首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We present 28 polymorphic microsatellite loci, including a sex‐linked W‐chromosome marker, for the Afrotropical butterfly, Bicyclus anynana. Our primary motivation to develop these markers was to apply them in quantitative trait loci (QTL) mapping studies. A technique is also proposed that may be useful in avoiding redundant sequences which are common in lepidopteran‐enriched libraries. Pedigree analysis was performed to test Mendelian segregation of the markers and to address the issue of null alleles.  相似文献   

2.
Abstract.  1. Given that sexual conflict is all pervasive, investigating potential costs to mating and the control of female reproduction are important issues.
2. Here, female reproductive output and longevity are investigated in relation to mating status (virgin vs. once-mated females) and host-plant availability in the tropical butterfly Bicyclus anynana .
3. Both factors significantly affected realised fecundity in a manner demonstrating that female reproduction is not entirely under control of the female herself, but is rather subject to additive contributions of the female, her male partner, and intrinsic physiological processes. As evident from the deposition of significant egg numbers by virgin, host-deprived females, B. anynana is effectively unable to completely inhibit oogenesis.
4. Mated females suffered a reduction in adult life span, which cannot be explained as a side-effect of variation in egg size, lifetime, or early fecundity.
5. Such detrimental effects of mating per se are indicative of the cooperation–conflict balance between sexes being shifted towards conflict in B. anynana .  相似文献   

3.
Abstract.— We investigated the effects of inbreeding on various fitness components and their genetic load in laboratory metapopulations of the butterfly Bicyclus anynana . Six metapopulations each consisted of four subpopulations with breeding population sizes of N = 6 or N = 12 and migration rate of m = 0 or m = 0.33. Metapopulations were maintained for seven generations during which coancestries and pedigrees were established. Individual inbreeding coefficients at the F7 were calculated and ranged between 0.01 and 0.51. Even though considerable purging had occurred during inbreeding, the genetic load remained higher than that of many outbreeding species: approximately two lethal equivalents were detected for egg sterility, one for zygote survival, one for juvenile survival, and one for longevity. Severe inbreeding depression occurred after seven generations of inbreeding, which jeopardized the metapopulation survival. This finding suggests that the purging of genetic load by intentional inbreeding cannot be recommended for the genetic conservation of species with a high number of lethal.  相似文献   

4.
Availability of adequate nutrition is among the most important factors affecting growth, development, and reproduction in animals. In holometabolous insects, diets and nutritional needs change between life stages, with larval storage, and adult feeding and reproduction being linked to one another. In several butterfly species, adult feeding is of fundamental importance to realize the full reproductive potential, primarily due to a prominent role of adult diet-derived carbohydrates. In contrast, the role of adult diet-derived amino acids is still under debate, despite the fact that butterflies were often found to preferentially feed on amino acid-rich substrates. Recently it was found that amino acids from adult income could compensate for adverse effects of larval food quality. In our study on the tropical butterfly Bicyclus anynana (Butler) (Lepidoptera: Nymphalidae), we used larval starvation to investigate corresponding effects on female reproductive output. Short periods of larval starvation prolonged development time and reduced larval survival, larval growth rate, pupal mass, and egg size. Regardless of the degree of larval starvation, access to amino acids in the adult diet increased egg size, whereas egg number remained largely unaffected. Thus, although there was some evidence for adult diet-derived amino acids being overall beneficial to reproduction, there was no indication that they can compensate for larval starvation.  相似文献   

5.
Deriving useful microsatellite markers in lepidopterans has been challenging when relying on scans of genomic DNA libraries, presumably due to repetitiveness in their genomes. We assayed 96 of 320 microsatellites identified in silico from a collection of Bicyclus anynana ESTs, in 11 independent individuals from a laboratory population. From the 68 successful assays, we identified 40 polymorphic markers including 22 with BLAST-based annotation. Nine of 12 selected polymorphic markers tested in a panel of 24 wild-caught individuals converted to successful assays and were all polymorphic. We discuss how microsatellite discovery in ESTs is an efficient strategy with important attendant advantages.  相似文献   

6.
Many phytophagous insects have strong preferences for their host plants, which they recognize via odors, making it unclear how novel host preferences develop in the course of insect diversification. Insects may learn to prefer new host plants via exposure to their odors and pass this learned preference to their offspring. We tested this hypothesis by examining larval odor preferences before and after feeding them with leaves coated with control and novel odors and by examining odor preferences again in their offspring. Larvae of the parental generation developed a preference for two of these odors over their development. These odor preferences were also transmitted to the next generation. Offspring of butterflies fed on these new odors chose these odors more often than offspring of butterflies fed on control leaves. In addition, offspring of butterflies fed on banana odors had a significant naïve preference for the banana odors in contrast to the naïve preference for control leaves shown by individuals of the parental generation. Thus, butterflies can learn to prefer novel host plant odors via exposure to them during larval development and transmit these learned preferences to their offspring. This ability potentially facilitates shifts in host plant use over the course of insect diversification.  相似文献   

7.
Using lines artificially selected on egg size and being subjected to a restricted and an unrestricted feeding treatment, we examined the relationships between egg size, egg number, egg composition, and reproductive investment in the butterfly Bicyclus anynana . Despite a successful manipulation of egg size, correlated responses to selection in larval time, pupal mass, pupal time, longevity, fecundity, or the amount of energy allocated to reproduction were virtually absent. Thus, there was no indication for an evolutionary link between offspring size and reproductive investment. Egg composition, in contrast, was affected by selection, with larger eggs containing relatively more lipid and water, but less protein and energy compared to smaller eggs. Hence, females producing large eggs did not have to sacrifice fecundity due to adjustments in egg composition. Food limitation per se caused only minor changes in egg composition, and there was no general reduction in egg provisioning with female age. The latter was restricted to food-limited females, whereas egg quality remained remarkably similar throughout the females' life in control groups. We conclude that neglecting changes in biochemical egg composition, depending on genetic background, food availability, and female age, may introduce substantial error when estimating reproductive effort, and may ultimately lead to invalid conclusions.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 91 , 403–418.  相似文献   

8.
Environmentally induced phenotypic plasticity is common in nature. Hormones, affecting multiple traits and signaling to a variety of distant target tissues, provide a mechanistic link between environments, genes and trait expression, and may therefore well be involved in the regulation phenotypic plasticity. Here, we investigate whether in the tropical butterfly Bicyclus anynana temperature-mediated plasticity in egg size and number, with fewer but larger eggs produced at lower temperatures and vice versa, is under control of juvenile hormone, and whether different temperatures cause differences in egg composition. Female B. anynana butterflies showed the expected response to temperature, however, we found no evidence for an involvement of juvenile hormone. Neither haemolymph JH II and JH III titres nor vitellogenin levels differed across temperatures. The smaller eggs produced at the higher temperature contained relatively higher amounts of water, free carbohydrates and proteins, but relatively lower amounts of lipids. While these smaller eggs had a lower absolute energy content, total reproductive investment was higher at the higher temperature (due to a higher fecundity). Overall, our study indicates that temperature-mediated plasticity in reproduction in B. anynana is mechanistically related to a biophysical model, with oocyte production (differentiation) and oocyte growth (vitellogenesis) having differential temperature sensitivities.  相似文献   

9.
Formulation of pyriproxyfen, a juvenile hormone mimic, for tsetse control   总被引:1,自引:0,他引:1  
A topical dose, in 1 microliter acetone, of 0.02 microgram-2-[1-methyl-2-(4-phenoxyphenoxy) ethoxy] pyridine, the juvenile hormone mimic pyriproxyfen (S-31183, Sumitomo Chemical Co.), caused an adult female tsetse, Glossina morsitans morsitans Westwood, to produce non-viable offspring for the whole of her life. Using 14C labelled pyriproxyfen it was determined that as little as 0.001 microgram transferred to the in utero larva was sufficient to arrest development in the pupal stage. A formulation in vegetable oil was prepared for treating black cotton cloth targets which caused females to pick up 0.1 microgram active ingredient (a.i.) by tarsal contact during 1 min of exposure. Males exposed similarly for between 1 and 5 min transferred up to 0.016 microgram a.i. to females if they mated immediately after treatment. Doses as low as 0.01 micrograms in 10 microliters oil cm-2 on black cotton cloth targets caused females to produce non-viable offspring for at least two reproductive cycles following exposure. However, a dose of 0.1 microgram in 10 microliters oil cm-2 was necessary for an exposed male to cause disruption of the reproductive potential of his mate. This juvenile hormone mimic has potential to induce sterility via both sexes of tsetse using treated targets or traps under field conditions.  相似文献   

10.
Effects of a juvenile hormone analog, pyriproxyfen, on various developmental stadia of the apterous form of the turnip aphid, Lipaphis erysimi (Kaltenbach), were bioassayed at three concentrations (50, 100, and 150 mg [AI]/l) in the laboratory. Supernumerary-molted nymphs with 1-3 extra molts were found when the first three nymphal instars were treated, and all these nymphs died prematurely. In contrast, all treated fourth instar nymphs molted normally to adults. The longevity of all pyriproxyfen-treated L. erysimi nymphs and adults and the fecundity of treated adults were reduced by 50%. Higher concentrations of pyriproxyfen (100 and 150 mg [AI]/l) caused sterility in adults from treated fourth instars; whereas the lowest concentration (50 mg [AI]/l) did not cause any adult sterility. A majority of adults from treated fourth instars and treated adults produced normal nymphs, and some adults produced dead nymphs with normal appendages or dead and deformed nymphs without any appendages. Normal nymphs produced by the adults from treated adults or treated at fourth instars developed more slowly from first instar to adult than the water-treated nymphs, and all adults in the new generation apparently reproduced normally. The potential role of pyriproxyfen in a vegetable aphid IPM program was discussed.  相似文献   

11.
为明确延迟交配对马铃薯块茎蛾Phthorimaea operculella的影响,在室内条件下,分别对初羽化未交配的马铃薯块茎蛾雌虫、雄虫及雌雄虫同时延迟1~5 d配对饲养,研究不同延迟交配处理对该虫产卵量、卵的孵化率及雌雄成虫寿命的影响.结果表明,从产卵量来看,分别将雄虫或雌虫延迟1~3 d交配对产卵量无显著影响,而...  相似文献   

12.
The effects of a single population bottleneck of differing severity on heritability and additive genetic variance was investigated experimentally using a butterfly. An outbred laboratory stock was used to found replicate lines with one pair, three pairs and 10 pairs of adults, as well as control lines with approximately 75 effective pairs. Heritability and additive genetic variance of eight wing pattern characters and wing size were estimated using parent-offspring covariances in the base population and in all daughter lines. Individual morphological characters and principal components of the nine characters showed a consistent pattern of treatment effects in which average heritability and additive genetic variance was lower in one pair and three pair lines than in 10 pair and control lines. Observed losses in heritability and additive genetic variance were significantly greater than predicted by the neutral additive model when calculated with coefficients of inbreeding estimated from demographic parameters alone. However, use of molecular markers revealed substantially more inbreeding, generated by increased variance in family size and background selection. Conservative interpretation of a statistical analysis incorporating this previously undetected inbreeding led to the conclusion that the response to inbreeding of the morphological traits studied showed no significant departure from the neutral additive model. This result is consistent with the evidence for minimal directional dominance for these traits. In contrast, egg hatching rate in the same experimental lines showed strong inbreeding depression, increased phenotypic variance and rapid response to selection, highly indicative of an increase in additive genetic variance due to dominance variance conversion.  相似文献   

13.
14.
A compound with significant insect juvenile hormone activity was isolated from the plant, Macropiper excelsum. The chemical structure was determined by spectral methods to be 1-(3,4-methylenedioxyphenyl)-trans-3-decene(l), and confirmed by synthesis. The hormonally active substance applied topically to last (fifth)-instar nymphs of the milkweed bug (Oncopeltus fasciatus) induced a supernumerary metamorphosis at 30 μg. Higher doses were toxic.  相似文献   

15.
The effect of small population size and gene flow on the rate ofinbreeding and loss in fitness in Bicyclus anynana populationswas quantified by means of a pedigree analysis. Laboratorymetapopulations each consisted of four subpopulations with breeding sizeof N = 6 or N = 12 and migration rate of m = 0 or m= 0.33. Pedigrees were established by individually marking about35,000 butterflies. The increase in inbreeding coefficients(F-coefficients) over time was compared to that of simulated populationswith similar N and m. In the seventh generation, the level of inbreedingin larger subpopulations did not deviate significantly from the expectedvalues, but smaller subpopulations were less inbred than expected.Individuals in the small populations still showed considerableinbreeding depression, indicating that only a small proportion of therecessive deleterious alleles had been purged by selection. Two opposingprocesses potentially affected the rate of inbreeding and fitness: (1)Inbreeding depression increased the variance in family size and reducedthe effective population size. This will accelerate the rate ofinbreeding and is expected to selectively purge deleterious recessivealleles. (2) Variance in reproductive success of families was reducedbecause individuals which had a large number of siblings in thepopulation were more likely to mate with a full-sib than individualswith a smaller number of siblings. Subsequent inbreeding depressionreduced the number of viable offspring produced by these full-sibmatings. As a consequence, natural selection purged only some of thedeleterious alleles from the butterfly populations during sevengenerations with inbreeding. These findings emphasise the potentialproblems of using only small numbers of breeding individuals (N10) incaptive populations for conservation purposes.  相似文献   

16.
Investigating the relative importance of multiple cues for mate choice within a species may highlight possible mechanisms that led to the diversification of closely related species in the past. Here, we investigate the importance of close-range pheromones produced by male Bicyclus anynana butterflies and determine the relative importance of these chemical cues versus visual cues in sexual selection by female choice. We first blocked putative androconial organs on the fore- and hindwings of males, while also manipulating the ability of females to perceive chemical signals via their antenna. We found that male chemical signals were emitted by both fore- and hindwing pairs and that they play an important role in female choice. We subsequently tested the relative importance of these chemical cues versus visual cues, previously identified for this species, and found that they play an equally important role in female choice in our laboratory setting. In addition, females will mate with males with only one signal present and blocking both androconial organs on males seems to interfere with male to male recognition. We discuss the possible functions of these signals and how this bimodal system may be used in intra- and interspecific mate evaluation.  相似文献   

17.
Genetic and developmental constraints have often been invoked to explain patterns of existing morphologies. Yet, empirical tests addressing this issue directly are still scarce. We here set out to investigate the importance of maternal body size as an evolutionary constraint on egg size in the tropical butterfly Bicyclus anynana, employing an artificial two-trait selection experiment on simultaneous changes in body and egg size (synergistic and antagonistic selection). Selection on maternal body size and egg size was successful in both the synergistic and the antagonistic selection direction. Yet, responses to selection and realized heritabilities varied across selection regimes: the most extreme values for pupal mass were found in the synergistic selection directions, whereas in the antagonistic selection direction realized heritabilities were low and nonsignificant in three of four cases. In contrast, for egg size the highest values were obtained in the lines selected for low pupal mass. Thus, selection on body size yielded a stronger correlated response in egg size than vice versa, which is likely to bias (i.e., constrain), if weakly, evolutionary change in body size. However, it seems questionable whether this will prevent evolution toward novel phenotypes, given enough time and that natural selection is strong. Correlated responses to selection were overall weak. Egg and larval development times tended to be associated with changes in maternal size, whereas variation in pupal development times weakly tended to follow variation in egg size. Lifetime fecundity was similar across selection regimes, except for females simultaneously selected for large body mass and small egg size, exhibiting increased fecundity. Multiple regressions showed that lifetime fecundity and concomitantly reproductive investment were primarily determined by longevity, as expected for an income breeder, whereas egg size was primarily determined by pupal mass. Evidence for a phenotypic trade-off between egg size and number was weak.  相似文献   

18.
Human-induced loss and fragmentation of natural habitats reduces population size and thereby presumably genetic diversity through inbreeding or genetic drift. Additionally, many species are confronted with increased temperature stress due to climate change, with reduced genetic diversity potentially interfering with a species’ ability to cope with such conditions. While in general the detrimental impact of inbreeding has often been documented, its consequences for the ability to cope with temperature stress are still poorly understood. Against this background we here investigate the effects of inbreeding on egg hatching success, development and temperature stress tolerance in the tropical butterfly Bicyclus anynana. Specifically we test for an increased sensitivity to environmental stress in inbred individuals. Our results revealed that even comparatively low levels of inbreeding yield negative consequences for reproduction and development under beneficial conditions. Inbreeding also reduced cold tolerance in adult butterflies, while heat tolerance remained unaffected. We therefore conclude that acute stress tolerance may not be generally impaired by inbreeding.  相似文献   

19.
Abstract. Theory about the role of constraints in evolution is abundant, but few empirical data exist to describe the consequences a bias in phenotypic variation has for micro evolution. Responses to natural selection can be severely hampered by a genetic correlation among a suite of traits. Constraints can be studied using antagonistic selection experiments, that is, two-trait selection in opposition to this correlation. The two traits studied here were development time and wing pattern (eyespot size) in the butterfly Bicyclus anynana , both of which have a clear adaptive significance. Rates of response were higher for eyespot size than for development time, but were independent of the concurrent selection (either in the same direction as the correlation or perpendicular to it). Regimes differed in both traits in all directions after 11 generations of selection. The uncoupling lines had higher relative responses than the synergistic lines in development time and equal relative responses in eyespot size. The patterns for eyespot size (reaction norms) were consistent across different rearing temperatures. Differences in lines selected for fast and slow development time were more pronounced at lower temperatures, irrespective of the direction of joint wing pattern selection. Furthermore, correlated responses in pupal weight and growth rate were observed; lines selected for a slower development had higher pupal weights, especially at lower temperatures. The response of the uncoupling lines was not hampered by a lack of selectable genetic variation, and the relative response in the development time was larger than expected based on response in the coupled direction and quantitative genetic predictions. This suggests that the structure of the genetic architecture does not constrain the short-term, independent evolution of both wing pattern and development time.  相似文献   

20.
Methoprene, a juvenile hormone (JH) analog, is a widely used insecticide that also accelerates behavioral development in honey bees (Apis mellifera). JH regulates the transition from nursing to foraging in adult worker bees, and treatment with JH or methoprene have both been shown to induce precocious foraging. To determine how methoprene changes honey bee behavior, we compared JH titers of methoprene‐treated and untreated bees. Behavioral observations confirmed that methoprene treatment significantly increased the number of precocious foragers in 3 out of 4 colonies. In only 1 out of 4 colonies, however, was there a significant difference in JH titers between the methoprene‐treated and control bees. Further, in all 4 colonies, there was no significant differences in JH titers between precocious and normal‐aged foragers. These results suggest that methoprene did not directly affect the endogenous JH secreted by corpora allata. Because methoprene caused early foraging without changing workers’ JH titers, we conclude that methoprene most likely acts directly on the JH receptors as a substitute for JH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号