首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Setlow RB 《DNA Repair》2004,3(4):441-449
I was born in January, 1921 and was fortunate in working for a research organization that had no fixed retirement age. I was permitted to continue Science as long as there were some resources to support research that had some relevance to the organization's goals. A number of projects on which I worked were continuations of ones begun before the age of 65 (1986) and several new ones were based on both previous interests and ideas and some on new ideas. A number of the ideas arose from participation on Committees of the US National Research Council. I was able to extend my earlier interests in DNA repair to include experiments on the variations in DNA repair among apparently normal humans. In collaborations with other researchers we showed that the repair abilities following exposures to chemicals or to ionizing or ultraviolet (UV) radiation did not follow Poisson distributions. I participated in experiments, using a fish model to estimate the wavelength ranges in sunlight responsible for inducing melanoma and another fish model to estimate the germ cell mutations that might arise from exposures to the heavily ionizing particles in cosmic rays beyond low Earth orbit. A transgenic fish model was used to investigate the possibilities of using the fish to assay for mutagens in sediments in Long Island Sound. These Reflections summarize the atmosphere necessary for a second life and the scientific results of this life.  相似文献   

2.
Current immunization protocols in cancer patients involve CTL-defined tumor peptides. Mature dendritic cells (DC) are the most potent APCs for the priming of naive CD8(+) T cells, eventually leading to tumor eradication. Because DC can secrete MHC class I-bearing exosomes, we addressed whether exosomes pulsed with synthetic peptides could subserve the DC function consisting in MHC class I-restricted, peptide-specific CTL priming in vitro and in vivo. The priming of CTL restricted by HLA-A2 molecules and specific for melanoma peptides was performed: 1) using in vitro stimulations of total blood lymphocytes with autologous DC pulsed with GMP-manufactured autologous exosomes in a series of normal volunteers; 2) in HLA-A2 transgenic mice (HHD2) using exosomes harboring functional HLA-A2/Mart1 peptide complexes. In this study, we show that: 1). DC release abundant MHC class I/peptide complexes transferred within exosomes to other naive DC for efficient CD8(+) T cell priming in vitro; 2). exosomes require nature's adjuvants (mature DC) to efficiently promote the differentiation of melanoma-specific effector T lymphocytes producing IFN-gamma (Tc1) effector lymphocytes in HLA-A2 transgenic mice (HHD2). These data imply that exosomes might be a transfer mechanism of functional MHC class I/peptide complexes to DC for efficient CTL activation in vivo.  相似文献   

3.
Dendritic cell (DC)-based vaccines are being developed for treatment of patients with cancer, in part because DC are potent inducers of CD8(+) CTL. DC MHC class I:antigenic peptide complexes that are required for CTL elicitation are most often generated by incubating DC with peptides or by transfecting (or transducing) DC with cDNAs (or viral vectors) that encode protein Ags. The former approach is feasible when MHC class I Ags and relevant peptides are known. The latter approach may be hampered by inefficient DC transfection (transduction) and/or difficulties associated with preparation and use of viral vectors. Herein we demonstrate that a bacterial recombinant model tumor-associated Ag (OVA) that contains the HIV TAT protein transduction domain (PTD) was readily engineered and purified, efficiently transduced murine lymphocytes and DC, and was processed by proteasomes for MHC class I-restricted presentation to CTL. In addition, PTD-containing rOVA was processed and presented by DC to CD4 T cells as efficiently as native OVA or rOVA lacking the PTD. PTD-OVA-transduced DC induced CTL in vivo in a Th cell-independent fashion and vaccinated against OVA-expressing tumors. In contrast, rOVA lacking the PTD did not enter the DC MHC class I presentation pathway and DC treated with this protein did not prime OVA-specific CTL in vivo. Treatment of mice harboring clinically apparent OVA-expressing tumors with PTD-OVA-transduced DC resulted in tumor regression in some animals. This straightforward vaccination strategy may translate into DC-based treatments for patients with cancer and other serious diseases.  相似文献   

4.
For vaccination strategies and adoptive immunotherapy purposes, immature dendritic cells (DC) can be generated from adherent monocytes using GM-CSF and IL-4. Presently, the only clinically applicable method to induce stable maturation of DC is the use of supernatants of activated monocytes (monocyte-conditioned medium (MCM)). MCM contains an undefined mixture of cytokines and is difficult to standardize. Here we report that stable maturation of DC can be simply induced by the addition of polyriboinosinic polyribocytidylic acid (poly(I:C)), a synthetic dsRNA clinically applied as an immunomodulator. Poly(I:C)-treated DC show a mature phenotype with high expression levels of HLA-DR, CD86, and the DC maturation marker CD83. This mature phenotype is retained for 48 h after cytokine withdrawal. In contrast to untreated DC, poly(I:C)-treated DC down-regulate pinocytosis, produce high levels of IL-12 and low levels of IL-10, induce strong T cell proliferation in a primary allo MLR, and effectively present peptide Ags to HLA class I-restricted CTL. In conclusion, we present a simple methodology for the preparation of clinically applicable mature DC.  相似文献   

5.
The role of type I interferon production by dendritic cells in host defense   总被引:6,自引:0,他引:6  
Type I interferons (IFN) and dendritic cells (DC) share an overlapping history, with rapidly accumulating evidence for vital roles for both production of type 1 IFN by DC and the interaction of this IFN both with DC and components of the innate and adaptive immune responses. Within the innate immune response, the plasmacytoid DC (pDC) are the "professional" IFN producing cells, expressing specialized toll-like receptors (TLR7 and -9) and high constitutive expression of IRF-7 that allow them to respond to viruses with rapid and extremely robust IFN production; following activation and production of IFN, the pDC subsequently mature into antigen presenting cells that help to shape the adaptive immune response. However, like most cells in the body, the myeloid or conventional DC (mDC or cDC) also produce type I IFNs, albeit typically at a lower level than that observed with pDC, and this IFN is also important in innate and adaptive immunity induced by these classic antigen presenting cells. These two major DC subsets and their IFN products interact both with each other as well as with NK cells, monocytes, T helper cells, T cytotoxic cells, T regulatory cells and B cells to orchestrate the early immune response. This review discusses some of the converging history of DC and IFN as well as mechanisms for IFN induction in DC and the effects of this IFN on the developing immune response.  相似文献   

6.
The present article summarizes studies aimed at addressing the role of antigen-presenting cell populations, particularly dendritic cells (DC), in the immune response to Salmonella typhimurium. Data from in vitro studies shed light on presentation of antigens expressed in Salmonella on major histocompatibility complex class I and class II molecules by infected DC and macrophages, and the activation state of DC following infection. Finally, data from in vivo studies addressing the role of DC and defined DC subsets during the host response to Salmonella using a murine infection model are discussed.  相似文献   

7.
Despite limited clinical efficacy in large trials, dendritic cells (DC)-based immunization has yielded impressive responses in some patients. Key questions remain to be solved in order to optimize this therapeutic vaccine. Among them, the nature of the DC type used and its state of maturation are pivotal. Besides myeloid DC which are mostly used in clinical trials, a new DC type has been recently described resulting from the differentiation of monocytes in the presence of type I IFNs. In the present study, we analyze the features of type I IFNs DC generated in the presence of either IL-3 (IL-3-DC) or GM-CSF (GM-CSF-DC) and compare their capacity to respond to poly(I:C) and to subsequently trigger T-cell activation. The two DC types disclose a similar immunophenotype characterized by high levels of chemokines receptors, co-stimulatory and HLA molecules expression. After poly(I:C) maturation, both DC types display a marked upregulation of CD80, CD83 and CD86 and the same pattern of gene expression. In addition, poly(I:C) stimulated them to secrete IFN- and IL-12p70. Both DC types elicit potent allogeneic reactions. Priming of autologous T cells by IL-3-DC or GM-CSF-DC pulsed with an HLA-A2 restricted melan-A derived peptide, lead to the expansion of peptide specific CTL secreting high amounts of IFN-.We conclude that poly(I:C) matured IL-3-DC and GM-CSF-DC share similar phenotype and functional properties including the capacity to prime tumor-associated antigen specific CTL.N. Mazouz and O. Detournay equally contributed to this work.  相似文献   

8.
The human thymic dendritic cell phenotype and its modification in culture.   总被引:7,自引:0,他引:7  
In order to extend our study of human thymic dendritic cells (DC) we have purified DC by density gradient separation followed by treatment with CD1 and CD2 mAb and antibody-coated immunobeads. The resulting population contains 60 to 75% brightly HLA-DR+ cells. Morphological and functional studies demonstrate that these cells share the common characteristics of dendritic cells. Extensive phenotypic analysis of the purified DC has been made using a panel of mAb. Cytofluorometric assays with mAb reactive with common leucocyte antigen confirm that the brightly HLA-DR+ cells are of mesenchymal origin. Thymic DC express HLA-DQ and HLA-class I antigens. They are also positive for the expression of CD45RA molecules and some express the ICAM-1 and the LFA-1 molecules. DC do not stain with a wide variety of anti-T, -B, and -monocyte or -M phi mAb and lack Fc gamma RIII, CR2, and CR3. Freshly isolated DC failed to stain with OKT6 mAb; however, they progressively acquire the CD1 molecule after a few days culture. The acquisition of CD1 molecule is selective since CD4, CD2, and HLA-ABC molecules are not upregulated under the same conditions. From phenotypic results, it was therefore possible to sort brightly HLA-DR+ or -DQ+ cells and so obtain greater than 90 to 95% purified human thymic DC. Such homogeneous DC populations are obviously of great interest for the study of thymic DC functions.  相似文献   

9.
Vaccinia virus (VV) infection is known to inhibit dendritic cells (DC) functions in vitro. Paradoxically, VV is also highly immunogenic and thus has been used as a vaccine. In the present study, we investigated the effects of an in vivo VV infection on DC function by focusing on early innate immunity. Our data indicated that DC are activated upon in vivo VV infection of mice. Splenic DC from VV-infected mice expressed elevated levels of MHC class I and co-stimulatory molecules on their cell surface and exhibited the enhanced potential to produce cytokines upon LPS stimulation. DC from VV-infected mice also expressed a high level of interferon-beta. However, a VV infection resulted in the down-regulation of MHC class II expression and the impairment of antigen presentation to CD4 T cells by DC. Thus, during the early stage of a VV infection, although DC are impaired in some of the critical antigen presentation functions, they can promote innate immune defenses against viral infection.  相似文献   

10.
A reciprocal activating interaction between NK cells and dendritic cells (DC) has been suggested to play a role in the functional regulation of these cells in immunity, but it has been studied only using in vitro generated bone marrow- or monocyte-derived DC. We report that human peripheral blood plasmacytoid DC (pDC) and myeloid DC are necessary to induce NK cell function depending on the type of microbial stimulus. pDC and myeloid DC are required for strongly increased NK cytolytic activity and CD69 expression, in response to inactivated influenza virus or CpG-containing oligonucleotides and poly(I:C), respectively. Secreted type I IFN is required and sufficient for the augmentation of NK cell cytolytic activity in the coculture with pDC or myeloid DC, whereas CD69 expression is dependent on both type I IFN and TNF. In addition, in response to poly(I:C), myeloid DC induce NK cells to produce IFN-gamma through a mechanism dependent on both IL-12 secretion and cell contact between NK cells and myeloid DC, but independent of type I IFN. IL-2-activated NK cells have little to no cytolytic activity for immature myeloid DC and pDC, but are able to induce maturation of these cells. Moreover, IL-2-activated NK cells induce, in the presence of a suboptimal concentration of CpG-containing oligonucleotides, a strong IFN-alpha and TNF production. These data suggest that the reciprocal functional interaction between NK cells and either pDC or myeloid DC may play an important physiological role in the regulation of both innate resistance and adaptive immunity to infections.  相似文献   

11.
IRF family proteins and type I interferon induction in dendritic cells   总被引:14,自引:0,他引:14  
Tailor P  Tamura T  Ozato K 《Cell research》2006,16(2):134-140
Dendritic cells (DC), although a minor population in hematopoietic cells, produce type I interferons (IFN) and other cytokines and are essential for innate immunity. They are also potent antigen presenters and regulate adaptive immunity. Among DC subtypes plasmacytoid DC (pDC) produce the highest amounts of type I IFN. In addition, pro- and anti-inflammatory cytokines such as IL-12 and IL-10 are induced in DC in response to Toll like receptor (TLR) signaling and upon viral infection. Proteins in the IRF family control many aspects of DC activity. IRF-8 and IRF-4 are essential for DC development. They differentially control the development of four DC subsets. IRF-8^-/- mice are largely devoid of pDC and CD8α^+ DC, while IRF-4^-/- mice lack CD4^+ DC. IRF-8^-/-, IRF4^-/-, double knock-out mice have only few CD8α CD4^-DC that lack MHC Ⅱ. IRF proteins also control type Ⅰ IFN induction in DC. IRF-7, activated upon TLR signaling is required for IFN induction not only in pDC, but also in conventional DC (cDC) and non-DC cell types. IRF-3, although contributes to IFN induction in fibroblasts, is dispensable in IFN induction in DC. Our recent evidence reveals that type Ⅰ IFN induction in DC is critically dependent on IRF-8, which acts in the feedback phase of IFN gene induction in DC. Type Ⅰ IFN induction in pDC is mediated by MyD88 dependent signaling pathway, and differs from pathways employed in other cells, which mostly rely on TLR3 and RIG-Ⅰ family proteins. Other pro-inflammatory cytokines are produced in an IRF-5 dependent manner. However, IRF-5 is not required for IFN induction, suggesting the presence of separate mechanisms for induction of type Ⅰ IFN and other pro-inflammatory cytokines. IFN and other cytokines produced by activated DC in turn advance DC maturation and change the phenotype and function of DC. These processes are also likely to be governed by IRF family proteins.  相似文献   

12.
Dendritic cells (DC) are professional antigen-presenting cells of the immune system that play a key role in regulating T cell-based immunity. In vivo, the capacity of DC to activate T cells depends on their ability to migrate to the T cell areas of lymph nodes as well as on their maturation state. Depending on their cytokine-secreting profile, DC are able to skew the immune response in a specific direction. In particular, IL-12p70 producing DC drive T cells towards a T helper 1 type response. A serious disadvantage of current clinical grade ex vivo generated monocyte-derived DC is the poor IL-12p70 production. We have investigated the effects of Toll-like receptor (TLR)-mediated maturation on ex vivo generated human monocyte-derived DC. We demonstrate that in contrast to cytokine-matured DC, DC matured with poly(I:C) (TLR3 ligand) and/or R848 (TLR7/8 ligand) are able to produce vast amounts of IL-12p70, but exhibit a reduced migratory capacity. The addition of prostaglandin E(2) (PGE(2)) improved the migratory capacity of TLR-ligand matured DC while maintaining their IL-12p70 production upon T cell encounter. We propose a novel clinical grade maturation protocol in which TLR ligands poly(I:C) and R848 are combined with PGE(2) to generate DC with both high migratory capacity and IL-12p70 production upon T cell encounter.  相似文献   

13.
Aspiz ME 《Ontogenez》2006,37(2):149-152
This essay about the outstanding Russian embryologist and ichthyologist is not time to any date of his life. The cause for its appearance was an unexpected meeting with Elena N. Disler, whom I did not see almost 60 years. When I worked at the Biological Station "Glubokoe ozero" (Deep Lake), there were also biologists N.N. Disler and his wife E.F. Eremeeva with their children Lena and Vitya. At the same time, as usual, S.G. Kryzhanovsky worked at the station, who lived in Moscow in the same apartment with the Dislers. After the death of this lone scientists, his archive, mostly epistolary, was in the care of the Dislers. And Elena N. Disler (that girl Lena) proposed for me to have a look at this archive.  相似文献   

14.
The superior ability of dendritic cells (DC) in triggering antigen-specific T cell responses makes these cells attractive tools for the generation of antitumor or antiviral immunity. We report here an efficient retroviral transduction system for the introduction of antigens into DC. A retroviral vector encoding several CTL epitopes in a string-of-beads fashion in combination with the marker gene green fluorescence protein (GFP) was generated. Polyepitope transduced EBV-LCL could be isolated on the basis of GFP expression and were found to be sensitive to lysis by antigen-specific cytotoxic T cells, demonstrating that antigens encoded by the retroviral construct were stably expressed, processed, and presented in the context of HLA class I molecules. CD34(+) cells isolated from G-CSF mobilized peripheral blood were transduced with high efficiency (40-60%) with this retroviral construct. These cells could be considerably expanded in vitro and differentiated into mature DC without loss of the transduced antigen. DC transduced with the polyepitope constructs were able to mount a CTL response against an influenza epitope in the context of HLA-A2, demonstrating the antigen-specific CTL priming capacity of retrovirally transduced DC. Staining of the T cells with tetramers of HLA-A2 and the influenza virus peptide demonstrated a marked antigen-specific CTL enrichment after 2 in vitro stimulations using DC transduced with the polyepitope. However, additional in vitro stimulations of the T cells with transduced DC did not result in a further enrichment of tetramer staining cells.  相似文献   

15.
T cell development is determined by positive and negative selection events. An intriguing question is how signals through the TCR can induce thymocyte survival and maturation in some and programmed cell death in other thymocytes. This paradox can be explained by the hypothesis that different thymic cell types expressing self-MHC/peptide ligands mediate either positive or negative selection events. Using transgenic mice that express MHC class I (MHC-I) selectively on DC, we demonstrate a compartmentalization of thymic functions and reveal that DC induce CTL tolerance to MHC-I-positive hemopoietic targets in vivo. However, in normal and bone marrow chimeric mice, MHC-I+ DC are sufficient to positively select neither MHC-Ib (H2-M3)- nor MHC-Ia (H2-K)-restricted CD8+ T cells. Thus, thymic DC are specialized in tolerance induction, but cannot positively select the vast majority of MHC-I-restricted CD8+ T cells.  相似文献   

16.
Two class I MHC mutant mouse strains, bm14 and bm13, differ from the strain of origin B6 in one and three amino acids in the alpha 1 and alpha 2 domains of the H-2Db molecule, respectively. These alterations result in specific failure to generate a CTL (Tc) response to the male-specific Ag H-Y. Immunization and/or restimulation in vitro with syngeneic male dendritic cells (DC), expressing very high levels of class I MHC molecules, restored the H-Y-specific Tc response of bm14 but not of bm13 mice. Serologically Db determinants were lost in normal spleen cells of both mutants, because FACS analysis showed a decreased binding of Db domain-specific mAb. Although bm13 DC show a higher fluorescence than bm13 normal spleen cells it is still strongly reduced (30 to 50%) in comparison with B6 DC. Surprisingly, bm14 DC show an equally very strong binding compared with B6 DC with these mAb. The quantitative expression of class I molecules on APC thus appears to be a major determinant in the regulation of Tc responses. In addition, immunization with DC markedly influenced the target cell specificity of the ensuing Tc response. The combined data clearly demonstrate that besides the highly efficient class II-restricted presentation of Ag to Th, shown previously, DC are also superior in the presentation of Ag in the context of class I molecules to Tc. bm14 DC are capable of directly activating H-Y-specific Lyt-2+ Tc memory cells without the need for L3T4+ Th. These biologic effects of DC can at least in part be explained by their very high class I MHC expression. Moreover, these results reiterate that class I MHC Db mutants and different APC can be used to study the contribution of specific class I domains to Tc recognition and restriction specificity.  相似文献   

17.
Recombinant adenoviral vectors (AdV) are potent vehicles for antigen engineering of dendritic cells (DC). DC engineered with AdV to express full length tumor antigens are capable stimulators of antigen-specific polyclonal CD8+ and CD4+ T cells. To determine the impact of AdV on the HLA class I antigen presentation pathway, we investigated the effects of AdV transduction on antigen processing machinery (APM) components in human DC. Interactions among AdV transduction, maturation, APM regulation and T cell activation were investigated. The phenotype and cytokine profile of DC transduced with AdV was intermediate, between immature (iDC) and matured DC (mDC). Statistically significant increases in expression were observed for peptide transporters TAP-1 and TAP-2, and HLA class I peptide-loading chaperone ERp57, as well as co-stimulatory surface molecule CD86 due to AdV transduction. AdV transduction enhanced the expression of APM components and surface markers on mDC, and these changes were further modulated by the timing of DC maturation. Engineering of matured DC to express a tumor-associated antigen stimulated a broader repertoire of CD8+ T cells, capable of recognizing immunodominant and subdominant epitopes. These data identify molecular changes in AdV-transduced DC (AdV/DC) that could influence T cell priming and should be considered in design of cancer vaccines.  相似文献   

18.
We previously reported that exogenous antigens complexed with the cationic liposome lipofectin (LF) were efficiently presented via major histocompatibility complex (MHC) class I molecules on pulsed dendritic cells (DCs) in vitro. In the present study, we demonstrated that MHC class I-restricted antigen presentation on DC2.4 cells, a murine immature DC line, treated with LF-antigen complexes was remarkably suppressed through the inhibition of endocytosis, proteasome catalysis, and Golgi transport. We also found that LF did not influence expression of interleukin-12 p40 mRNA, MHC molecules, or co-stimulatory molecules in DC2.4 cells. These findings suggest that an antigen-loading procedure using LF could enhance delivery of exogenous antigens to the classical MHC class I pathway in DCs, but it does not initiate DC maturation.  相似文献   

19.
We have recently reported that MHC class I Ag-processing machinery (APM) component expression in dendritic cells (DC) might be down-regulated by tumor cells. However, the tumor-derived factors responsible for inhibition of the APM component expression in DC generated in the tumor microenvironment as well as potential protective mechanism have not yet been investigated. In this article, we demonstrate that expression of several MHC class I APM components, including MB1 (beta5), LMP2, LMP7, LMP10, and ERp57, is significantly down-regulated in human DC generated in the presence of primary oral squamous cell carcinoma cell lines or coincubated with purified gangliosides. Suppression of MHC class I APM component expression in DC generated in the presence of tumor cells was significantly attenuated by the inhibition of glucosyl transferase in tumor cells, suggesting that tumor-induced MHC class I APM component down-regulation in DC was mediated in part by oral squamous cell carcinoma-derived gangliosides. Furthermore, rIL-15 restored both tumor cell-induced and ganglioside-induced MHC class I APM component expression in DC, as well as their ability to present Ags to autologous Ag-specific T cells. These results demonstrate that IL-15 restores MHC class I APM component expression in DC down-regulated by tumor-derived gangliosides.  相似文献   

20.
The cell biology of cross-presentation is reviewed regarding exogenous antigen uptake, antigen degradation and entry into the major histocompatibility complex class I pathway. Whereas cross-presentation is not associated with enhanced phagocytic ability, certain receptors may favour uptake for cross-presentation for example mannose receptor for soluble glycoproteins. Perhaps, the defining property of the cross-presenting cell is some specialization in host machinery for handling and transport of antigen across organelles. Both cytosolic and vacuolar pathways are discussed. Which dendritic cell (DC) subset is the cross-presenting cell is explored. Cross-presentation is found within the CD8(+) subset resident in lymphoid organs. The role of other DC subsets (especially the migratory CD8(-) DC) and the route of antigen delivery are also discussed. Further consideration is given to antigen transfer between DC subsets and differential presentation to naive vs memory T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号