首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
A mouse macrophage lambda gt11 cDNA library was screened using a genomic DNA clone coding for the C-chain gene of human C1q. Approximately 600,000 recombinant phage plaques were hybridized with peroxidase-labeled human C-chain probe and detected by enhanced chemiluminescence. Five positive clones were obtained. The size of the full-length cDNA is 1019 bp. The sequence identity of the nucleotide sequence with human C1q C chain is 79%, the identity of the deduced amino acid sequences is 73%. The mouse C1q C chain exhibits the same structural features as the human C chain, e.g. conservation of the cysteine residues. Like the mouse A chain, the mouse C chain has an RGD sequence that may be recognized by receptors of the integrin family. No RGD sequences have been found in any of the human C1q chains. The size of the C-chain mRNA (1.2 kb) and its tissue distribution (macrophages being the cell type with the highest mRNA concentration) are identical to the mRNA of the mouse A and B chains. Alignment of human and mouse C1q A, B and C chains exhibits two blocks of highly conserved residues within the C-terminal globular regions. Three other proteins, collagen type VIII and type X and precerebellin share this similarity with C1q, indicating the structural and probably functional importance of these regions within the non-collagenous domains of the molecules.  相似文献   

5.
To help elucidate the function of the cystic fibrosis transmembrane conductance regulator (CFTR), we have undertaken a cross-species analysis of the DNA sequence which encodes this protein. We have isolated and characterized the cDNA of the bovine homologue of CFTR. The deduced amino acid sequence shows high overall identity with the published sequences from human and mouse, although there is marked variability between the different potential functional domains. The region around human amino acid 508, which is deleted in 70% of cystic fibrosis chromosomes, is highly conserved across species; of the missense cystic fibrosis mutations reported to date, all of the amino acids in the normal human sequence are conserved in the bovine and mouse sequences. A single amino acid encoded by the human cDNA (Ser-434) is missing in the bovine sequence, and there are two amino acids encoded by the bovine sequence which are absent in the human. These all stem from in-frame 3-base omissions within the sequences. In addition to the cow, we amplified the DNA sequences encoding a portion of the R-domain from sheep, monkey, rabbit, and guinea pig. These sequences show relatively low overall sequence identity (63%), but nearly all of the potential protein kinase A and protein kinase C phosphorylation sites are conserved over all of the species examined. Our results suggest functional significance for certain highly conserved residues and putative domains within CFTR.  相似文献   

6.
The conventional myosin motor proteins that drive mammalian skeletal and cardiac muscle contraction include eight sarcomeric myosin heavy chain (MyHC) isoforms. Six skeletal MyHCs are encoded by genes found in tightly linked clusters on human and mouse chromosomes 17 and 11, respectively. The full coding regions of only two out of six mammalian skeletal MyHCs had been sequenced prior to this work. In an effort to assess the extent of sequence diversity within the human MyHC family we present new full-length coding sequences corresponding to four additional human genes: MyHC-IIb, MyHC-extraocular, MyHC-IIa and MyHC-IIx/d. This represents the first opportunity to compare the full coding sequences of all eight sarcomeric MyHC isoforms within a vertebrate organism. Sequence variability has been analyzed in the context of available structure/function data with an emphasis on potential functional diversity within the family. Results indicate that functional diversity among MyHCs is likely to be accomplished by having small pockets of sequence diversity in an otherwise highly conserved molecule.  相似文献   

7.
We have cloned cDNA for TTYH1, a human homologue of the Drosophila melanogaster tweety (tty) gene. The 450-residue predicted protein shows 27% amino acid sequence identity (51% similarity) to the Drosophila protein, which contains an additional C-terminal repetitive region. A second Drosophila homologue exhibits 42% identity (65% similarity) to the tty protein. Mouse (Ttyh1), macaque, and Caenorhabditis elegans homologues were also identified, and the complete coding sequence for the mouse gene was determined. The mouse protein is 91% identical to the human protein. Hydrophobicity analysis of the tty-related proteins indicates that they represent a new family of membrane proteins with five potential membrane-spanning regions. The yeast FTR1 and FTH1 iron transporter proteins and the mammalian neurotensin receptors 1 and 2 have a similar hydrophobicity profile, although there is no detectable sequence homology to the tty-related proteins. This suggests that the tweety-related proteins could be involved in transport of iron or other divalent cations or alternatively that they may be membrane-bound receptors. TTYH1 was mapped to chromosome 19q13.4 by FISH and by radiation hybrid mapping using the Stanford G3 panel.  相似文献   

8.
This study describes the isolation and characterization of zebrafish homologues of the mammalian Pax3 and Pax7 genes. The proteins encoded by both zebrafish genes are highly conserved (>83%) relative to the known mammalian sequences. Also the neural expression patterns during embryogenesis are very similar to the murine homologues. However, observed differences in neural crest and mesodermal expression relative to mammals could reflect some functional divergence in the development of these tissues. For the zebrafish Pax7 protein we report the first full-length amino acid sequences in vertebrates and show the existence of three additional isoforms which have truncations in the homeodomain and/or the C-terminal region. These novel variants provide evidence for additional isoform diversity of vertebrate Pax proteins.  相似文献   

9.
A full-length zebrafish cDNA clone and a partial mouse cDNA clone similar to chick DM-GRASPwere isolated and analyzed. The nucleotide sequence of the full-length zebrafish clone shares 54% identity, and predicts 39% amino acid identity, with chick DM-GRASP. The partial mouse clone shares 76% nucleotide identity, and predicts 76% amino acid identity, with chick DM-GRASP. The predicted proteins encoded by both of these clones exhibit conserved structural domains that are characteristic of the chick protein. These features may identify them as a distinct subfamily within the immunoglobulin superfamily of cell adhesion molecules. Express of the zebrafish DM-GRASP protein is similar to chick DM-GRASP and is principally restricted to a small subset of developing sensory and motor neurons during axonogenesis. Zebrafish DM-GRASP expression was temporally regulated and limited to specific axon domains. This regional expression correlated with fasciculated axon domains. These results suggest that the zebrafish and mouse cDNA clones represent the respective fish and mammalian homologs of thick DM-GRASP. The highly selective expression of zebrafish DM-GRASP suggests that it is involved in the selective fasciculation and guidance of axons along their normal pathways. 1994 John Wiley & Sons, Inc.  相似文献   

10.
11.
12.
cDNA clones corresponding to theHKE4andHKE6genes at the centromeric end of the HLA region on human chromosome 6p21.3 were isolated and characterized. The predicted amino acid sequences of HKE4 and HKE6 exhibited 81.5 and 85.6% identity to the mouse homologues, Ke4 and Ke6, respectively.HKE4may encode a membrane protein with histidine-rich charge clusters. HKE6 possesses remarkable amino acid sequence conservation with several bacterial proteins with oxidoreductase function and also shows significant homology with the two unique functional domains containing the nucleotide cofactor binding site and the consensus motif characteristic of the members of the superfamily of short-chain alcohol dehydrogenases such as human and rat steroid and prostaglandin dehydrogenases.  相似文献   

13.
We have been conducting a mouse cDNA project to predict protein-coding sequences of mouse homologues of human KIAA and FLJ genes since 2001. As an extension of these projects, we herein present the entire sequences of 500 mKIAA cDNA clones and 4 novel cDNA clones that were incidentally identified during this project. We have isolated cDNA clones from the size-fractionated mouse cDNA libraries derived from 7 tissues and 3 types of cultured cells. The average size of the 504 cDNA sequences reached 4.3 kb and that of the deduced amino acid sequences from these cDNAs was 807 amino acid residues. We assigned the integrity of CDSs from the comparison with the corresponding human KIAA cDNA sequences. The comparison of mouse and human sequences revealed that two different human KIAA cDNAs are derived from single genes. Furthermore, 3 out of 4 proteins encoded in the novel cDNA clones showed moderate sequence similarity with human KIAA proteins, thus we could obtain new members of KIAA protein families through our mouse cDNA projects.  相似文献   

14.
15.
We screened the Berkeley "Drosophila Genome Project" database with "electronic probes" corresponding to conserved amino acid sequences from the five known rat somatostatin receptors. This yielded alignment with a Drosophila genomic clone that contained a DNA sequence coding for a protein, having amino acid sequence identities with the rat galanin receptors. Using PCR with Drosophila cDNA as a template, and oligonucleotide probes coding for the exons of the presumed Drosophila gene, we were able to clone the cDNA for this receptor. The Drosophila receptor has most amino acid sequence identity with the three mammalian galanin receptors (37% identity with the rat galanin receptor type-1, 32% identity with type-2, and 29% identity with type-3). Less sequence identity exists with the mammalian opioid/nociceptin-orphanin FQ receptors (26% identity with the rat micro opioid receptor), and mammalian somatostatin receptors (25% identity with the rat somatostatin receptor type-2). The novel Drosophila receptor gene contains ten introns and eleven exons and is located at the distal end of the X chromosome.  相似文献   

16.
Lescure A  Allmang C  Yamada K  Carbon P  Krol A 《Gene》2002,291(1-2):279-285
Selenocysteine and selenoprotein synthesis require a complex molecular machinery in mammals. Among the key players is the RNA-protein complex formed by the selenocysteine insertion sequence (SECIS) binding protein (SBP2) and the SECIS element, an RNA hairpin in the 3' untranslated regions of selenoprotein messenger RNAs (mRNAs). We have isolated the DNA complementary to mRNA of the human SBP2, enabling us to establish that it differs from a previously reported human SBP2-like protein. Examination of the expression pattern revealed that the human SBP2 protein is encoded by a 4 kb long mRNA that is over-expressed in testis. Compared to the rat SBP2 sequence, the human SBP2 protein displays two highly conserved domains with 92 and 95% amino acid identity, the latter one containing the RNA binding domain. The inter-domain section carries 55% sequence identity, the remainder of the SBP2 sequences showing about 65% identity, values lower than expected for two mammalian proteins. Interestingly, we could show that the binding of human SBP2 to the SECIS RNA is stimulated by the selenoprotein-specialized elongation translation factor mSelB/eEFsec.  相似文献   

17.
The ZP3 gene encodes for a zona glycoprotein that serves as both a cell-specific binding site for capacitated spermatozoa and an inducer of acrosomal exocytosis during fertilisation. In this study we have determined the nucleotide sequence of rat ZP3 (accession no. Y10823), predicted primary amino acid structure and determined the cellular origin of this molecule within the ovary. Rat ZP3 was found to have an open reading frame of 1272 nucleotides encoding a polypeptide chain of 424 amino acids that was expressed exclusively by the actively growing oocyte population. Rat ZP3 exhibited 91%, 78% and 66% identity with the mouse, hamster and human homologues, respectively. Key features of mouse ZP3, including the number and location of cysteine and proline residues and N-linked glycosylation sites, were also conserved in the rat homologue. The putative O-linked glycosylation sites, a series of serine residues at ZP3(329-334), were also conserved in rat and mouse ZP3, although immediately downstream of this site the amino acid sequences deviated over a short stretch of amino acids. The hydropathicity profile revealed two hydrophobic domains. The first was associated with a putative N-terminal signal sequence which is unusual in the rat in possessing a proline residue at the -1 position relative to the signal cleavage site, a feature it shares with human and marmoset ZP3 but not mouse. The second hydrophobic domain was observed at the C-terminus downstream of a TGF-beta type III receptor domain that appears to be common to all ZP3 sequences examined to date.  相似文献   

18.
Mono-ADP-ribosylation is one of the posttranslational protein modifications regulating cellular metabolism, e.g., nitrogen fixation, in prokaryotes. Several bacterial toxins mono-ADP-ribosylate and inactivate specific proteins in their animal hosts. Recently, two mammalian GPI-anchored cell surface enzymes with similar activities were cloned (designated ART1 and ART2). We have now identified six related expressed sequence tags (ESTs) in the public database and cloned the two novel human genes from which these are derived (designatedART3andART4). The deduced amino acid sequences of the predicted gene products show 28% sequence identity to one another and 32–41% identity vs the muscle and T cell enzymes. They contain signal peptide sequences characteristic of GPI anchorage. Southern Zoo blot analyses suggest the presence of related genes in other mammalian species. By PCR screening of somatic cell hybrids and byin situhybridization, we have mapped the two genes to human chromosomes 4p14–p15.1 and 12q13.2–q13.3. Northern blot analyses show that these genes are specifically expressed in testis and spleen, respectively. Comparison of genomic and cDNA sequences reveals a conserved exon/intron structure, with an unusually large exon encoding the predicted mature membrane proteins. Secondary structure prediction analyses indicate conserved motifs and amino acid residues consistent with a common ancestry of this emerging mammalian enzyme family and bacterial mono(ADP-ribosyl)transferases. It is possible that the four human gene family members identified so far represent the “tip of an iceberg,” i.e., a larger family of enzymes that influences the function of target proteins via mono-ADP-ribosylation.  相似文献   

19.
20.
Organization and expression of the chicken N-myc gene.   总被引:4,自引:1,他引:4       下载免费PDF全文
We cloned the chicken N-myc gene and analyzed its structure and expression. We found that it consisted of three exons with coding regions in exons 2 and 3. Comparison to mammalian N-myc genomic sequence indicated that nucleotide sequences of the 5'-flanking region, noncoding exon 1, and introns were not conserved, but coding and 3' noncoding sequences showed significant homology to mammalian N-myc. Alignment of deduced amino acid sequences of chicken and mammalian N-myc proteins revealed nine conserved domains interrupted by different lengths of nonhomologous sequences. Two of the domains were specific to N-myc proteins, and the other seven were common to c-myc proteins. Northern blot (immunoblot) and in situ hybridization analyses of 3.5-day-old chicken embryos revealed that high-level expression of the N-myc gene was confirmed to certain tissues, e.g., the central nervous system, neural crest derivatives, and mesenchyme of limb buds. In the beak and limb primordia, N-myc expression in the mesenchyme was higher toward the distal end, suggesting possible involvement in positional assignment of the tissue within the rudimentary structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号