首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
PilT is a hexameric ATPase required for type IV pili (Tfp) retraction in gram-negative bacterium. Retraction of Tfp mediates intimate attachment and motility on inorganic solid surfaces. We investigated the cloning and expression of pilT and pilU genes of Acidithiobacillus ferrooxidans strains ATCC 23270, and the results indicate that PilT and PilU contain the canonical conserved AIRNLIRE and GMQTXXXXLXXL motifs that are the characteristic motifs of the PilT protein family; PilT and PilU also contain the canonical nucleotide-binding motifs, named with Walker A box (GxxGxGKT/S) and Walker B box (hhhhDE), respectively. The pilT and pilU genes were expressed to produce 37.1- and 42.0-kDa proteins, respectively, and co-transcribed induced by 10 % mineral powder. However, ATPase activity of PilT was distinctly higher than those of PilU. These results indicated that the PilT protein was the real molecular motor of Tfp, while PilU could play a key role in the assembly, modification, and twitching motility of Tfp in A. ferrooxidans. However, PilT and PilU were nonetheless interrelated in the forming and function of the molecular motor of Tfp.  相似文献   

2.
Type IV pili (T4P) are dynamic surface structures that undergo cycles of extension and retraction. T4P dynamics center on the PilB and PilT proteins, which are members of the secretion ATPase superfamily of proteins. Here, we show that PilB and PilT of the T4P system in Myxococcus xanthus have ATPase activity in vitro. Using a structure-guided approach, we systematically mutagenized PilB and PilT to resolve whether both ATP binding and hydrolysis are important for PilB and PilT function in vivo. PilB as well as PilT ATPase activity was abolished in vitro by replacement of conserved residues in the Walker A and Walker B boxes that are involved in ATP binding and hydrolysis, respectively. PilB proteins containing mutant Walker A or Walker B boxes were nonfunctional in vivo and unable to support T4P extension. PilT proteins containing mutant Walker A or Walker B boxes were also nonfunctional in vivo and unable to support T4P retraction. These data provide genetic evidence that both ATP binding and hydrolysis by PilB are essential for T4P extension and that both ATP binding and hydrolysis by PilT are essential for T4P retraction. Thus, PilB and PilT are ATPases that act at distinct steps in the T4P extension/retraction cycle in vivo.  相似文献   

3.

Type IV pilus (T4P) is widespread in bacteria, yet its biogenesis mechanism and functionality is only partially elucidated in a limited number of bacterial species. Here, by using strain OH11 as the model organism, we reported the identification of 26 T4P structural or functional component (SFC) proteins in the Gram-negative Lysobacter enzymogenes, which is a biocontrol agent potentially exploiting T4P-mediated twitching motility for antifungal activity. Twenty such SFC coding genes were individually knocked-out in-frame to create a T4P SFC deletion library. By using combined phenotypic and genetic approaches, we found that 14 such SFCs, which were expressed from four operons, were essential for twitching motility. These SFCs included the minor pilins (PilEi, PilXi, PilVi, and FimTi), the anti-retraction protein PilY1i, the platform protein PilC, the extension/extraction ATPases (PilB, PilT, and PilU), and the PilMNOPQ complex. Among these, mutation of pilT or pilU caused a hyper piliation, while the remaining 12 SFCs were indispensable for pilus formation. Ten (FimTi, PilY1i, PilB, PilT, PilU, and the PilMNOPQ complex) of the 14 SFC proteins, as well as PilA, were further shown to play a key role in L. enzymogenes biofilm formation. Overall, our results provide the first report to dissect the genetic basis of T4P biogenesis and its role in biofilm formation in L. enzymogenes in detail, which can serve as an alternative platform for studying T4P biogenesis and its antifungal function.

  相似文献   

4.
A systematic genetic analysis was performed to identify the inner membrane proteins essential for type IV pilus (T4P) expression in Pseudomonas aeruginosa. By inactivating the retraction aspect of pilus function, genes essential for T4P assembly were discriminated. In contrast to previous studies in the T4P system of Neisseria spp., we found that components of the inner membrane subcomplex consisting of PilMNOP were not essential for surface pilus expression, whereas the highly conserved inner membrane protein PilC was essential. Here, we present data that PilC may coordinate the activity of cytoplasmic polymerization (PilB) and depolymerization (PilT) ATPases via their interactions with its two cytoplasmic domains. Using in vitro co-affinity purification, we show that PilB interacts with the N-terminal cytoplasmic domain of PilC. We hypothesized that PilT similarly interacts with the PilC C-terminal cytoplasmic domain. Overexpression of that domain in the wild-type protein reduced twitching motility by ∼50% compared with the vector control. Site-directed mutagenesis of conserved T4P-specific residues in the PilC C-terminal domain yielded mutant proteins that supported wild-type pilus assembly but had a reduced capacity to support twitching motility, suggesting impairment of putative PilC-PilT interactions. Taken together, our results show that PilC is an essential inner membrane component of the T4P system, controlling both pilus assembly and disassembly.  相似文献   

5.
Twitching motility allows Pseudomonas aeruginosa to respond to stimuli by extending and retracting its type IV pili (TFP). PilJ is a protein necessary for this surface-associated twitching motility and bears high sequence identity with Escherichia coli methyl-accepting chemotaxis proteins (MCP). Here, we report that whereas wild-type P. aeruginosa PAO1 cells have extended pili at a single pole, pilJ mutant cells have shortened pili often at both poles despite normal levels of pilin accumulation, suggesting that PilJ is required for full TFP assembly/extension. Using yellow fluorescent protein fusions (pilJ-yfp), both plasmid born and in-frame chromosomal constructs, we determined that PilJ localizes to both poles of the cell. Overexpression of pilJ-yfp resulted in the protein accumulating between the poles. Paul DeLange and Tracy Collins contributed equally to this work.  相似文献   

6.
Type IV pili are an efficient and versatile device for bacterial surface motility. They are widespread among the beta-, gamma-, and delta-proteobacteria and the cyanobacteria. Within that diversity, there is a core of conserved proteins that includes the pilin (PilA), the motors PilB and PilT, and various components of pilus biogenesis and assembly, PilC, PilD, PilM, PilN, PilO, PilP, and PilQ. Progress has been made in understanding the motor and the secretory functions. PilT is a motor protein that catalyzes pilus retraction; PilB may play a similar role in pilus extension. Type IV pili are multifunctional complexes that can act as bacterial virulence factors because pilus-based motility is used to spread pathogens over the surface of a tissue, or to build multicellular structures such as biofilms and fruiting bodies.  相似文献   

7.
Type IV pili (T4P) are surface structures that undergo extension/retraction oscillations to generate cell motility. In Myxococcus xanthus , T4P are unipolarly localized and undergo pole-to-pole oscillations synchronously with cellular reversals. We investigated the mechanisms underlying these oscillations. We show that several T4P proteins localize symmetrically in clusters at both cell poles between reversals, and these clusters remain stationary during reversals. Conversely, the PilB and PilT motor ATPases that energize extension and retraction, respectively, localize to opposite poles with PilB predominantly at the piliated and PilT predominantly at the non-piliated pole, and these proteins oscillate between the poles during reversals. Therefore, T4P pole-to-pole oscillations involve the disassembly of T4P machinery at one pole and reassembly of this machinery at the opposite pole. Fluorescence recovery after photobleaching experiments showed rapid turnover of YFP–PilT in the polar clusters between reversals. Moreover, PilT displays bursts of accumulation at the piliated pole between reversals. These observations suggest that the spatial separation of PilB and PilT in combination with the noisy PilT accumulation at the piliated pole allow the temporal separation of extension and retraction. This is the first demonstration that the function of a molecular machine depends on disassembly and reassembly of its individual parts.  相似文献   

8.
The ubiquitous species Pseudomonas stutzeri has type IV pili, and these are essential for the natural transformation of the cells. An absolute transformation-deficient mutant obtained after transposon mutagenesis had an insertion in a gene which was termed pilT. The deduced amino acid sequence has identity with PilT of Pseudomonas aeruginosa (94%), Neisseria gonorrhoeae (67%), and other gram-negative species and it contains a nucleotide-binding motif. The mutant was hyperpiliated but defective for further pilus-associated properties, such as twitching motility and plating of pilus-specific phage PO4. [(3)H]thymidine-labeled DNA was bound by the mutant but not taken up. Downstream of pilT a gene, termed pilU, coding for a putative protein with 88% amino acid identity with PilU of P. aeruginosa was identified. Insertional inactivation did not affect piliation, twitching motility, or PO4 infection but reduced transformation to about 10%. The defect was fully complemented by PilU of nontransformable P. aeruginosa. When the pilAI gene (coding for the type IV pilus prepilin) was manipulated to code for a protein in which the six C-terminal amino acids were replaced by six histidine residues and then expressed from a plasmid, it gave a nonpiliated and twitching motility-defective phenotype in pilAI::Gm(r) cells but allowed transformability. Moreover, the mutant allele suppressed the absolute transformation deficiency caused by the pilT mutation. Considering the hypothesized role of pilT(+) in pilus retraction and the presumed requirement of retraction for DNA uptake, it is proposed that the pilT-independent transformation is promoted by PilA mutant protein either as single molecules or as minimal pilin assembly structures in the periplasm which may resemble depolymerized pili and that these cause the outer membrane pores to open for DNA entry.  相似文献   

9.
Type IV pili (TFP) play central roles in the expression of many phenotypes including motility, multicellular behavior, sensitivity to bacteriophages, natural genetic transformation, and adherence. In Neisseria gonorrhoeae, these properties require ancillary proteins that act in conjunction with TFP expression and influence organelle dynamics. Here, the intrinsic contributions of the pilin protein itself to TFP dynamics and associated phenotypes were examined by expressing the Pseudomonas aeruginosa PilA(PAK) pilin subunit in N. gonorrhoeae. We show here that, although PilA(PAK) pilin can be readily assembled into TFP in this background, steady-state levels of purifiable fibers are dramatically reduced relative those of endogenous pili. This defect is due to aberrant TFP dynamics as it is suppressed in the absence of the PilT pilus retraction ATPase. Functionally, PilA(PAK) pilin complements gonococcal adherence for human epithelial cells but only in a pilT background, and this property remains dependent on the coexpression of both the PilC adhesin and the PilV pilin-like protein. Since P. aeruginosa pilin only moderately supports neisserial sequence-specific transformation despite its assembly proficiency, these results together suggest that PilA(PAK) pilin functions suboptimally in this environment. This appears to be due to diminished compatibility with resident proteins essential for TFP function and dynamics. Despite this, PilA(PAK) pili support retractile force generation in this background equivalent to that reported for endogenous pili. Furthermore, PilA(PAK) pili are both necessary and sufficient for bacteriophage PO4 binding, although the strain remains phage resistant. Together, these findings have significant implications for TFP biology in both N. gonorrhoeae and P. aeruginosa.  相似文献   

10.
Pseudomonas aeruginosa is a ubiquitous environmental bacterium and an important human pathogen. The production of several virulence factors by P. aeruginosa is controlled through two quorum-sensing systems, las and rhl. We have obtained evidence that both the las and rhl quorum-sensing systems are also required for type 4 pilus-dependent twitching motility and infection by the pilus-specific phage D3112cts. Mutants which lack the ability to synthesize PAI-1, PAI-2, or both autoinducers were significantly or greatly impaired in twitching motility and in susceptibility to D3112cts. Twitching motility and phage susceptibility in the autoinducer-deficient mutants were partially restored by exposure to exogenous PAI-1 and PAI-2. Both twitching motility and infection by pilus-specific phage are believed to be dependent on the extension and retraction of polar type 4 pili. Western blot analysis of whole-cell lysates and enzyme-linked immunosorbent assays of intact cells were used to measure the amounts of pilin on the cell surfaces of las and rhl mutants relative to that of the wild type. It appears that PAI-2 plays a crucial role in twitching motility and phage infection by affecting the export and assembly of surface type 4 pili. The ability of P. aeruginosa cells to adhere to human bronchial epithelial cells was also found to be dependent on the rhl quorum-sensing system. Microscopic analysis of twitching motility indicated that mutants which were unable to synthesize PAI-1 were defective in the maintenance of cellular monolayers and migrating packs of cells. Thus, PAI-1 appears to have an essential role in maintaining cell-cell spacing and associations required for effective twitching motility.  相似文献   

11.
12.
13.
Type IV pili are long filamentous appendages required for both adhesion and a unique form of motility known as twitching. Twitching motility involves the extension and retraction of the pilus and requires a number of gene products, including five conserved pilin-like proteins of unknown function (FimU, PilV, PilW, PilX, and PilE in Pseudomonas aeruginosa), termed ‘minor’ pilins. Maintenance of a specific stoichiometric ratio among the minor pilins was important for function, as loss or overexpression of any component impaired motility. Disruption of individual minor pilin genes, or of the AlgR positive regulator of minor pilin operon expression in a strain where pilus retraction was blocked by inactivation of the PilT retraction ATPase, revealed that pili were produced, although levels of piliation were reduced relative to pilT positive control. Differences in the levels of piliation of complemented strains pointed to specific roles for each protein in the assembly process, with FimU and PilX being implicated as key promoters of pilus assembly on the cell surface. Using specific antibodies for each protein, we showed that the minor pilins FimU, PilV, PilW, PilX, and PilE were processed by the pre-pilin peptidase PilD and incorporated throughout the growing pilus filament. This is the first study to demonstrate that the minor pilins, conserved among bacteria expressing type IVa pili, are incorporated into the fiber and support a role for them in the initiation, but not termination, of pilus assembly.  相似文献   

14.
15.
PilT is a hexameric ATPase required for type IV pilus retraction in gram-negative bacteria. Retraction of type IV pili mediates intimate attachment to and signaling in host cells, surface motility, biofilm formation, natural transformation, and phage sensitivity. We investigated the in vivo and in vitro roles of each amino acid of the distinct, highly conserved C-terminal AIRNLIRE motif in PilT. Substitution of amino acids A288, I289, L292, and I293 as well as a double substitution of R290 and R294 abolished Pseudomonas aeruginosa PilT function in vivo, as measured by a loss of surface motility and phage sensitivity. When introduced into purified Aquifex aeolicus PilT, substitutions in the AIRNLIRE motif did not disrupt ATPase activity or oligomerization. In contrast, a K136Q substitution in the broadly conserved nucleotide binding motif prevented PilT function in vivo as well as in vitro. We propose that the AIRNLIRE motif forms an amphipathic alpha helix which transmits signals between a surface-exposed protein interaction site and the ATPase core of PilT, and we recognize a potential functional homology in other type II secretion ATPases.  相似文献   

16.
Neisseria gonorrhoeae, the Gram-negative aetiological agent of gonorrhoea, is one of many mucosal pathogens of man that expresses competence for natural transformation. Expression of this phenotype by gonococci appears to rely on the expression of type IV pili (Tfp), but the mechanistic basis for this relationship remains unknown. During studies of gonococcal pilus biogenesis, a homologue of the PilT family of proteins, required for Tfp-dependent twitching motility in Pseudomonas aeruginosa and social gliding motility in Myxococcus xanthus, was discovered. Like the findings in these other species, we show here that gonococcal pilT mutants constructed in vitro no longer display twitching motility. In addition, we demonstrate that they have concurrently lost the ability to undergo natural transformation, despite the expression of structurally and morphologically normal Tfp. These results were confirmed by the findings that two classes of spontaneous mutants that failed to express twitching motility and transformability carried mutations in pilT. Piliated pilT mutants and a panel of pilus assembly mutants were found to be deficient in sequence-specific DNA uptake into the cell, the earliest demonstrable step in neisserial competence. The PilT-deficient strains represent the first genetically defined mutants that are defective in DNA uptake but retain Tfp expression.  相似文献   

17.
Type-4 fimbriae (pili) are associated with a phenomenon known as twitching motility, which appears to be involved with bacterial translocation across solid surfaces. Pseudomonas aeruginosa mutants which produce fimbriae, but which have lost the twitching motility function, display altered colony morphology and resistance to fimbrial-specific bacteriophage. We have used phenotypic complementation of such mutants to isolate a region of DNA involved in twitching motility. This region was physically mapped to a SpeI fragment around 20 min on the P. aeruginosa PAO chromosome, remote from the major fimbrial locus (around 75 min) where the structural subunit-encoding gene (fimA/pilA) and ancillary genes required for fimbrial assembly (pilB, C and D) are found. A gene, pilT, within the twitching motility region is predicted to encode a 344-amino acid protein which has strong homology to a variety of other bacterial proteins. These include the P. aeruginosa PilB protein, the ComG ORF-1 protein from the Bacillus subtilis comG operon (necessary for competence), the PulE protein from the Klebsiella oxytoca (formerly K. pneumoniae) pulC-O operon (involved in pullulanase export), and the VirB-11 protein from the virB operon (involved in virulence) which is located on the Agrobacterium tumefaciens Ti plasmid. We have also identified other sets of homologies between P. aeruginosa fimbrial assembly (Pil) proteins and B. subtilis Com and K. oxytoca Pul proteins, which suggest that these are all related members of a specialised protein export pathway which is widespread in the eubacteria.  相似文献   

18.
PilT is a hexameric ATPase required for bacterial type IV pilus retraction and surface motility. Crystal structures of ADP- and ATP-bound Aquifex aeolicus PilT at 2.8 and 3.2 A resolution show N-terminal PAS-like and C-terminal RecA-like ATPase domains followed by a set of short C-terminal helices. The hexamer is formed by extensive polar subunit interactions between the ATPase core of one monomer and the N-terminal domain of the next. An additional structure captures a nonsymmetric PilT hexamer in which approach of invariant arginines from two subunits to the bound nucleotide forms an enzymatically competent active site. A panel of pilT mutations highlights the importance of the arginines, the PAS-like domain, the polar subunit interface, and the C-terminal helices for retraction. We present a model for ATP binding leading to dramatic PilT domain motions, engagement of the arginine wire, and subunit communication in this hexameric motor. Our conclusions apply to the entire type II/IV secretion ATPase family.  相似文献   

19.
Bacteria inhabit a wide variety of environments in which fluid flow is present, including healthcare and food processing settings and the vasculature of animals and plants. The motility of bacteria on surfaces in the presence of flow has not been well characterized. Here we focus on Pseudomonas aeruginosa, an opportunistic human pathogen that thrives in flow conditions such as in catheters and respiratory tracts. We investigate the effects of flow on P. aeruginosa cells and describe a mechanism in which surface shear stress orients surface-attached P. aeruginosa cells along the flow direction, causing cells to migrate against the flow direction while pivoting in a zig-zag motion. This upstream movement is due to the retraction of type IV pili by the ATPase motors PilT and PilU and results from the effects of flow on the polar localization of type IV pili. This directed upstream motility could be beneficial in environments where flow is present, allowing bacteria to colonize environments that cannot be reached by other surface-attached bacteria.  相似文献   

20.
Type IV fimbriae are essential virulence factors of Dichelobacter nodosus, the principal causative agent of ovine foot rot. The fimA fimbrial subunit gene is required for virulence, but fimA mutants exhibit several phenotypic changes and it is not certain if the effects on virulence result from the loss of type IV fimbria-mediated twitching motility, cell adherence, or reduced protease secretion. We showed that mutation of either the pilT or pilU gene eliminated the ability to carry out twitching motility. However, the pilT mutants displayed decreased adhesion to epithelial cells and reduced protease secretion, whereas the pilU mutants had wild-type levels of extracellular protease secretion and adherence. These data provided evidence that PilT is required for the type IV fimbria-dependent protease secretion pathway in D. nodosus. It was postulated that sufficient fimbrial retraction must occur in the pilU mutants to allow protease secretion, but not twitching motility, to take place. Although no cell movement was detected in a pilU mutant of D. nodosus, aberrant motion was detected in an equivalent mutant of Pseudomonas aeruginosa. These observations explain how in D. nodosus protease secretion can occur in a pilU mutant but not in a pilT mutant. In addition, virulence studies with sheep showed that both the pilT and pilU mutants were avirulent, providing evidence that mutation of the type IV fimbrial system affects virulence by eliminating twitching motility, not by altering cell adherence or protease secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号