to be effective to make the side chains aligning on one side of the PNT. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
Anacardic acid derivatives exhibit a broad range of biological activities. In this report, an efficient method for the synthesis of anacardic acid derivatives was explored, and a small set of salicylic acid variants synthesised retaining a constant hydrophobic element (a naphthyl tail). The naphthyl side chain was introduced via Wittig reaction and the aldehyde installed using directed ortho-metalation reaction of the substituted o-anisic acids. The failure of ortho-metalation using unprotected carboxylic acid group compelled us to use directed ortho-metalation in which a tertiary amide was used as a strong ortho-directing group. In the initial route, tertiary amide cleavage during final step was challenging, but cleaving the tertiary amide before Wittig reaction was beneficial. The Wittig reaction with protected carboxylic group (methyl ester) resulted in side-products whereas using sodium salt resulted in higher yields. The novel compounds were screened for antibacterial activity and cytotoxicity. Although substitution on the salicylic head group enhanced antibacterial activities they also enhanced cytotoxicity.  相似文献   

10.
N-Carboxy anhydrides of amino acid derivatives with hydrophobic side chains, N-carboxy anhydrides of gamma-dodecyl L-glutamate and gamma-benzyl D-glutamate, were polymerized in bilayer membrane of large unilamellar liposomes prepared by the injection method. Infrared spectra indicated that polypeptides isolated from the liposomes existed in two different conformational forms, namely the alpha-helix and the beta form. Studying osmotic shrinkage of liposomes, it was found that liposomal membrane was highly permeable to glucose in the presence of polypeptides in the membrane.  相似文献   

11.
Alzheimer's amyloid beta-protein precursor contains a Kunitz protease inhibitor domain (APPI) potentially involved in proteolytic events leading to cerebral amyloid deposition. To facilitate the identification of the physiological target of the inhibitor, the crystal structure of APPI has been determined and refined to 1.5-A resolution. Sequences in the inhibitor-protease interface of the correct protease target will reflect the molecular details of the APPI structure. While the overall tertiary fold of APPI is very similar to that of the Kunitz inhibitor BPTI, a significant rearrangement occurs in the backbone conformation of one of the two protease binding loops. A number of Kunitz inhibitors have similar loop sequences, indicating the structural alteration is conserved and potentially an important determinant of inhibitor specificity. In a separate region of the protease binding loops, APPI side chains Met-17 and Phe-34 create an exposed hydrophobic surface in place of Arg-17 and Val-34 in BPTI. The restriction this change places on protease target sequences is seen when the structure of APPI is superimposed on BPTI complexed to serine proteases, where the hydrophobic surface of APPI faces a complementary group of nonpolar side chains on kallikrein A versus polar side chains on trypsin.  相似文献   

12.
Twelve naturally occurring glucosinolates displaying alkenyl, hydroxylated, methylsulphinyl, aromatic and indole side chains were investigated by both negative and positive ion electrospray ionisation-tandem mass spectrometry (ESI-MS/MS). In order to resolve the MS/MS spectra obtained from the anion and cation molecular ions of glucosinolates, the different fragments were investigated by MSn experiments using an ion trap spectrometer. The MS3 spectra obtained permitted possible fragmentation schemes to be proposed. These were supported by accurate mass measurements of some characteristic diagnostic ions with the help of a quadrupole time-of-flight instrument. The negative ion ESI-MS/MS behaviour of the different glucosinolates investigated in this study confirmed previously described patterns and revealed new interesting structural informative fragments. Some are common to all the glucosinolates and others are highly specific for a type of variable side chain. The positive ion ESI-MS/MS fragments obtained from the [MNa+Na]+ or [MK+K]+ molecular ions did not provide complementary specific diagnostic ions. Nevertheless, when compared with the negative ion mode, the daughter ions appeared more homogenous and with a better relative abundance for all of the 12 compounds studied. Moreover, the positive ion mode appeared to be more efficient than the negative mode for the study of methoxylated glucosinolates and should be useful to detect the glucosinolates present as organic salts in crude plant extracts.  相似文献   

13.
X-ray crystal structure analysis of FR901277, a novel inhibitor of human leukocyte elastase, was performed and revealed that the lipophilic side chains are located towards the outside of the molecule. Binding simulation using computational methods showed that these lipophilic moieties could bind to the hydrophobic binding pockets of HLE.  相似文献   

14.
The ever increasing problem of antibiotic resistance necessitates a search for new drug molecules that would target novel proteins in the prokaryotic system. FtsZ is one such target protein involved in the bacterial cell division machinery. In this study, we have shown that berberine, a natural plant alkaloid, targets Escherichia coli FtsZ, inhibits the assembly kinetics of the Z-ring, and perturbs cytokinesis. It also destabilizes FtsZ protofilaments and inhibits the FtsZ GTPase activity. Saturation transfer difference NMR spectroscopy of the FtsZ-berberine complex revealed that the dimethoxy groups, isoquinoline nucleus, and benzodioxolo ring of berberine are intimately involved in the interaction with FtsZ. Berberine perturbs the Z-ring morphology by disturbing its typical midcell localization and reduces the frequency of Z-rings per unit cell length to half. Berberine binds FtsZ with high affinity ( K D approximately 0.023 microM) and displaces bis-ANS, suggesting that it may bind FtsZ in a hydrophobic pocket. Isothermal titration calorimetry suggests that the FtsZ-berberine interaction occurs spontaneously and is enthalpy/entropy-driven. In silico molecular modeling suggests that the rearrangement of the side chains of the hydrophobic residues in the GTP binding pocket may facilitate the binding of the berberine to FtsZ and lead to inhibition of the association between FtsZ monomers. Together, these results clearly indicate the inhibitory role of berberine on the assembly function of FtsZ, establishing it as a novel FtsZ inhibitor that halts the first stage in bacterial cell division.  相似文献   

15.
Structure-activity relationship (SAR) studies of novel 5-alkyl and 5-aryl/heteroaryl substituted 1,2,4-triazoles are described. The in vitro activity is compared to the pyrazole class of compounds with analogous side chains to delineate the contribution of the triazole ring nitrogen in binding to the active site. Both series are quite potent and selective in the canine whole blood (CWB) COX-2 assay, suggesting the increased binding contribution of the hydrophobic side chains.  相似文献   

16.
Model glycopeptides of the general formula Boc-Ala-Thr(G-D)-A(1)-A(2)-Leu-Leu-Lys(N)-Ala-OMe, where D = dansyl (dimethyl aminonaphthalenesulphonyl), G = glucosyl and N = naphthyl, while A(1)-A(2) = Ala-Leu or Aib-Aib, and denoted as D-G-Ala-N and D-G-Aib-N, respectively, were used to investigate glycoprotein-membrane interactions. They carry two fluorophores (D and N), covalently linked to the glucose ring and the lysine side chain, respectively, while the threonine side chain is O-glycosylated. CD spectra in different solvent media suggest that both glycopeptides attain an ordered structure, possibly a helix-like conformation. By combining FRET (fluorescence resonance energy transfer) experiments with molecular mechanics data, the most probable structures of both glycopeptides were built up, starting from both a right-handed (rh) alpha- and 3(10)-helix. They were found to populate an alpha-helical conformation, a result further confirmed by the very good agreement between theoretical and experimental quenching efficiency only observed when the backbone chain was in alpha-helix. The association of D-G-Ala-N with model membranes (liposomes) was studied by CD, fluorescence decay, fluorescence anisotropy, and collisional quenching experiments. The binding does not alter the structural features of the peptide because the CD spectral patterns are unaffected by the association. The peptide orientation inside the phospholipidic bilayer is guided by the polar glucose molecule lying in the water phase. The insertion of the hydrophobic backbone chain into the membrane, seeing the probes only partially accessible from the external solution, is characterized by a significant degree of heterogeneity, an increase in vesicles size, and a relevant stabilizing effect on the membrane itself against rupture by methanol.  相似文献   

17.
beta-1,3-D-glucans have been isolated from fungi as right-handed 6(1) triple helices. They are categorized by the side chains bound to the main triple helix through beta-(1-->6)-D-glycosyl linkage. Indeed, since a glucose-based side chain is water soluble, the presence and frequency of glucose-based side chains give rise to significant variation in the physical properties of the glucan family. Curdlan has no side chains and self-assembles to form an water-insoluble triple helical structure, while schizophyllan, which has a 1,6-D-glucose side chain on every third glucose unit along the main chain, is completely water soluble. A thermal fluctuation in the optical rotatory dispersion is observed for the side chain, indicating probable co-operative interaction between the side chains and water molecules. This paper documents molecular dynamics simulations in aqueous solution for three models of the beta-1,3-D-glucan series: curdlan (no side chain), schizophyllan (a beta-(1-->6)-D-glycosyl side-chain at every third position), and a hypothetical triple helix with a side chain at every sixth main-chain glucose unit. A decrease was observed in the helical pitch as the population of the side chain increased. Two types of hydrogen bonding via water molecules, the side chain/main chain and the side chain/side chain hydrogen bonding, play an important role in determination of the triple helix conformation. The formation of a one-dimensional cavity of diameter about 3.5 A was observed in the schizophyllan triple helix, while curdlan showed no such cavity. The side chain/side chain hydrogen bonding in schizophyllan and the hypothetical beta-1,3-D-glucan triple helix could cause the tilt of the main-chain glucose residues to the helix.  相似文献   

18.
Peptide binding to MHC class II (MHCII) molecules is stabilized by hydrophobic anchoring and hydrogen bond formation. We view peptide binding as a process in which the peptide folds into the binding groove and to some extent the groove folds around the peptide. Our previous observation of cooperativity when analyzing binding properties of peptides modified at side chains with medium to high solvent accessibility is compatible with such a view. However, a large component of peptide binding is mediated by residues with strong hydrophobic interactions that bind to their respective pockets. If these reflect initial nucleation events they may be upstream of the folding process and not show cooperativity. To test whether the folding hypothesis extends to these anchor interactions, we measured dissociation and affinity to HLA-DR1 of an influenza hemagglutinin-derived peptide with multiple substitutions at major anchor residues. Our results show both negative and positive cooperative effects between hydrophobic pocket interactions. Cooperativity was also observed between hydrophobic pockets and positions with intermediate solvent accessibility, indicating that hydrophobic interactions participate in the overall folding process. These findings point out that predicting the binding potential of epitopes cannot assume additive and independent contributions of the interactions between major MHCII pockets and corresponding peptide side chains.  相似文献   

19.
Cultured arterial smooth muscle cells synthesize a cell-associated heparan sulfate proteoglycan which consists of a 92 kDa core protein with 3 to 4 heparan sulfate side chains covalently attached. Biosynthesis of the cell-associated heparan sulfate proteoglycan was compared in proliferating and in non-dividing vascular smooth muscle cells which are preincubated in the presence of [35]sulfate or a combination of [35S]methionine and [3H]glucosamine. The Mr of the core protein was identical in either growth state, but changes in the structure of the heparan sulfate side chains were observed. Non-dividing (postconfluent) arterial smooth muscle cells form longer heparan sulfate chains with a higher proportion of hydrophobic (N-acetyl) groups than proliferating (preconfluent) cells as judged from gel filtration experiments, hydrophobic interaction chromatography and heparitinase degradation. An enzyme preparation from proliferating cells catalyzes deacetylation and N-sulfation of heparan sulfate at a 5-fold higher activity than from non-dividing cells. Cell density-dependent structural differences of heparan sulfate are related to the finding that heparan sulfate isolated from non-dividing cells has a 10-fold higher antiproliferative potency than heparan sulfate from proliferating (preconfluent) cells.  相似文献   

20.
Hydrophobic effects on binding of ribonuclease T1 to guanine bases of several ribonucleotides have been proved by mutating a hydrophobic residue at the recognition site and by measuring the effect on binding. Mutation of a hydrophobic surface residue to a more hydrophobic residue (Tyr45----Trp) enhances the binding to ribonucleotides, including mononucleotide inhibitor and product, and a synthetic substrate-analog trinucleotide as well as the binding to dinucleotide substrates and RNA. Enhancements on binding to non-substrate ribonucleotides by the mutation have been observed with free energy changes ranging from -2.2 to -3.9 kJ/mol. These changes are in good agreement with that of substrate binding, -2.3 kJ/mol, which is calculated from Michaelis constants obtained from kinetic studies. It is shown, by comparing the observed and calculated changes in binding free energy with differences in the observed transfer free energy changes of the amino acid side chains from organic solvents to water, that the enhancement observed on guanine binding comes from the difference in the hydrophobic effects of the side chains of tyrosine and tryptophan. Furthermore, a linear relationship between nucleolytic activities and hydrophobicity of the residues (Ala, Phe, Tyr, Trp) at position 45 is observed. The mutation could not change substantially the base specificity of RNase T1, which exhibits a prime requirement for guanine bases of substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号