首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of retinyl palmitate on the polyunsaturated fatty-acid composition, chemiluminescence and peroxidizability index of microsomes and mitochondria obtained from rat liver, kidney, brain, lung and heart, was studied. After incubation of microsomes and mitochondria in an ascorbate Fe++ system (120 min at 37 degrees C) it was observed that the total cpm/mg protein originated from light emission: chemiluminescence was lower in liver microsomes, mitochondria and kidney microsomes in the vitamin A group than in the control group. In mitochondria obtained from control rats, the most sensitive fatty acids for peroxidation were arachidonic acid C20:4 n6 in liver and docosahexaenoic acid C22:6 n3 in kidney and brain. In microsomes obtained from control rats, the most sensitive fatty acids for peroxidation were linoleic acid C18:2 n6 and C20:4 n6 in liver and C22:6 n3 in kidney. Changes in the most polyunsaturated fatty acids were not observed in organelles obtained from lung and heart. As a consequence the peroxidizability index, a parameter based on the maximal rate of oxidation of fatty acids, showed significant changes in liver, kidney and brain mitochondria, while in microsomes changes were significant in liver and kidney. These changes were less pronounced in membranes derived from rats receiving vitamin A. Our results confirm and extend previous observations that indicated that vitamin A may act as an antioxidant protecting membranes from deleterious effects.  相似文献   

2.
In the study reported here the effect of conjugated linoleic acid (CLA) and vitamin A on the polyunsaturated fatty acid composition, chemiluminescence and peroxidizability index of microsomes and mitochondria isolated from rat liver was analyzed. The effect of CLA on the polyunsaturated fatty acid composition of native microsomes was evidenced by an statistically significant p < 0.007 decrease of linoleic acid C18:2 n6, whereas in mitochondria it was observed a decrease p < 0.0001 of arachidonic acid C20:4 n6 when compared with vitamin A and control groups. Docosahexaenoic acid C22:6 n3 in mitochondria was reduced p < 0.04 in CLA and vitamin A groups when compared with control. After incubation of microsomes or mitochondria in an ascorbate (0.4 mM)-Fe++ (2.15 M) system (120 min at 37°C) it was observed that the total cpm/mg protein originated from light emission: chemiluminescence was lower in liver microsomes or mitochondria obtained from CLA group (received orally: 12.5 mg/daily during 10 days) than in the vitamin A group (received intraperitoneal injection: daily 0.195 g/kg during 10 days). CLA reduced significantly maximal induced chemiluminescence in microsomes relative to vitamin A and control groups, whereas in mitochondria the effect was observed relative to control group The polyunsaturated fatty acid composition of liver microsomes or mitochondria changed by CLA and vitamin A treatment. The polyunsaturated fatty acids mainly affected when microsomes native and peroxidized from control group were compared were linoleic, linolenic and arachidonic acids, while in vitamin A group linoleic and arachidonic acid were mainly peroxidized, whereas in CLA group only arachidonic acid was altered. In mitochondria obtained from the three groups arachidonic acid and docosahexaenoic acid showed a significant decrease when native and peroxidized groups were compared. As a consequence the peroxidizability index, a parameter based on the maximal rate of oxidation of fatty acids, show significant changes in the CLA group compare vitamin A and control groups. The simultaneous analysis of peroxidizability index, chemiluminescence and fatty acid composition demonstrated that CLA is more effective than vitamin A protecting microsomes or mitochondria from peroxidative damage.  相似文献   

3.
In the present study it was investigated if Vitamin A supplementation could protect rat kidney microsomes and mitochondria from in vitro lipoperoxidation. After incubation of rat kidney microsomes and mitochondria in an ascorbate-Fe++ system, at 37°C during 60 min, it was observed that the total cpm/mg protein originated from light emission (chemiluminescence) was lower in those organelles obtained from the control group when compared with the vitamin A supplemented group. The fatty acid composition of microsomes and mitochondria from control group was profoundly modified when subjected to nonenzymatic lipoperoxidation with a considerable decrease of arachidonic acid, C20:4 (n-6) and docosapentaenoic acid, C22:5 (n–3) in mitochondria and docosahexaenoic acid C22:6 (n-3) in microsomes.As a consequence the peroxidizability index, a parameter based on the maximal rate of oxidation of specific fatty acids was higher in the supplemented animals than in those used as control. These results indicate that Vitamin A may act as antioxidant protecting rat kidney microsomes and mitochondria from deleterious effect.  相似文献   

4.
The testis is a remarkably active metabolic organ; hence it is suitable not only for studies of lipid metabolism in the organ itself but also for the study of lipid peroxidation processes in general. The content of fatty acids in testis is high with a prevalence of polyunsaturated fatty acids (PUFA) which renders this tissue very susceptible to lipid peroxidation. Studies were carried out to evaluate the effect of alpha-tocopherol in vitro on ascorbate-Fe(++) lipid peroxidation of rat testis microsomes and mitochondria. Chemiluminescence and fatty acid composition were used as an index of the oxidative destruction of lipids. Special attention was paid to the changes produced on the highly PUFA [C20:4 n6] and [C22:5 n6]. Lipid peroxidation of testis microsomes or mitochondria induced a significant decrease of both fatty acids. Total chemiluminescence was similar in both kinds of organelles when the peroxidized without (control) and with ascorbate-Fe(++) (peroxidized) groups were compared. Arachidonic acid was protected more efficiently than docosapentaenoic acid at all alpha-tocopherol concentrations tested when rat testis microsomes or mitochondria were incubated with ascorbate-Fe(++). The maximal percentage of inhibition in both organelles was approximately 70%; corresponding to an alpha-tocopherol concentration between 1 and 0.25 mM. IC50 values from the inhibition of alpha-tocopherol on the chemiluminescence were higher in microsomes (0.144 mM) than mitochondria (0.078 mM). The protective effect observed by alpha-tocopherol in rat testis mitochondria was higher compared with microsomes, associated with the higher amount of [C20:4 n6]+[C22:5 n6] in microsomes that in mitochondria. It is proposed that the vulnerability to lipid peroxidation of rat testis microsomes and mitochondria is different because of the different proportion of PUFA in these organelles The peroxidizability index (PI) was positively correlated with the level of long chain fatty acids. The results demonstrated the protective effect of alpha-tocopherol on lipid peroxidation in microsomes and mitochondria from rat testis.  相似文献   

5.
Many reports have demonstrated that birds show a low degree of fatty acid unsaturation and lipid peroxidation compared with mammals of similar body size. The aim of the present study was to examine fatty acid profiles, non-enzymatic lipid peroxidation and vitamin E levels of mitochondria and microsomes obtained from liver, heart and brain of goose (Anser anser). The unsaturated fatty acid content found in mitochondria and microsomes of all tissues examined was approximately 60% with a prevalence of C18:1 n9 + C18:2 n6 = 50%. The 20:4 n6 + C22:6 n3 content was significantly higher in brain organelles (approx. 16%) compared with mitochondria and microsomes of liver and heart (approx. 4%). Whereas these organelles were not affected when subjected to lipid peroxidation, brain mitochondria were highly affected, as indicated by the increase in chemiluminescence and a considerable decrease of arachidonic and docosahexaenoic acids. These changes were not observed during lipid peroxidation of brain microsomes. Vitamin E content was higher in liver and heart than in brain mitochondria (1.77 +/- 0.06 and 1.93 +/- 0.13 vs. 0.91 +/- 0.09 nmol/mg protein). The main conclusion of this paper is that a lower degree of unsaturation of fatty acids in liver and heart mitochondria and a higher vitamin E level than in brain mitochondria protect those tissues against lipid peroxidation.  相似文献   

6.
Birds – particularly long-lived species – have special adaptations for preventing tissue damage caused by reactive oxygen species. The objective of the present study was to analyse the fatty acid composition and non-enzymatic lipid peroxidation of mitochondria and microsomes obtained from liver, heart and brain of quail (Coturnix coturnix japonica), a short-lived bird. Fatty acids located in total lipids of rat liver, heart and brain mitochondria and microsomes were determined using gas chromatography and lipid peroxidation was evaluated using a chemiluminescence assay. The unsaturated fatty acid content found in mitochondria and microsomes of all tissue examined was approximately 50 and 40%, respectively with a prevalence of C18:1 n9. The C18:2 n6 content in brain mitochondria was significantly lower as compared to liver and heart mitochondria. Whereas the C20:4 n6 content in mitochondria from all tissues examined and brain microsomes was approximately 6%, liver and heart microsomes exhibited lower values. C22:6 n3 was absent in liver mitochondria, very low content in liver microsomes and heart organelles (between 0.5 and 1%) and high content in brain organelles, with mitochondria having the highest value (11%). Whereas liver and heart organelles were not affected when subjected to lipid peroxidation, brain mitochondria were highly affected, as indicated by the increase in chemiluminescence and a considerable decrease of C20:4 n6 and C22:6 n3. These results indicate that a low degree of fatty acid unsaturation in liver and heart organelles of quail, a short-lived bird, may confer advantage by decreasing their sensitivity to lipid peroxidation process.  相似文献   

7.
The effect of intraperitoneal administration of alpha-tocopherol (100 mg/kg weight/24 h) on ascorbate (0-0.4 mM) induced lipid peroxidation of mitochondria isolated from rat liver, cerebral hemispheres, brain stem and cerebellum was examined. The ascorbate induced light emission in hepatic mitochondria was nearly completely inhibited by alpha-tocopherol (control-group: 114.32+/-14.4; vitamin E-group: 17.45+/-2.84, c.p.m.x10(-4)). In brain mitochondria, 0.2 mM ascorbate produced the maximal chemiluminescence and significant differences among both groups were not observed. No significant differences in the chemiluminescence values between control and vitamin E treated groups were observed when the three brain regions were compared. The light emission produced by mitochondrial preparations was much higher in cerebral hemispheres than in brain stem and cerebellum. In liver and brain mitochondria from control group, the level of arachidonic acid (C20:4n6) and docosahexaenoic acid (C22:6n3) was profoundly affected. Docosahexaenoic in liver mitochondria from vitamin E group decreased by 30% upon treatment with ascorbic acid when compared with mitochondria lacking ascorbic acid. As a consequence of vitamin E treatment, a significant increase of C22:6n3 was detected in rat liver mitochondria (control-group: 6.42 +/-0.12; vitamin E-group: 10.52 +/-0.46). Ratios of the alpha-tocopherol concentrations in mitochondria from rats receiving vitamin E to those of control rats were as follows: liver, 7.79; cerebral hemispheres, 0.81; brain stem, 0.95; cerebellum, 1.05. In liver mitochondria, vitamin E shows a protector effect on oxidative damage. In addition, vitamin E concentration can be increased in hepatic but not in brain mitochondria. Lipid peroxidation mainly affected, arachidonic (C20:4n6) and docosahexaenoic (C22:6n3) acids.  相似文献   

8.
The present study investigates in a experimental system in vitro the relationship between the non-enzymatic (ascorbate-Fe2+) and enzymatic (NADPH) lipid peroxidation in rat liver microsomes and nuclei. Chemiluminescence was measured as cpm/mg protein during 180 min at 37 degrees C. Approximately 50-55% of the fatty acids located in rat liver microsomes and nuclei are polyunsaturated with a prevalence of C18:2 n6 and C20:4 n6. The values of total light emission during the non-enzymatic and enzymatic lipid peroxidation were highest in microsomes than in nuclei. A significant decrease of C20:4 n6 and C22:6 n3 in rat liver microsomes and nuclei was observed during the lipid ascorbate-Fe2+-dependent peroxidation, whereas a significant decrease of C20:4 n6 in rat liver microsomes was observed during enzymatic lipid peroxidation. Over the time course studies, analysis of chemiluminescence in microsomes and nuclei demonstrated that the lipid peroxidation in the presence of ascorbate-Fe2+ reach a maximum at 50 and 30 min, respectively, whereas in the presence of NADPH it reachs a maximum at 20 min in both organelles. In liver microsomes and nuclei the peroxidizability index (pi) which indicates the degree of vulnerability to degradation of a selected membrane showed statistically significant differences between control versus ascorbate-Fe2+ when microsomes or nuclei were compared. Our results indicate that non-enzymatic (ascorbate-Fe2+) and enzymatic (NADPH) lipid peroxidation are operative in rat liver microsomes and nuclei but the sensitivities of both organelles to lipid peroxidation evidenced by chemiluminescence was greater in the presence of ascorbate-Fe2+ when compared with NADPH.  相似文献   

9.
Reactive oxygen species play an important role in several acute lung injuries. The lung tissue contains polyunsaturated fatty acids (PUFAs) that are substrates of lipid peroxidation that may lead to loss of the functional integrity of the cell membranes. In this study, we compare the in vitro protective effect of pulmonary surfactant protein A (SP-A), purified from porcine surfactant, against ascorbate-Fe(2+) lipid peroxidation stimulated by linoleic acid hydroperoxide (LHP) of the mitochondria and microsomes isolated from rat lung; deprived organelles of ascorbate and LHP were utilized as control. The process was measured simultaneously by chemiluminescence as well as by PUFA degradation of the total lipids isolated from these organelles. The addition of LHP to rat lung mitochondria or microsomes produces a marked increase in light emission; the highest value of activation was produced in microsomes (total chemiluminescence: 20.015+/-1.735 x 10(5) cpm). The inhibition of lipid peroxidation (decrease of chemiluminescence) was observed with the addition of increasing amounts (2.5 to 5.0 microg) of SP-A in rat lung mitochondria and 2.5 to 7.5 microg of SP-A in rat lung microsomes. The inhibitory effect reaches the highest values in the mitochondria, thus, 5.0 microg of SP-A produces a 100% inhibition in this membranes whereas 7.5 microg of SP-A produces a 51.25+/-3.48% inhibition in microsomes. The major difference in the fatty acid composition of total lipids isolated from native and peroxidized membranes was found in the arachidonic acid content; this decreased from 9.68+/-1.60% in the native group to 5.72+/-1.64% in peroxidized mitochondria and from 7.39+/-1.14% to 3.21+/-0.77% in microsomes. These changes were less pronounced in SP-A treated membranes; as an example, in the presence of 5.0 microg of SP-A, we observed a total protection of 20:4 n-6 (9.41+/-3.29%) in mitochondria, whereas 7.5 microg of SP-A produced a 65% protection in microsomes (5.95+/-0.73%). Under these experimental conditions, SP-A produces a smaller inhibitory effect in microsomes than in mitochondria. Additional studies of lipid peroxidation of rat lung mitochondria or microsomes using equal amounts of albumin and even higher compared to SPA were carried out. Our results indicate that under our experimental conditions, BSA was unable to inhibit lipid peroxidation stimulated by linoleic acid hydroperoxide of rat lung mitochondria or microsomes, thus indicating that this effect is specific to SP-A.  相似文献   

10.
The pineal hormone melatonin (N-acetyl, 5-methoxytryptamine) was recently accepted to act as an antioxidant under both in vivo and in vitro conditions. In this study, we examined the possible preventive effect of melatonin on ascorbate-Fe(2+) lipid peroxidation of rat testis microsomes and mitochondria. Special attention was paid to the changes produced on the highly polyunsaturated fatty acids C20:4 n6 and C22:5 n6. The lipid peroxidation of testis microsomes or mitochondria produced a significant decrease of C20:4 n6 and C22:5 n6. The light emission (chemiluminescence) used as a marker of lipid peroxidation was similar in both kinds of organelles when the control and peroxidized groups were compared. Both long chain polyunsaturated fatty acids were protected when melatonin was incorporated either in microsomes or mitochondria. The melatonin concentration required to inhibit by 100% the lipid peroxidation process was 5.0 and 1.0mM in rat testis microsomes and mitochondria, respectively. IC 50 values calculated from the inhibition curve of melatonin on the chemiluminescence rates were higher in microsomes (4.98 mM) than in mitochondria (0.67 mM). The protective effect observed by melatonin in rat testis mitochondria was higher than that observed in microsomes which could be explained if we consider that the sum of C20:4 n6+C22:5 n6 in testis microsomes is two-fold greater than present in mitochondria.  相似文献   

11.
Studies were carried out to determine the level of ascorbate-Fe2+ dependent lipid peroxidation of mitochondria and microsomes isolated from liver and heart of rat and pigeon. Measurements of chemiluminescence indicate that the lipid peroxidation process was more effective in mitochondria and microsomes from rat liver than in the same organelles obtained from pigeon. In both mitochondria and microsomes from liver of both species a significant decrease of arachidonic acid was observed during peroxidation. The rate C18:2 n6/C20:4 n6 was 4.5 times higher in pigeon than in rat liver. This observation can explain the differences noted when light emission and unsaturation index of both species were analysed. A significant decrease of C18:2 n6 and C20:4 n6 in pigeon liver mitochondria was observed when compared with native organelles whereas in pigeon liver microsomes only C20:4 n6 diminished. In rat liver mitochondria only arachidonic acid C20:4 n6 showed a significant decrease whereas in rat liver microsomes C20:4 n6 and C22:6 n3 decreased significantly. However changes were not observed in the fatty acid profile of mitochondria and microsomes isolated from pigeon heart. In the heart under our peroxidation conditions the fatty acid profile does not appear to be responsible for the different susceptibility to the lipid peroxidation process. The lack of a relationship between fatty acid unsaturation and sensitivity to peroxidation observed in heart suggest that other factor/s may be involved in the protection to lipid peroxidation in microsomes and mitochondria isolated from heart.  相似文献   

12.
In the studies described here rat liver microsomes containing labeled palmitic, stearic, oleic or linoleic acids were incubated with fatty acid binding protein (FABP) and the rate of removal of14C-labeled fatty acids from the membrane by the soluble protein was measured using a model system. More unsaturated than saturated fatty acids were removed from native liver microsomes incubated with similar amounts of FABP. Thein vitro peroxidation of microsomal membranes mediated by ascorbate-Fe++, modified its fatty acid composition with a considerable decrease of the peroxidizability index. These changes in the microsomes facilitated the removal of oleic and linoeic acids by FABP, but the removal of palmitic and stearic acids was not modified. This effect is proposed to result from a perturbation of membrane structure following peroxidation with release of free fatty acids from susceptible domains.Abbreviations BSA bovine serum albumin - FABP fatty acid binding protein  相似文献   

13.
The effect of intraperitoneal administration of α-tocopherol (100 mg/kg weight/24 h) on ascorbate (0–0.4 mM) induced lipid peroxidation of mitochondria isolated from rat liver, cerebral hemispheres, brain stem and cerebellum was examined. The ascorbate induced light emission in hepatic mitochondria was nearly completely inhibited by α-tocopherol (control-group: 114.32±14.4; vitamin E-group: 17.45±2.84, c.p.m.×10−4). In brain mitochondria, 0.2 mM ascorbate produced the maximal chemiluminescence and significant differences among both groups were not observed. No significant differences in the chemiluminescence values between control and vitamin E treated groups were observed when the three brain regions were compared. The light emission produced by mitochondrial preparations was much higher in cerebral hemispheres than in brain stem and cerebellum. In liver and brain mitochondria from control group, the level of arachidonic acid (C20:4n6) and docosahexaenoic acid (C22:6n3) was profoundly affected. Docosahexaenoic in liver mitochondria from vitamin E group decreased by 30% upon treatment with ascorbic acid when compared with mitochondria lacking ascorbic acid. As a consequence of vitamin E treatment, a significant increase of C22:6n3 was detected in rat liver mitochondria (control-group: 6.42 ±0.12; vitamin E-group: 10.52 ±0.46). Ratios of the α-tocopherol concentrations in mitochondria from rats receiving vitamin E to those of control rats were as follows: liver, 7.79; cerebral hemispheres, 0.81; brain stem, 0.95; cerebellum, 1.05. In liver mitochondria, vitamin E shows a protector effect on oxidative damage. In addition, vitamin E concentration can be increased in hepatic but not in brain mitochondria. Lipid peroxidation mainly affected, arachidonic (C20:4n6) and docosahexaenoic (C22:6n3) acids.  相似文献   

14.
The aim of this study was to examine the fatty acid composition and non-enzymatic lipid peroxidation (LP) of mitochondria and microsomes obtained from liver, heart and brain of Lonchura striata. The percentage of total unsaturated fatty acid was approximately 30-60% in the organelles from all tissues studied. Brain mitochondria and both organelles of liver exhibited the highest percentage of polyunsaturated fatty acid (PUFA) (30 and 18%, respectively). The arachidonic acid (AA) content was 7% in mitochondria of liver and brain and 3% in heart mitochondria. The percentage of docosahexanoic acid (DHA) was 8% in brain mitochondria and approximately 2-3% in heart and liver mitochondria. The peroxidizability index (PI) of brain mitochondria and both organelles from liver was higher than that of organelles from heart and brain microsomes. Liver organelles and brain mitochondria were affected by LP, as indicated by the increase in chemiluminescence and a decrease of AA and DHA. These changes were not observed during LP of brain microsomes and both organelles from heart. These results indicate: 1) PI positively correlates with PUFA percentage and LP; 2) The resistance to LP detected in heart organelles would contribute to the cardiac protection against oxidative damage.  相似文献   

15.
The effect of intraperitoneal administration of alpha-tocopherol (100 mg/kg wt/24 h) on ascorbate (0.4 mM) induced lipid peroxidation of mitochondria and microsomes isolated from rat liver and testis was studied. Special attention was paid to the changes produced on the highly polyunsaturated fatty acids C20:4 n6 and C22:6 n3 in liver and C20:4 n6 and C22:5 n6 in testis. The lipid peroxidation of liver mitochondria or microsomes produced a significant decrease of C20:4 n6 and C22:6 n3 in the control group, whereas changes in the fatty acid composition of the alpha-tocopherol treated group were not observed. The light emission was significantly higher in the control than in the alpha-tocopherol treated group. The lipid peroxidation of testis microsomes isolated from the alpha-tocopherol group produced a significant decrease of C20:4 n6 , C22:5 n6 and C22:6 n3, these changes were not observed in testis mitochondria. The light emission of both groups was similar. The treatment with alpha-tocopherol at the dose and times indicated showed a protector effect on the polyunsaturated fatty acids of liver mitochondria, microsomes and testis mitochondria, whereas those fatty acids situated in testis microsomes were not protected during non enzymatic ascorbate-Fe2+ lipid peroxidation. The protector effect observed by alpha-tocopherol treatment in the fatty acid composition of rat testis mitochondria but not in microsomes could be explained if we consider that the sum of C20:4 n6 + C22:5 n6 in testis microsomes is 2-fold than that present in mitochondria.  相似文献   

16.
The objective of this investigation was to examine the relationship between body size, fatty acid composition and sensitivity to lipid peroxidation of mitochondria and microsomes isolated from the brain of different size bird species: manon, quail, pigeon, duck and goose, representing a 372-fold range of body mass. Fatty acids of total lipids were determined using gas chromatography and lipid peroxidation was evaluated using a chemiluminescence assay. The allometric study of the fatty acids present in brain mitochondria and microsomes of the different bird species showed a small number of significant allometric trends. In mitochondria the percentage of monounsaturated fatty acids, was significantly lower in the larger birds (r=-0.965; P<0.008). The significant allometric increase in 18:2 n-6; linoleic acid (r=0.986; P<0.0143), polyunsaturated (r=0.993; P<0.007) and total unsaturated (r=0.966; P<0.034) in brain microsomes but not in mitochondria may indicate a preferential incorporation of this fatty acid in the brain endoplasmic reticulum of the larger bird species. The brain of all birds studied had a high content of docosahexaenoic acid. However brain mitochondria but not microsomes isolated from all the birds analyzed showed a significant decrease of arachidonic and docosahexaenoic acids during lipid peroxidation. The allometric analyses of chemiluminescence were not statistically significant. In conclusion our results show absence of correlation between the sensitivity to lipid peroxidation of brain mitochondria and microsomes with body size and maximum life span.  相似文献   

17.
The significance of microsomal vitamin E in protecting against the free-radical process of lipid peroxidation was evaluated with the low-level-chemiluminescence technique in microsomal fractions from vitamin E-deficient and control rats. The induction period that normally precedes the ascorbate/ADP/Fe3+-induced lipid peroxidation was taken as reflecting the microsomal vitamin E content and was found to be 5-6-fold decreased in microsomal fractions from vitamin E-deficient rats. Supplementation of microsomal fractions from vitamin E-deficient rats with exogenous vitamin E partially restores the induction period observed in that from control rats. The decrease in chemiluminescence intensity and the increase in the induction period both correlate linearly with the amount of vitamin E added. However, the efficiency of exogenous vitamin E is about 50-fold lower than that exerted by the naturally occurring vitamin E in microsomal membranes. These observations are discussed in terms of the process of re-incorporation of vitamin E into membranes, the experimental model for lipid peroxidation selected, and the method to evaluate lipid peroxidation, namely low-level chemiluminescence.  相似文献   

18.
In the present study, we examined the effect of the intraperitoneal administration of vitamin E (100 mg/kg weight/24 h) on ascorbate (0.4 mM) induced lipid peroxidation of rat liver microsomes . We also analyzed the effect of hepatic cytosolic proteins on this process. The results indicate that the ascorbate induced light emission was 76% lower in microsomes (1 mg protein) obtained from vitamin E treated animals when compared with controls. In the presence of cytosolic protein (1 mg) the chemiluminescence of control microsomes diminished 55.8 and 59.5% when cytosol from controls and treated animals was used, respectively. The chemiluminescence of vitamin E microsomes diminished 25.03 and 22.08% when both types of cytosol were added to the medium. Dialyzed or treated at 70°C cytosol was also able to inhibit the lipid peroxidation of either control or vitamin E rat liver microsomes. By means of gas chromatography we analyzed the fatty acid composition of native and peroxidated microsomes from both animal groups. The peroxidation affected principally arachidonic acid and its diminution was more evident in the control microsomes than in the microsomes from the vitamin E treated group. By HPLC we analyzed the vitamin E content in all subcellular fractions employed. In microsomes from the vitamin E-group, the content of vitamin was 11 times higher than in the control ones (0.678 ± 0.1038 vs. 0.062 ± 0.0045 g -tocopherol/mg protein, respectively), while levels in the cytosol from the vitamin E-group were only 2 times higher than in the control cytosol (0.057 ± 0.0051 vs. 0.025 ± 0.0015 g -tocopherol/mg protein, respectively).  相似文献   

19.
Studies were done to evaluate the effects of alpha-tocopherol deficiency in rats on the fatty acid composition and sensitivity to lipid peroxidation (LP) of mitochondria and microsomes from adrenal glands, testes, and livers. In control (alpha-tocopherol-sufficient) animals, adrenal concentrations of alpha-tocopherol were approximately 10 times greater than those in livers and testes. Dietary deficiency of alpha-tocopherol for 8 weeks decreased adrenal and hepatic concentrations by 80-90% and testicular concentrations by approximately 60-70%. Incubation of testicular or hepatic mitochondria and microsomes from control rats with FeSO(4) (1.0 mM) caused a time-dependent stimulation of LP as indicated by the formation of thiobarbituric acid reactive substances (TBARS); the rate of TBARS production increased in preparations from alpha-tocopherol-deficient animals. TBARS formation was not demonstrable in adrenal mitochondria or microsomes from alpha-tocopherol sufficient rats, but reached high levels in alpha-tocopherol-deficient preparations. The fatty acid composition of mitochondria and microsomes was tissue-dependent. In particular, arachidonic acid comprised approximately 40% of the total fatty acids in adrenal membranes, but only 20-25% in testes and livers. alpha-Tocopherol deficiency increased oleic acid concentrations in adrenal and hepatic mitochondria and microsomes but not in testes. In all three tissues, linoleic acid concentrations decreased by approximately 50%, but arachidonic acid levels were unaffected by alpha-tocopherol deficiency. The results indicate a close relationship between tissue sensitivity to LP in vitro and alpha-tocopherol concentrations. Nonetheless, any oxidative stress in vivo caused by alpha-tocopherol deficiency seems to spare arachidonic acid in mitochondria and microsomes but decreases linoleic acid concentrations. It is possible that because of the important physiological functions of arachidonic acid, metabolic adaptations serve to maintain membrane content during periods of oxidative stress.  相似文献   

20.
Lung microsomal membranes that contain the redox active components associated with the mixed-function oxidase system can be peroxidized in vitro. To investigate the characteristics of rat lung microsomal lipid peroxidation, we performed experiments using a variety of peroxidation initiators and microsomes obtained from normal and vitamin E-deficient rats. We found that lung microsomes obtained from normal rats are peroxidized much less than liver microsomes obtained from the same animals. Only initiation systems using very high concentrations of ferrous iron produced any significant peroxidation of normal rat lung microsomes. Lung microsomes obtained from vitamin E-deficient rats were found to be much more susceptible to peroxidation. Glutathione (GSH) was effective in inhibiting peroxidation when lung microsomes from normal rats were peroxidized. GSH was not effective in decreasing peroxidation when microsomes from vitamin E-deficient rats were peroxidized in the same system. We conclude that both GSH and vitamin E protect lung microsomal membranes from peroxidation. Glutathione protection appears to be related to the presence of a sulfhydryl group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号