首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ebselen is an organoselenium compound that acts as a glutathione peroxidase mimic. Since ebselen is a hydrophobic, thio-reactive compound capable of interacting with Keap-1, we tested its ability to activate nrf-2-dependent responses in the human hepatocarcinoma derived cell line, HepG2. Ebselen (25 microM) increased expression of an nrf-2 response element reporter in transient transfection experiments by 4-fold. Although, the induction was lower than that observed with classic nrf-2 inducer, sulforaphane (10 microL; 7-fold), ebselen also induced expression of native NAD(P)H:quinone oxidoreductase (1.6-fold) activity; induction of this protein is known to be dependent on nrf-2 action. Treatment of HepG2 cells with ebselen increased glutathione levels after 12 (1.5-fold) or 24 (1.9-fold)h of treatment. Treatment of the cells with either sulforaphane or ebselen 24 h prior to treatment with varying concentrations of t-butyl hydroperoxide increased the half maximal lethal dose from 28 to 42 microM and 58 microM for sulforaphane and ebselen, respectively. The protective effects of ebselen treatment were greater with pretreatment (IC50=58 microM) than simultaneous addition (IC50=45 microM). The protein synthesis inhibitor cycloheximide blocked increases in intracellular glutathione synthesis and partially blocked the protective effects of this regimen on increasing cell survival following t-butyl hydroperoxide treatment. Likewise co-treatment with the MEK 1 inhibitor, PD98059, which has been shown to inhibit nrf-2-dependent gene activation, partially inhibited the ebselen-dependent increases in IC50 while not affecting the control cells. We conclude that nrf-2 activation augments the role of ebselen as an antioxidant or by indirect induction of cellular antioxidant defences.  相似文献   

2.
The aim of this work was to investigate the response of the antioxidant defense system to two oxidative stressors, hydrogen peroxide and tert-butyl hydroperoxide, in HepG2 cells in culture. The parameters evaluated included enzyme activity and gene expression of superoxide dismutase, catalase, glutathione peroxidase, and activity of glutathione reductase. Besides, markers of the cell damage and oxidative stress evoked by the stressors such as cell viability, intracellular reactive oxygen species generation, malondialdehyde levels, and reduced glutathione concentration were evaluated. Both stressors, hydrogen peroxide and tert-butyl hydroperoxide, enhanced cell damage and reactive oxygen species generation at doses above 50 microM. The concentration of reduced glutathione decreased, and levels of malondialdehyde and activity of the antioxidant enzymes consistently increased only when HepG2 cells were treated with tert-butyl hydroperoxide but not when hydrogen peroxide was used. A slight increase in the gene expression of Cu/Zn superoxide dismutase and catalase with 500 microM tert-butyl hydroperoxide and of catalase with 200 microM hydrogen peroxide was observed. The response of the components of the antioxidant defense system evaluated in this study indicates that tert-butyl hydroperoxide evokes a consistent cellular stress in HepG2.  相似文献   

3.
4.
The effect of increased intracellular oxygen activation on cellular antioxidant defenses in CHO and HeLa cells was studied. In both cell types, hyperoxic exposure (up to 4 days, 600-700 mm Hg O2) and in CHO cells menadione (up to 3 days, 15 microM) failed to affect the enzymatic antioxidant defenses Mn-containing superoxide dismutase (Mn-SOD), CuZn-SOD, catalase and glutathione peroxidase. The markedly increased antioxidant enzyme activities observed in a recently obtained oxygen-tolerant CHO variant persisted under normoxia. These data suggest that the synthesis of antioxidant enzymes is constitutive. Glutathione levels of HeLa cells did not respond to hyperoxia whereas in CHO cells hyperoxia and menadione exposure resulted in a 2- and 7-fold increase in glutathione contents, respectively. However, considering the large variations in glutathione contents observed under normal culture conditions, it is uncertain whether this increase is to be considered as a true adaptive response.  相似文献   

5.
6.
The effects of UV-B radiation and/or deprivation of nitrogen stresses on growth rate, some antioxidant compounds, and activities of some antioxidant enzymes, superoxide dismutase (SOD; EC1.15.1.1), ascorbate peroxidase (APx; EC1.11.1.11), guaiacol peroxidase (GUPx; EC1.11.1.7) and glutathione reductase (GR, EC 1.6.4.2), as well as the levels of total glutathione pool, UV-B absorbing pigments, malondialdehyde (MDA) and H2O2 concentrations were studied in Spirulina platensis and Dunaliella salina. Less damage was observed in response to the combined UV-B and nitrogen deprivation as shown by growth rate and photosynthetic pigments especially in Dunaliella salina. A significant increase in flavonoids and phenolics under dual stress was observed. Conversely, a great reduction in malondialdehyde (MDA) and H2O2 concentrations were recorded under the combined stress compared to the effect of each stress. Furthermore, a significant increase in GSH/GSSG ratio toward the control was recorded in response to combined stresses, whereas a significant reduction in this ratio was observed in both microalgae in response to each stress. Increased activities of antioxidant enzymes were recorded under UV-B and nitrogen deprivation stresses.  相似文献   

7.
The effects of hydrogen peroxide treatments on Escherichia coli KS400 and AB1157 cells were assessed by monitoring the accumulation of oxidative damage products, carbonyl proteins and thiobarbituric acid-reactive substances (TBARS), as well as the activities of selected antioxidant enzymes. H(2)O(2) treatment stimulated increases in both TBARS and carbonyl protein levels in dose- and time-dependent manners in KS400 cells. The accumulation of TBARS was much more variable with H(2)O(2) treatment; TBARS content was significantly increased in response to 5 microM H(2)O(2), whereas a significant increase in carbonyl protein content occurred at 100 microM H(2)O(2). Similarly, treatment with 20 microM hydrogen peroxide for different lengths of time resulted in peak TBARS accumulation by 20 min, whereas carbonyl protein levels were significantly elevated only after 60 min. In AB1157 cells, treatment with 20 microM hydrogen peroxide for 20 min led to strong increases in both carbonyl protein and TBARS levels. This treatment also triggered increased activities of enzymes of the oxyR regulon (catalase, peroxidase, and glutathione reductase) in both strains. In the AB1157 strain, H(2)O(2) exposure also increased the activities of two enzymes of the soxRS regulon (superoxide dismutase and glucose-6-phosphate dehydrogenase) by 50-60%. The data show differential variability of lipids versus proteins to oxidative damage induced by H(2)O(2,) as well as strain-specific differences in the accumulation of damage products and the responses by antioxidant enzymes to H(2)O(2) stress.  相似文献   

8.
Selenium (Se) is a non-metallic element, which has the capability to increase the antioxidative capacity and stress tolerance of plants to heavy metals. Plants vary considerably in their physiological response to Se. The reported research investigated the effects of Se on arsenic (As) uptake by As hyperaccumulator Pteris vittata L. and determined possible mechanisms of interaction. Pteris vittata plants were exposed hydroponically to 0, 150 or 300 microM of Na(2)HAsO(4) in the presence of 0, 5 or 10 microM of Na(2)SeO(4) for 5 or 10d. Application of 5 microM Se enhanced As concentration by P. vittata fronds by 7-45%. At 5 microM, Se acted as an antioxidant, inhibiting lipid peroxidation (reduced by 26-42% in the fronds) via increased levels of thiols and glutathione (increased by 24% in the fronds). The results suggest that Se is either an antioxidant or it activates plant protective mechanisms, thereby alleviating oxidative stress and improving arsenic uptake in P. vittata.  相似文献   

9.
The role of α-tocopherol (α-toco) and selenium (Se) on human lymphocyte oxidative stress and T-cells proliferation were studied by flow cytometry. We measured the hydrogen peroxide and glutathione levels in cultured human T-lymphocytes and the proliferation of their subsets: T-helper/inducer, T-suppressor/cytotoxic, and natural killer and interleukin-2 receptors upon stimulation by the mitogens phytohemaglutinin (PHA) and lipopolysaccharide (LPS). The results indicate that early stimulation by mitogens is affected by the glutathione and hydrogen peroxide status of the T-lymphocytes. The addition of 100 μM or 500 μM α-toco or 0.5 μM Se alone shows weak antioxidant and immunostimulant properties. When combined, an enhanced antioxidant and immunoregulatory effect was observed. The present findings indicate that α-toco and Se have interactive effects as oxygen radical scavengers, thus promoting human lymphocyte response to antigens. This suggests that micronutrient status is an important factor in considering when interpreting the results of in vitro assays of lymphocyte function.  相似文献   

10.
The ability of the immature lung to induce antioxidant defences in response to hyperoxic stress was examined. Preterm guinea pigs (65 days gestation, term = 68 d) were exposed to either 21+ O2, 85+ O2 or 95+ O2 for 72 hours. Exposure to 85+ O2 increased lung catalase, glutathione peroxidase and manganese superoxide dismutase activities in comparison to air controls. Exposure to 95+ O2 resulted only in an increase in glutathione peroxidase activity. Bronchoalveolar lavage fluid GSH concentration was increased by a similar amount by both exposure regimes, while lung copper/zinc superoxide dismutase activity was unchanged by either treatment. Comparison of the antioxidant response of term and preterm animals exposed to 85+ O2 for 72 hours indicated a greater response in the lung of the preterm animals. Manganese superoxide dismutase activity was elevated in both term and preterm animals, while catalase and glutathione peroxidase activities were elevated only in preterm animals. The extent of microvascular permeability as indicated by bronchoalveolar lavage fluid protein concentration, was lower in preterm animals than in term animals. We conclude that the immature lung can respond to hyperoxic stress by antioxidant induction and that the nature of the response is dependent, in part, both on the severity of the stress and on the maturity of the lung.  相似文献   

11.
《Free radical research》2013,47(5):335-347
The ability of the immature lung to induce antioxidant defences in response to hyperoxic stress was examined. Preterm guinea pigs (65 days gestation, term = 68 d) were exposed to either 21+ O2, 85+ O2 or 95+ O2 for 72 hours. Exposure to 85+ O2 increased lung catalase, glutathione peroxidase and manganese superoxide dismutase activities in comparison to air controls. Exposure to 95+ O2 resulted only in an increase in glutathione peroxidase activity. Bronchoalveolar lavage fluid GSH concentration was increased by a similar amount by both exposure regimes, while lung copper/zinc superoxide dismutase activity was unchanged by either treatment. Comparison of the antioxidant response of term and preterm animals exposed to 85+ O2 for 72 hours indicated a greater response in the lung of the preterm animals. Manganese superoxide dismutase activity was elevated in both term and preterm animals, while catalase and glutathione peroxidase activities were elevated only in preterm animals. The extent of microvascular permeability as indicated by bronchoalveolar lavage fluid protein concentration, was lower in preterm animals than in term animals. We conclude that the immature lung can respond to hyperoxic stress by antioxidant induction and that the nature of the response is dependent, in part, both on the severity of the stress and on the maturity of the lung.  相似文献   

12.
Selenium is an essential trace element that up-regulates a major component of the antioxidant defense mechanism by controlling the body's glutathione (GSH) pool and its major Se-containing antioxidant enzyme, glutathione peroxidase (GPX). Evidence has emerged suggesting that organic selenium, natural seleno-amino acids found in plants, grains and selenized yeast, maintains the antioxidant defense system more efficiently than inorganic selenium. Inorganic selenium is a pro-oxidant, whereas organic selenium possesses antioxidant properties itself. As a pro-oxidant, inorganic selenium is not suitable for animals or humans. Therefore, we examined the GSH–GPX system in broiler chickens and determined that organic selenium was indeed more beneficial than inorganic selenium. Chickens fed the organic selenium as Sel-Plex®, a selenized yeast, had elevated GPX activity in both blood and liver in a thermoneutral environment and after heat distress. More importantly, the ability to reduce the oxidized glutathione (GSSG to 2 GSH) was enhanced and facilitated by maintenance of glutathione reductase activity. Organic selenium-fed chickens were less affected by mild heat distress than inorganic selenium-fed chickens, and this assessment was based upon less induction of heat shock protein 70 (hsp70) in organic selenium-fed chickens. Our results clearly show that heat distress, a potent inducer of oxidative stress and hsp70, can be partially ameliorated by feeding organic selenium. We attribute this observation to an enhanced GSH–GPX antioxidant system in organic selenium-fed chickens.  相似文献   

13.
The involvement of oxidative stress in the pathogenesis of alcoholic diseases in the liver has been repeatedly confirmed. Resveratrol, a natural phytoalexin present in grape skin and red wine possesses a variety of biological activities including antioxidant. This study was conducted to evaluate whether resveratrol has a preventive effect on the main indicators of hepatic oxidative status as an expression of the cellular damage caused by free radicals, and on antioxidant defence mechanism during chronic ethanol treatment. Wistar rats were treated daily with 35% ethanol solution (3 g/kg/day i.p.) during 6 weeks and fed basal diet or basal diet containing 5 g/kg resveratrol. Control rats were treated with i.p. saline and fed basal diet. Experimentally, chronic ethanol administration leads to hepatotoxicity as monitored by the increase in the level of hepatic marker enzymes and the appearance of fatty change, necrosis, fibrosis and inflammation in liver sections. Ethanol also enhanced the formation of MDA in the liver indicating an increase in lipid peroxidation, a major end-point of oxidative damage, and caused drastic alterations in antioxidant defence systems. Particularly the activities of hepatic superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) were found reduced by ethanol treatment while glutathione reductase (GR) activity was unchanged. Dietary supplementation with resveratrol during ethanol treatment inhibited hepatic lipid peroxidation and ameliorated SOD, GPx and CAT activities in the liver. Conclusively, we can suggest that resveratrol could have a beneficial effect in inhibiting the oxidative damage induced by chronic ethanol administration, which was proved by the experiments that we conducted on rats.  相似文献   

14.
During food shortages, the gray mouse lemur (Microcebus murinus) of Madagascar expe-riences daily torpor thereby reducing energy expenditures. The present study aimed to understand the impacts of torpo...  相似文献   

15.
Abstract: Using a cell culture model of the blood-brain barrier (BBB), we investigated the brain capillary endothelial cell (EC) response to hypoxia. The activities of antioxidant enzymes such as glutathione peroxidase, glutathione reductase, catalase, and superoxide dismutase and the GSH level of brain capillary ECs alone or in coculture with astrocytes, as well as those of pericytes, were compared with those obtained with freshly isolated microvessels. These results demonstrated that brain capillary ECs cocultured with astrocytes and used in the presence of a coculture-conditioned medium provided a relevant in vitro model for studying the effect of hypoxia-reoxygenation at the BBB level. The effect of hypoxia on antioxidant enzymes, GSH, and ATP levels was studied, as well as the modification of the permeability to small weight molecules. A decrease in all enzymes and the GSH level could explain an increase in the susceptibility of the brain capillary ECs to further oxidant injury. Second, profound rearrangements of F-actin filaments of the ECs and a decrease in the ATP level could be associated with an increase in the permeability of the monolayer. Furthermore, an apoptotic process was detected by in situ end labeling of DNA. These results indicate that hypoxia distorts the function of ECs and that these cells in culture provide a valuable tool for exploring mechanisms after hypoxia-reoxygenation.  相似文献   

16.
Salt stress impairs reactive oxygen species (ROS) and methylglyoxal (MG) detoxification systems, and causes oxidative damage to plants. Up-regulation of the antioxidant and glyoxalase systems provides protection against NaCl-induced oxidative damage in plants. Thiol–disulfide contents, glutathione content and its associated enzyme activities involved in the antioxidant defense and glyoxalase systems, and protein carbonylation in tobacco Bright Yellow-2 cells grown in suspension culture were investigated to assess the protection offered by proline and glycinebetaine against salt stress. Salt stress increased protein carbonylation, contents of thiol, disulfide, reduced (GSH) and oxidized (GSSG) forms of glutathione, and the activity of glutathione-S-transferase and glyoxalase II enzymes, but decreased redox state of both thiol–disulfide and glutathione, and the activity of glutathione peroxidase and glyoxalase I enzymes involved in the ROS and MG detoxification systems. Exogenous application of proline or glycinebetaine resulted in a reduction of protein carbonylation, and in an increase in glutathione redox state and activity of glutathione peroxidase, glutathione-S-transferase and glyoxalase I under salt stress. Neither proline nor glycinebetaine, however, had any direct protective effect on NaCl-induced GSH-associated enzyme activities. The present study, therefore, suggests that both proline and glycinebetaine provide a protective action against NaCl-induced oxidative damage by reducing protein carbonylation, and enhancing antioxidant defense and MG detoxification systems.  相似文献   

17.
18.
The compound LY231617 [2,6-bis(1,1-dimethylethyl)-4-[[(1-ethyl)amino]methyl]phenol hydrochloride] has been reported to afford significant neuroprotection against hydrogen peroxide (H2O2)-induced toxicity in vitro and global ischemia in vivo. We now report on further mechanistic studies of H2O2 toxicity and protection by LY231617. Brief exposure to H2O2 (15 min) elicited an oxidative insult comparable with that generated by overnight treatment. H2O2-mediated cellular degeneration was characterized using lactate dehydrogenase (LDH) release, changes in total glutathione, and a new marker of oxidative stress, 8-epiprostaglandin F2alpha (8-isoprostane). LY231617 attenuated H2O2-mediated degeneration under a variety of exposure conditions, including a more clinically relevant posttreatment paradigm. Levels of 8-isoprostane paralleled LDH release under various treatment paradigms of 100 microM H2O2 +/- 5 microM drug. In contrast, despite affording significant protection, LY231617 had modest to no effects on cellular levels of glutathione. Taken together, these results are consistent with a membrane site of action for LY231617 and suggest that the compound affords cytoprotection via its antioxidant properties.  相似文献   

19.
20.
Fish in the aquatic environment can be subjected to a multipollution state and the occurrence of sequential exposures is an important aspect of eco-toxicological research. In this context, a preceding exposure can affect a toxic response to a subsequent exposure. Therefore, the current study was based on sequential exposures, viz. to a PAH-like compound (beta-naphthoflavone, BNF) followed by a heavy metal (chromium, Cr), focusing on the assessment of oxidative stress responses and their role in induction of genotoxicity. Oxidative stress responses in gill and kidney were investigated in European eel (Anguilla anguilla L.), and measured as lipid peroxidation (LPO), glutathione peroxidase (GPX), catalase (CAT) and glutathione S-transferase (GST) activity, and reduced glutathione (GSH) concentration, whereas genotoxicity was measured as DNA strand breakage. Fish were exposed for 24 h to two Cr concentrations (100 microM, 1 mM), with or without pre-exposure to BNF (2.7 microM, 24 h). In gill, a GSH decrease was observed along with loss of DNA integrity at all exposure conditions except at the lowest Cr concentration, showing a crucial role of GSH over genotoxicity. Moreover, sporadic induction of antioxidant enzymes was not effective in the protection against genotoxicity. However, a different mechanism seems to occur in kidney, since the loss of DNA integrity detected for all exposed groups was not accompanied by alterations in antioxidant levels. With regards to peroxidative damage, both organs showed an LPO increase after sequential exposure to BNF and 100 microM Cr. However, no association between LPO induction and antioxidant responses could be established, showing that LPO is not predictable solely on the basis of antioxidant depletion. The interference of BNF pre-exposure with the response of organs to Cr showed a marked dependence on the Cr concentration. Gill showed synergistic effects on LPO and GPX increase, as well as on CAT and GSH decrease for the lowest Cr concentration. However, for the highest concentration an additive effect on decrease of DNA integrity and an antagonistic effect on the increase of GPX were observed. In kidney, synergistic effects were evident on LPO increase and GSH decrease for the lowest Cr concentration, as well as on CAT and GST decrease for the highest concentration. In contrast, an antagonistic action was observed on DNA integrity loss for both Cr concentrations. The current results are relevant in assessing the interactions of PAHs and metals and contribute to a better knowledge about oxidative stress and mechanisms of genotoxicity in fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号