首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Surfactant protein A (SP-A) functions in homeostasis of lung surfactant and in innate immunity. SP-A is secreted by the fetal lung into amniotic fluid. Additionally it has been detected in gestational tissues. We propose that SP-A influences intrauterine inflammation that is commonly associated with preterm birth, the main underlying cause of neonatal mortality and morbidity. We used our previously established mouse model of LPS-induced preterm birth of live-born pups to investigate the role of SP-A in preterm birth. Mice overexpressing rat SP-A (rSP-A) under the control of human SP-C promoter were used. Cytokine concentrations in maternal and fetal serum and in amniotic fluid and mRNA levels of several inflammatory mediators in lungs and in intrauterine tissues were quantified using Cytometric Bead Array and RNase Protection Assay, respectively. Higher levels of SP-A mRNA were observed in fetal lungs and intrauterine tissues of rSP-A mice compared with wild-type. Using Western blot we detected excess of SP-A protein in fetal lung and in amniotic fluid of rSP-A animals. Despite some differences in the basal levels of TNF-α and IL-10 between rSP-A and wild-type animals, there were no differences in the duration of pregnancy. However, the levels of TNF-α, IL-10 and some other inflammatory mediators in intrauterine tissues and in amniotic fluid differed significantly between the mouse lines after maternal LPS given at 17 dpc. We conclude that SP-A modulates the levels of intrauterine inflammatory mediators involved in preterm birth and may contribute to inflammatory processes related to spontaneous preterm labor.  相似文献   

2.

Background

Early events leading to intrauterine infection and fetal lung injury remain poorly defined, but may hold the key to preventing neonatal and adult chronic lung disease. Our objective was to establish a nonhuman primate model of an early stage of chorioamnionitis in order to determine the time course and mechanisms of fetal lung injury in utero.

Methodology/Principal Findings

Ten chronically catheterized pregnant monkeys (Macaca nemestrina) at 118–125 days gestation (term = 172 days) received one of two treatments: 1) choriodecidual and intra-amniotic saline (n = 5), or 2) choriodecidual inoculation of Group B Streptococcus (GBS) 1×106 colony forming units (n = 5). Cesarean section was performed regardless of labor 4 days after GBS or 7 days after saline infusion to collect fetal and placental tissues. Only two GBS animals developed early labor with no cervical change in the remaining animals. Despite uterine quiescence in most cases, blinded review found histopathological evidence of fetal lung injury in four GBS animals characterized by intra-alveolar neutrophils and interstitial thickening, which was absent in controls. Significant elevations of cytokines in amniotic fluid (TNF-α, IL-8, IL-1β, IL-6) and fetal plasma (IL-8) were detected in GBS animals and correlated with lung injury (p<0.05). Lung injury was not directly caused by GBS, because GBS was undetectable in amniotic fluid (∼10 samples tested/animal), maternal and fetal blood by culture and polymerase chain reaction. In only two cases was GBS cultured from the inoculation site in low numbers. Chorioamnionitis occurred in two GBS animals with lung injury, but two others with lung injury had normal placental histology.

Conclusions/Significance

A transient choriodecidual infection can induce cytokine production, which is associated with fetal lung injury without overt infection of amniotic fluid, chorioamnionitis or preterm labor. Fetal lung injury may, thus, occur silently without symptoms and before the onset of the fetal systemic inflammatory response syndrome.  相似文献   

3.
Human intestinal macrophages contribute to tissue homeostasis in noninflamed mucosa through profound down-regulation of pro-inflammatory cytokine release. Here, we show that this down-regulation extends to Toll-like receptor (TLR)-induced cytokine release, as intestinal macrophages expressed TLR3–TLR9 but did not release cytokines in response to TLR-specific ligands. Likely contributing to this unique functional profile, intestinal macrophages expressed markedly down-regulated adapter proteins MyD88 and Toll interleukin receptor 1 domain-containing adapter-inducing interferon β, which together mediate all TLR MyD88-dependent and -independent NF-κB signaling, did not phosphorylate NF-κB p65 or Smad-induced IκBα, and did not translocate NF-κB into the nucleus. Importantly, transforming growth factor-β released from intestinal extracellular matrix (stroma) induced identical down-regulation in the NF-κB signaling and function of blood monocytes, the exclusive source of intestinal macrophages. Our findings implicate stromal transforming growth factor-β-induced dysregulation of NF-κB proteins and Smad signaling in the differentiation of pro-inflammatory blood monocytes into noninflammatory intestinal macrophages.  相似文献   

4.
The factors responsible for the onset of labor in women are not well understood but it is clear that parturition is associated with increased production of prostanoids and release of arachidonic acid by intrauterine tissues. Pulmonary surfactant is secreted from the fetal lung into the amniotic fluid where its concentration increases toward term. In this paper we have shown that the ability of fetal surfactant to stimulate prostaglandin production by amnion cells is greatly enhanced by pre-incubating surfactant with amniotic fluid. This is due to the release of fatty acids, including arachidonate, from the lipids of fetal surfactant by the sequential action of phospholipase C and diglyceride lipase. Thus, in addition to providing the amnion with a source of arachidonate derived from the intracellular transfer of arachidonate from surfactant phosphatidylcholine to phosphatidylethanolamine and phosphatidylinositol in amnion cells, fetal surfactant also contributes to the pool of free arachidonate in amniotic fluid.  相似文献   

5.
Proinflammatory prostaglandins and cytokines are involved in the initiation of human labor and delivery. Although cyclopentenone prostaglandins regulate the formation of these prolabor mediators via nuclear factor-κB (NF-κB) and/or peroxisome proliferator-activated receptor-γ, recent evidence suggests that they do not exist in vivo. Cyclopentenone isoprostanes (IsoPs), which are highly reactive structural isomers of bioactive cyclopentenone prostaglandins, do exist physiologically and have been shown to inhibit the inflammatory response in macrophages. Therefore the aim of this study was to determine the effect of the synthetic cyclopentenone IosP 15-A2-IsoP on the expression of prolabor mediators in human gestational tissues. Human placenta and gestational membranes (n = 5) were incubated in the absence or presence of 12.5, 25, and 50 μM 15-A2-IsoP with 10 μg/ml lipopolysaccharide (LPS). Treatment of placenta and fetal membranes with 15-A2-IsoP caused a dose-dependent decrease in LPS-stimulated release of the cytokines IL-1β, IL-6, IL-8, and TNF- and the prostaglandins PGE2 and PGF2. NF-κB p65 DNA binding activity was significantly inhibited by treatment with 50 μM 15-A2-IsoP. Collectively, these data suggest that 15-A2-IsoP exhibits antiinflammatory properties via antagonism of NF-κB activity. Cyclopentenone IsoPs may serve as negative feedback regulators of the inflammatory response in human gestational tissues.  相似文献   

6.
Jiang A  Liu C  Song Y  Liu F  Li Q  Wu Z  Yu L  Lv Y 《PloS one》2011,6(9):e24960

Background

We have observed at our clinical work that acute lung injury (ALI) often occurs in patients transplanted with donor livers persevered for long time. So, we conducted this study to investigate the influence of cold preservation time (CPT) of donor liver on ALI induced by liver transplantation (LT), and further study the role of nuclear factor-κB (NF-κB) in the process.

Methods

Wistar rats were used as donors and recipients to establish orthotopic rat liver transplantation models. Donor livers were preserved at 4°C for different lengths of time. The effect of NF-κB inhibitor, ammonium pyrrolidinedithiocarbamate (PDTC), on ALI was detected. All samples were harvested after 3 h reperfusion. The severity of liver injury was evaluated first. The expressions of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in liver tissue and liver outflow serum were measured respectively. The severity indexes of ALI, the activity of NF-κB and inhibitor-κBα (I-κBα) in lung/liver were measured accordingly.

Results

With the prolonged liver CPT, the liver damage associated indexes and ALI-related indexes all increased significantly. TNF-α and IL-1β in liver outflow serum increased accordingly, and the activity of NF-κB in liver/lung increased correspondingly. All these ALI-associated indexes could be partially reversed by the use of PDTC.

Conclusions

Extended CPT aggravates the damage of donor liver and induces the expressions of TNF-α and IL-1β in liver. These inflammatory factors migrate to lung via liver outflow blood and activate NF-κB in lung, inducing ALI finally. NF-κB may play a critical role in LT-related ALI. Patients with or at risk of ALI may benefit from acute anti-inflammatory treatment with PDTC.  相似文献   

7.
8.
9.
Cheng ZX  Sun B  Wang SJ  Gao Y  Zhang YM  Zhou HX  Jia G  Wang YW  Kong R  Pan SH  Xue DB  Jiang HC  Bai XW 《PloS one》2011,6(8):e23752

Background

Epithelial to mesenchymal transition (EMT) induced by hypoxia is one of the critical causes of treatment failure in different types of human cancers. NF-κB is closely involved in the progression of EMT. Compared with HIF-1α, the correlation between NF-κB and EMT during hypoxia has been less studied, and although the phenomenon was observed in the past, the molecular mechanisms involved remained unclear.

Methodology/Principal Findings

Here, we report that hypoxia or overexpression of hypoxia-inducible factor-1α (HIF-1α) promotes EMT in pancreatic cancer cells. On molecular or pharmacologic inhibition of NF-κB, hypoxic cells regained expression of E-cadherin, lost expression of N-cadherin, and attenuated their highly invasive and drug-resistant phenotype. Introducing a pcDNA3.0/HIF-1α into pancreatic cancer cells under normoxic conditions heightened NF-κB activity, phenocopying EMT effects produced by hypoxia. Conversely, inhibiting the heightened NF-κB activity in this setting attenuated the EMT phenotype.

Conclusions/Significance

These results suggest that hypoxia or overexpression of HIF-1α induces the EMT that is largely dependent on NF-κB in pancreatic cancer cells.  相似文献   

10.
11.
12.
Mouse SIP24/24p3 is a 24 kDa lipocalin expressed in the liver and secreted into the bloodstream during the acute phase response (APR). In this report we show that SIP24/24p3 mRNA and protein are expressed in the uterus around parturition at levels higher than are found in the liver during the APR. Because of the unique expression of this lipocalin in the uterus, we have named this protein uterocalin. Contrary to its expression pattern during the APR, there is little or no expression of uterocalin in the liver during or after pregnancy. Also, unlike the APR, and despite its high level of expression in the uterus, uterocalin was not detected in the blood or amniotic fluid. Day 19 and postpartum uterine samples were examined by immunocytochemistry. Uterocalin was found in the luminal epithelium at day 19 and in the glandular epithelium in postpartum samples. Although some uterocalin remained in the luminal epithelium, most of the uterocalin was found deposited on its luminal surface. The uterus undergoes extensive tissue remodeling during pregnancy and suffers stress and tissue damage around parturition. Uterocalin could be part of the local inflammatory response associated with parturition. Mol. Reprod. Dev. 46:507–514, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

13.
14.
15.
To confirm the clinical significance of NF-κB and JNK protein expression from experimentally identified candidates for predicting prognosis for patients with 5-FU treatment, we evaluated the protein expression of surgically removed specimens. A total of 79 specimens were obtained from 30 gastric and 49 colorectal cancer patients who underwent R0 resection followed by postoperative 5-FU based adjuvant chemotherapy. Immunohistochemical examinations of NF-κB and JNK on tissue microarrays (TMAs) revealed that significantly shorter time-to-relapse (TTR) in both NF-κB(+) and JNK(−) subgroups in both gastric (NF-κB(+), p = 0.0002, HR11.7. 95%CI3 3.2–43.4; JNK(−), p = 0.0302, HR4.4, 95%CI 1.2–16.6) and colon (NF-κB(+), p = 0.0038, HR36.9, 95%CI 3.2–426.0; JNK(−), p = 0.0098, HR3.2, 95%CI 1.3–7.7) cancers. These protein expression patterns also show strong discriminately power in gastric cancer patients for overall survival rate, suggesting a potential utility as prognostic or chemosensitivity markers. Baseline expression of these proteins using gastric cancer cell lines demonstrated the reciprocal patterns between NF-κB and JNK, while 5-FU exposure of these cell lines only induced NF-κB, suggesting that NF-κB plays a dominant role in the response to 5-FU. Subsequent siRNA experiments confirmed that gene knockdown of NF-κB increased 5-FU-specific sensitivity, whereas that of JNK did not affect the chemosensitivity. These results suggest that the expression of these proteins may aid in the decisions involved with adjuvant chemotherapy for gastrointestinal tract cancers.  相似文献   

16.
17.
Surfactant protein A (SP-A), a member of the collectin family originally described as a major component of lung surfactant, plays an important role in the modulation of lung host defense. A new interest in SP-A is provided by the link between fetal lung development and the timing of labor in the mouse. In the present review, we discuss some of the known features of SP-A such as biological functions, signaling pathways involved and the recent developments showing that SP-A bind and serve as a signal in the female genital tract. Therefore, such reports support a new paradigm involving SP-A as a multifunctional protein in the parturition process.  相似文献   

18.
Adrenomedullin in perinatal medicine   总被引:7,自引:0,他引:7  
This review will consider whether adrenomedullin (AM) plays a role in the different aspects of perinatal medicine: contributing to maternal systemic vasodilatation during pregnancy, regulating uterine and placental blood flow, being involved in the process of implantation and participating in uterine quiescence prior to parturition. In addition, this will also consider whether a modification of AM secretion contributes to some pathological conditions in pregnancy such as preeclampsia and impairment of fetal growth. The biosynthesis of AM increases in gravid rats and in pregnant women, and the placenta represents an important site of AM production during pregnancy. Both the peptide and its receptors have been found in the uterus, placenta, fetal membranes and cord vessels, and fetal membranes and placental tissues in culture secrete AM. AM contributes to maternal systemic vasodilatation, the placental vessels are relaxed by AM in a dose-dependent manner and AM is expressed in the fetoplacental and umbilical vascular endothelium where basal production of AM contributes to low fetoplacental vascular resistances. Controversy exists over the status of circulating and placental AM in preeclampsia and of the relative contribution of AM to impaired fetoplacental circulation and fetal growth. Moreover, the uterus expresses AM mRNA and exogenous AM relaxes the myometrium in a dose-dependent manner; however, clinical studies have shown that AM does not decrease before the onset of parturition. Rather, AM secretion increases during spontaneous labor and in preterm delivery.  相似文献   

19.
20.
Previously, platelet-activating factor (PAF, PAF-acether, 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine) had been identified in association with a lamellar-body-enriched fraction of human amniotic fluid obtained from women in labor. In consideration of the fact that fetal lung is the source of lamellar bodies, we have investigated the capacity of the developing lung to synthesize PAF. The specific activity of the PAF biosynthetic enzyme, 1-alkyl-2-lyso-sn-glycero-3-phosphocholine: acetyl-CoA acetyltransferase, increased from 116 pmol/min per mg protein in day 21 fetal rabbit lung to 332 pmol/min per mg protein by day 31. Although this enzymatic activity in fetal kidney also increased, it never reached the level found in lung. In contrast, the actyltransferase activity decreased by 80% in fetal liver between days 21 and 31. The acetyltransferase activity in lung was primarily localized in the microsomal fraction (105 000 X g pellet); however a significant proportion of the activity was found in the 18 000 X g pellet. The specific activity of acetyltransferase in adult alveolar type II rat pneumonocytes was significantly higher than that of adult rat lung or rat alveolar macrophages, suggesting that type II cells make a significant contribution to the actyltransferase activity of lung tissue. PAF acetylhydrolase remained relatively constant throughout the gestation in all tissues. The concentration of PAF in the fetal lung increased by 3-fold from 12 to 35 fmol/mg protein, between day 21 and day 31 of development. The concentrations of the PAF precursors, 2-lyso-PAF (1-alkyl-2-lyso-sn-glycero-3-phosphocholine) and the 2-acyl derivative, were several orders of magnitude higher than the PAF concentration. The pulmonary glycogen content decreased from 163 at day 21 to 35 micrograms/mg protein at day 31 of gestation. We suggest that the increase in PAF concentration may participate in the regulation of glycogen breakdown in fetal lung as it does in perfused rat liver (Shukla, S.D., Buxton, D.B., Olson, M.S. and Hanahan, D.J. (1983) J. Biol. Chem. 258, 10212-10214). The formation of PAF in the developing lung and its secretion, in association with lamellar bodies, into amniotic fluid is discussed in relation to parturition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号