首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Quorum sensing is a global gene-regulatory mechanism in bacteria that enables individual bacterial cells to communicate and coordinate their population behaviors. Quorum sensing is central to the pathogenesis of many bacterial pathogens including Pseudomonas aeruginosa and therefore has been exploited as a target for developing novel antipathogenic drugs. In P. aeruginosa , three intertwined quorum-sensing systems, las, rhl , and the 2-alkyl-4(1 H )-quinolone system, which includes the Pseudomonas quinolone signal (PQS), control virulence factor production, and pathogenesis processes. Previously, we obtained a mutant with diminished expression of the phzA1B1C1D1E1F1G1 operon that is involved in the production of virulence factor phenazine compounds. In this study, the mutant was further characterized, and evidence indicating that the disrupted gene PA1196 in the mutant is a potential regulator of the rhl and PQS systems is presented. PA1196 positively controls the expression of the rhl and PQS systems and affects bacterial motility and multiple virulence factor expression via the quorum-sensing systems. This adds an important new player in the complex quorum-sensing network in P. aeruginosa .  相似文献   

5.
6.
Bacterial pathogenicity is often manifested by the expression of various cell-associated and secreted virulence factors, such as exoenzymes, protease, and toxins. In Pseudomonas aeruginosa, the expression of virulence genes is coordinately controlled by the global regulatory quorum-sensing systems, which includes the las and rhl systems as well as the Pseudomonas quinolone signal (PQS) system. Phenazine compounds are among the virulence factors under the control of both the rhl and PQS systems. In this study, regulation of the phzA1B1C1D1E1 (phzA1) operon, which is involved in phenazine synthesis, was investigated. In an initial study of inducing conditions, we observed that phzA1 was induced by subinhibitory concentrations of tetracycline. Screening of 13,000 mutants revealed 32 genes that altered phzA1 expression in the presence of subinhibitory tetracycline concentrations. Among them, the gene PA0964, designated pmpR (pqsR-mediated PQS regulator), has been identified as a novel regulator of the PQS system. It belongs to a large group of widespread conserved hypothetical proteins with unknown function, the YebC protein family (Pfam family DUF28). It negatively regulates the quorum-sensing response regulator pqsR of the PQS system by binding at its promoter region. Alongside phzA1 expression and phenazine and pyocyanin production, a set of virulence factors genes controlled by both rhl and the PQS were shown to be modulated by PmpR. Swarming motility and biofilm formation were also significantly affected. The results added another layer of regulation in the rather complex quorum-sensing systems in P. aeruginosa and demonstrated a clear functional clue for the YebC family proteins.  相似文献   

7.
8.
9.
Anaerobic growth of Pseudomonas aeruginosa PAO1 was affected by quorum sensing. Deletion of genes that produce N-acyl-l-homoserine lactone signals resulted in an increase in denitrification activity, which was repressed by exogenous signal molecules. The effect of the las quorum-sensing system was dependent on the rhl quorum-sensing system in regulating denitrification.  相似文献   

10.
11.
12.
13.
14.
The biochemical network underlying quorum sensing in human-pathogenic Pseudomonas aeruginosa is one of the best characterized. Mathematical modeling is required to untangle the complexity of its architecture and dynamics. We present a qualitative model of the P. aeruginosa quorum-sensing network including interactions between the las and rhl modules, the signaling molecule PQS and the regulatory proteins Mvfr and VfR. Simulations exemplify the model to reproduce natural network behavior and suggest quorum-sensing responses to pharmacological interference.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号