首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
The euryhalinity of mitten crab, Eriocheir sinensis, is based on osmoregulation, and thus on the activity of Na(+)-K(+)-ATPase. We studied location and activity of this enzyme in gills of juvenile crabs exposed to 5 per thousand, 25 per thousand, and 40 per thousand salinity. The posterior gills showed always a high number of immunopositive cells (IPC), staining with fluorescent antibody against Na(+)-K(+)-ATPase, covering at 5 per thousand the entire lamellae. At 25 per thousand, they showed fewer IPC which occurred only at the bases of the lamellae. Enzyme activity was consistently higher in posterior than in anterior gills. Low salinity stimulated the activity only in posterior gills. Both histochemical and enzymatic results are consistent with previous ultrastructural observations showing that the epithelial cells of the posterior, but not the anterior gills exhibit typical traits of ionocytes. While an increase in Na(+)-K(+)-ATPase activity at a reduced salinity is consistent with a strong hyper-osmoregulatory capacity in juvenile crabs, a low activity at an enhanced salinity suggests a physiological response, directed towards a reduction of Na(+) uptake. The activity increase of ion-transporting enzymes is directly related to spatial changes in their distribution along the osmoregulatory tissue, i.e. an enhanced number of IPC scattered along the entire lamellae. In juveniles, this allows for successful development and growth at reduced salinities.  相似文献   

2.
Salinity and its variations are among the key factors that affect survival, metabolism and distribution during the fish development. The successful establishment of a fish species in a given habitat depends on the ability of each developmental stage to cope with salinity through osmoregulation. It is well established that adult teleosts maintain their blood osmolality close to 300 mosM kg(-1) due to ion and water regulation effected at several sites: tegument, gut, branchial chambers, urinary organs. But fewer data are available in developing fish. We propose a review on the ontogeny of osmoregulation based on studies conducted in different species. Most teleost prelarvae are able to osmoregulate at hatch, and their ability increases in later stages. Before the occurrence of gills, the prelarval tegument where a high density of ionocytes (displaying high contents of Na+/K+-ATPase) is located appears temporarily as the main osmoregulatory site. Gills develop gradually during the prelarval stage along with the numerous ionocytes they support. The tegument and gill Na+/K+-ATPase activity varies ontogenetically. During the larval phase, the osmoregulatory function shifts from the skin to the gills, which become the main osmoregulatory site. The drinking rate normalized to body weight tends to decrease throughout development. The kidney and urinary bladder develop progressively during ontogeny and the capacity to produce hypotonic urine at low salinity increases accordingly. The development of the osmoregulatory functions is hormonally controlled. These events are inter-related and are correlated with changes in salinity tolerance, which often increases markedly at the metamorphic transition from larva to juvenile. In summary, the ability of ontogenetical stages of fish to tolerate salinity through osmoregulation relies on integumental ionocytes, then digestive tract development and drinking rate, developing branchial chambers and urinary organs. The physiological changes leading to variations in salinity tolerance are one of the main basis of the ontogenetical migrations or movements between habitats of different salinity regimes.  相似文献   

3.
Because of the permeability of the chorion, sea bass embryos are exposed to seawater before hatching and hence require precocious osmoregulatory processes. Several studies of other species have demonstrated the existence of ion-transporting cells located on the yolk sac membrane of embryos. In these cells, called ionocytes, ion movements are controlled by a pool of transmembrane proteins. Among them, the Na+/K+-ATPase, an abundant driving enzyme, has been used to reveal the presence or absence of ionocytes. We have immunostained the Na+/K+-ATPase in sea-bass embryos and shown the presence of the first ionocytes on the yolk sac membrane at stage 12 somites and the occurrence of ionocytes at other sites before hatching. Ionocytes located on the first gill slits have been identified at stage 14 somites. Primitive enteric ionocytes have also been detected at stage 14 somites in the mid and posterior gut. The presence of these cells might be related to the early opening of the gut to perivitelline fluids, both anteriorly by the gill slits and posteriorly by the anus. The role of embryonic ionocytes in osmoregulation before hatching is discussed.  相似文献   

4.
We examined the ontogeny of the osmoregulatory sites of the branchial cavity in embryonic and early postembryonic stages of the European lobster Homarus gammarus through transmission electron microscopy, immunofluorescence microscopy, and immunogold electron microscopy using a monoclonal antibody IgGalpha(5) raised against the avian alpha-subunit of the Na(+),K(+)-ATPase. In mid-late embryos, Na(+),K(+)-ATPase was located along the pleurites and within the epipodite buds. In late embryos just before hatching, the enzyme was confined to the epipodite epithelia. After hatching, slight differentiations of ionocytes occured in the epipodites of larval stages. Na(+),K(+)-ATPase was also located in the ionocytes of the epipodites of larvae exposed to seawater (35.%o) and to dilute seawater (22.1 %o). After metamorphosis, the inner-side branchiostegite epithelium appeared as an additional site of enzyme location in postlarvae held in dilute seawater. Within the ionocytes, Na(+),K(+)-ATPase was mostly located along the basolateral infoldings. These observations are discussed in relation to the physiological shift from osmoconforming larvae to slightly hyper-regulating (in dilute seawater) postmetamorphic stages. The acquisition of the ability to hyper-osmoregulate probably originates from the differentiation, on the epipodites and mainly along the branchiostegites, of ionocytes that are the site of ion pumping as evidenced by the location of Na(+),K(+)-ATPase.  相似文献   

5.
This study aimed to examine effects of short- or long-term acclimation to brackish water or seawater on the climbing perch, Anabas testudineus, which is an aquatic air-breathing teleost living typically in freshwater. A. testudineus exhibits hypoosmotic and hypoinoic osmoregulation; the plasma osmolality, [Na+] and [Cl-] of fish acclimated to seawater were consistently lower than those of the external medium. However, during short-term (1 day) exposure to brackish water (15 per thousand) or seawater (30 per thousand), these three parameters increased significantly. There were also significant increases in tissue ammonia and urea contents, contents of certain free amino acids (FAAs) in the muscle, and rates of ammonia and urea excretion in the experimental fish. The accumulated FAAs might have a transient role in cell volume regulation. In addition, these results indicate that increases in protein degradation and amino acid catabolism had occurred, possibly providing energy for the osmoregulatory acclimation of the gills in fish exposed to salinity stress. Indeed, there was a significant increase in the branchial Na+/K+ -ATPase activity in fish exposed to seawater for a prolonged period (7 days), and the plasma osmolality, [Na+] and [Cl-] and the tissue FAA contents of these fish returned to control levels. More importantly, there was a significant increase in the dependence on water-breathing in fish acclimated to seawater for 7 days. This suggests for the first time that A. testudineus could alter its bimodal breathing pattern to facilitate the functioning of branchial Na+/K+ -ATPase for osmoregulatory purposes.  相似文献   

6.
The kinetic properties of a microsomal gill (Na(+), K(+)) ATPase from the blue crab, Callinectes danae, acclimated to 15 per thousand salinity for 10 days, were analyzed using the substrate p-nitrophenylphosphate. The (Na(+), K(+))-ATPase hydrolyzed the substrate obeying Michaelian kinetics at a rate of V=102.9+/-4.3 U.mg(-1) with K(0.5)=1.7+/-0.1 mmol.L(-1), while stimulation by magnesium (V=93.7+/-2.3 U.mg(-1); K(0.5)=1.40+/-0.03 mmol.L(-1)) and potassium ions (V=94.9+/-3.5 U.mg(-1); K(0.5)=2.9+/-0.1 mmol.L(-1)) was cooperative. K(+)-phosphatase activity was also stimulated by ammonium ions to a rate of V=106.2+/-2.2 U. mg(-1) with K(0.5)=9.8+/-0.2 mmol.L(-1), following cooperative kinetics (n(H)=2.9). However, K(+)-phosphatase activity was not stimulated further by K(+) plus NH(4) (+) ions. Sodium ions (K(I)=22.7+/-1.7 mmol.L(-1)), and orthovanadate (K(I)=28.1+/-1.4 nmol.L(-1)) completely inhibited PNPPase activity while ouabain inhibition reached almost 75% (K(I)=142.0+/-7.1 micromol.L(-1)). Western blotting analysis revealed increased expression of the (Na(+), K(+))-ATPase alpha-subunit in crabs acclimated to 15 per thousand salinity compared to those acclimated to 33 per thousand salinity. The increase in (Na(+), K(+))-ATPase activity in C. danae gill tissue in response to low-salinity acclimation apparently derives from the increased expression of the (Na(+), K( (+) ))-ATPase alpha-subunit; phosphate-hydrolyzing enzymes other than (Na(+), K(+))-ATPase are also expressed. These findings allow a better understanding of the kinetic behavior of the enzymes that underlie the osmoregulatory mechanisms of euryhaline crustaceans.  相似文献   

7.
Some kinetic properties of gill Na(+),K(+)-ATPase of the estuarine crab, Chasmagnathus granulata, and its involvement in osmotic adaptation were analyzed. Results suggest the presence of different Na(+),K(+)-ATPase isoforms in anterior and posterior gills. They have different affinities for Na(+), but similar affinity values for K(+), Mg(2+), ATP and similar enzymatic profiles as a function of temperature of the incubation medium. Ouabain concentrations which inhibit 50% of enzyme activity were also similar in the two types of gills. Enzyme activity and affinity for Na(+) are higher in posterior gills than in anterior ones. Furthermore, affinities of Na(+),K(+)-ATPase of posterior gills for Na(+) and K(+) were similar to or higher than those of gills or other structures involved in the osmoregulation in several euryaline decapod crustaceans. Acclimation to low salinity was related to a significant increase in the maximum Na(+), K(+)-ATPase activity, mainly in posterior gills. On the other hand, crab acclimation to high salinity induced a significant decrease in maximum enzyme activity, both in anterior and posterior gills. These results are in accordance to the osmoregulatory performance showed by C. granulata in diluted media, and point out the major role of posterior gills in the osmoregulation of this species.  相似文献   

8.
The branchial osmoregulatory response of gilthead sea bream (Sparus auratus L.) to short-term (2-192 hr) and long-term (2 weeks) exposure to different environmental salinities (5 per thousand, 15 per thousand, 25 per thousand, 38 per thousand and 60 per thousand) was investigated. A "U-shaped" relationship was observed between environmental salinity and gill Na+,K+ -ATPase activity in both long- and short-term exposure to altered salinity, with the increase in activity occurring between 24 and 96 hr after the onset of exposure. Plasma osmolality and plasma ions (sodium, chloride, calcium and potassium) showed a tendency to increase in parallel with salinity. These variables only differed significantly (P<0.05) in fish adapted to 60 per thousand salinity with respect to fish adapted to full-strength sea-water (SW). Plasma glucose remained unchanged whereas plasma lactate was elevated at 5 per thousand and 60 per thousand. Muscle water content (MWC) was significantly lower in fish adapted to 60 per thousand. Chloride cells (CC) were only present on the surface of the gill filaments and absent from the secondary lamellae. CC distribution was not altered by external salinity. However, the number and size of CC were significantly increased at salinity extremes (5 per thousand and 60 per thousand), whereas fish exposed to intermediate salinities (15 per thousand and 25 per thousand) had fewer and smaller cells. Furthermore, the CC of fish exposed to diluted SW became rounder whereas they were more elongated in fish in full-strength and hypersaline SW. This is consistent with previous reports indicating the existence of two CC types in euryhaline fish. At likely environmental salinities, gilthead sea bream show minor changes in plasma variables and the effective regulation of gill Na+,K+ -ATPase. However, at very low salinities both haemodilution and up-regulation of gill Na+,K+ -ATPase predict a poor adaptation most likely related to deficiency or absence of specific components of the CC important for ion xuptake.  相似文献   

9.
Physiological mechanisms involved in acclimation to variable salinity and oxygen levels and their interaction were studied in European flounder. The fish were acclimated for 2 weeks to freshwater (1 per thousand salinity), brackish water (11 per thousand) or full strength seawater (35 per thousand) under normoxic conditions (water Po(2) = 158 mmHg) and then subjected to 48 h of continued normoxia or hypoxia at a level (Po(2) = 54 mmHg) close to but above the critical Po(2). Plasma osmolality, [Na(+)] and [Cl(-)] increased with increasing salinity, but the rises were limited, reflecting an effective extracellular osmoregulation. Muscle water content was the same at all three salinities, indicating complete cell volume regulation. Gill Na(+)/K(+)-ATPase activity did not change with salinity, but hypoxia caused a 25% decrease in branchial Na(+)/K(+)-ATPase activity at all three salinities. Furthermore, hypoxia induced a significant decrease in mRNA levels of the Na(+)/K(+)-ATPase alpha1-subunit, signifying a reduced expression of the transporter gene. The reduced ATPase activity did not influence extracellular ionic concentrations. Blood [Hb] was stable with salinity, and it was not increased by hypoxia. Instead, hypoxia decreased the erythrocytic nucleoside triphosphate content, a common mechanism for increasing blood O(2) affinity. It is concluded that moderate hypoxia induced an energy saving decrease in branchial Na(+)/K(+)-ATPase activity, which did not compromise extracellular osmoregulation.  相似文献   

10.
Branchial chloride cells (CC) were studied in sea bass (Dicentrarchus labrax) maintained in seawater (SW: 35 per thousand) or gradually adapted to and subsequently maintained in fresh water (0.2 per thousand) or doubly concentrated seawater (DSW: 70 per thousand). Changes were observed in the location, number, and structure of CCs, that were discriminated by light, scanning, and transmission electron microscopy, as well as by immunofluorescence on the basis of their high Na(+)/K(+)-ATPase antigen content. The number of CCs increased in both fresh water and doubly concentrated seawater compared to control fish maintained in SW. In both experimental conditions, these cells were found on the gill filament (as in control fish) and even on the lamellae, especially in hypersaline conditions. Structural changes concerned the shapes and sizes of CCs and their apical outcrops and particularly the structures of their functional complexes (mitochondria, tubular system, and endoplasmic reticulum), which developed significantly in DSW adapted fish. The changes in the expression of the Na(+)/K(+)-ATPase were evaluated by assessing the enzyme's density at the ultrastructural level following immunogold labeling. This parameter was significantly higher in doubly concentrated seawater. The adaptative significance of the quantitative and morphofunctional changes in branchial chloride cells is discussed in relation to the original osmoregulatory strategy of this marine euryhaline teleost.  相似文献   

11.
Using a monoclonal antibody for the alpha-subunit of the Na+/K(+)-ATPase, DASPEI (a vital mitochondria dye), and confocal laser scanning microscopy, the presence of Na+/K(+)-ATPase in mitochondrion-rich cells of the hagfish gill was confirmed. In addition, the level of Na+/K(+)-ATPase expression in the hagfish gill was compared to that of fishes with different osmoregulatory strategies (little skate, Raja erinacea and mummichog, Fundulus heteroclitus). Immunocytochemistry detected a high density of columnar cells expressing Na+/K(+)-ATPase in the afferent filamental epithelium. Positive cells were also found in the lamellar epithelium but at a much lower density. The distribution of DASPEI staining was similar to that of the Na+/K(+)-ATPase antibody, indicating that the enzyme is expressed in mitochondrion-rich cells. Immunoblot analysis confirmed the specificity of the antibody for the 97 kDa alpha-subunit of the enzyme. The immunoreactive band intensity for the Atlantic hagfish was similar to that of the little skate, but less than half that of the full-strength seawater mummichog. These results are discussed in relation to gill function in early craniates.  相似文献   

12.
Osmoregulation was studied during the postembryonic development of Astacus leptodactylus Eschscholtz 1823 in juvenile stages 1-8 and in adults. Juveniles hatch and later stages develop in freshwater or in moderately saline waters. The time of acclimation from freshwater to a saline medium increased from early juveniles to adults. At all stages, it was longer than in comparable stages of marine crustaceans, reflecting the high impermeability of the teguments to water and ions. All stages were able to hyperisoosmoregulate. In freshwater, the ability to hyperosmoregulate was established at hatching and increased during development. The hemolymph osmolality increased from 286 mosm kg-1 in stage 1 juveniles to 419 mosm kg-1 in adults. All stages also hyperregulated at low salinities (7 per thousand and 13 per thousand salinity) and were osmoconformers at higher salinities up to 21 per thousand salinity. The lowest isosmotic salinity tended to increase with the developmental stages. The ability to osmoregulate at hatch and throughout postembryonic development is probably a key physiological adaptation in this and other freshwater crayfish.  相似文献   

13.
Location, abundance, and morphology of gill chloride cells were quantified during changes in osmoregulatory physiology accompanying early development in American shad, Alosa sapidissima. During the larval-juvenile transition of shad, gill chloride cells increased 3.5-fold in abundance coincident with gill formation, increased seawater tolerance, and increased Na(+),K(+)-ATPase activity. Chloride cells were found on both the primary filament and secondary lamellae in pre-migratory juveniles. Chloride cells on both the primary filament and secondary lamellae increased in abundance (1.5- to 2-fold) and size (2- to 2.5-fold) in juveniles held in fresh water from August 31 to December 1 (the period of downstream migration) under declining temperature. This proliferation of chloride cells was correlated with physiological changes associated with migration (decreased hyperosmoregulatory ability and increased gill Na(+),K(+)-ATPase activity). Increases in chloride cell size and number of fish in fresh water were delayed and of a lower magnitude when shad were maintained at constant temperature (24 degrees C). When juveniles were acclimated to seawater, chloride cell abundance on the primary filament did not (though size increased 1.5- to 2-fold), but cells on the secondary lamellae disappeared. Na(+),K(+)-ATPase was immunolocalized to chloride cells in both fresh water and seawater acclimated fish. The disappearance of chloride cells on the secondary lamellae upon seawater acclimation is evidence that their role is confined to fresh water. The proliferation of chloride cells in fresh water during the migratory-associated loss of hyperosmoregulatory ability is likely to be a compensatory mechanism for increasing ion uptake. J. Exp. Zool. 290:73-87, 2001.  相似文献   

14.
Accumulation sites of lead phosphate reaction product consequent to Na(+)/K(+)-ATPase activity in gill and renal epithelia of the freshwater shrimp Macrobrachium olfersii were located ultracytochemically by para-nitrophenyl-phosphate hydrolysis and lead precipitation, and quantified per unit membrane area and cytoplasmic volume. In shrimps in freshwater (<0.5 per thousand S, 20 mOsm/kg H(2)O, 0.7 mEq Na(+)/liter), numerous sites of electron-dense, Na(+)/K(+)-ATPase reaction product accumulation were demonstrated in the membrane invaginations of the mitochondria-rich, intralamellar septal cells (12.5 +/- 1.7 sites/microm(2) membrane, 179 +/- 22 sites/microm(3) cytoplasm, mean+/- SEM, N 相似文献   

15.
The involvement of the antennal urinary glands in the ontogeny of osmoregulatory functions was investigated during the development of Astacus leptodactylus by measurements of hemolymph and urine osmolality in juvenile and adult crayfish and by the immunodetection of the enzyme Na+,K+-ATPase. In stage II juveniles, 1-year-old juveniles, and adults, all of which were maintained in freshwater, urine was significantly hypotonic to hemolymph. In adults, chloride and sodium concentrations were much lower in urine than in hemolymph. During embryonic development, Na+,K+-ATPase was detected by immunocytochemistry in ionocytes lining the tubule and the bladder, at an eye index (EI) of 220–250 m, and in the labyrinth, at EI 350 m. In all regions, immunofluorescence was mainly located at the basolateral side of the cells. No immunofluorescence was detected at any stage in the coelomosac. In late embryonic stages (EI 410–440 m), in stage I juveniles, and in adults, strong positive immunofluorescence was found from the labyrinth up to and including the bladder. These results show that, as early as hatching, juvenile crayfish are able to produce dilute urine hypotonic to hemolymph. This ability originates from the presence of Na+,K+-ATPase in ion-transporting cells located in the labyrinth, the tubule, and the bladder of the antennal glands and constitutes one of the main adaptations of crayfish to freshwater.We thank the University of Tarbiat Modarres and Ministry of Science, Research and Technology, Islamic Republic of Iran for financial aid and support. Special thanks are also due to the Société Française dExportation des Ressources Educatives (SFERE) for the scholarship to S.K.  相似文献   

16.
In euryhaline crabs, ion-transporting cells are clustered into osmoregulatory patches on the lamellae of the posterior gills. To examine changes in the branchial osmoregulatory patch in the blue crab Callinectes sapidus in response to change in salinity and to correlate these changes with other osmoregulatory responses, crabs were acclimated to a range of salinities between 10 and 35 ppt. When crabs that had been acclimated to 35 ppt were subsequently transferred to 10 ppt, both the size of the osmoregulatory patch on individual gill lamellae and the specific activity of Na+, K+-ATPase in whole-gill homogenates increased only after the first 24 h of exposure to dilute seawater. Enzyme activity and size of patch area increased gradually and reached their maxima (increasing by 200% and 60%, respectively) 6 days following transfer to 10 ppt seawater and then remained at these levels. Patch size at acclimation varied inversely with the salinity for seawater dilutions below 26 ppt (the isosmotic point of the crab), although it did not vary in salinities at or above 26 ppt. Thus, the size of the patch clearly is modulated with acclimation salinity, but it increases only in those salinities in which the crab hyperosmoregulates. An increase in the total RNA/DNA ratio in gill homogenates, the lack of mitotic figures in the lamellae, and the lack of incorporation of bromodeoxyuridine into nuclei of lamellar epithelial cells during acclimation to dilute seawater were interpreted as evidence that no cell proliferation had occurred and that increases in the size of the osmoregulatory patch occurred through differentiation of existing gas exchange cells or of undifferentiated epithelial cells into ion-transporting cells.  相似文献   

17.
In benzene-exposed Ucides cordatus acclimated for 96 h to 9 and 34 per thousand SW, haemolymph, urine and gastric juice are isosmotic with each other, but differ significantly in osmolality from external media. In both salinities, under benzene action, urine K+ excretion and calcium absorption are increased significantly, whereas Na+ absorption and Mg2+ excretion show U/B ratios similar to control values. In 9 per thousand SW, some ionic exchanges via benzene-exposed gills are possibly hastened. Benzene exposure decreases significantly branchial chamber water osmolality, [Na+] and [K+], whereas [Ca2+] and [Mg2+] are unaffected. However, faster medium exchange presumably occurs in 34 per thousand SW, both crab groups show branchial chamber water osmotic and ionic concentrations similar to surrounding medium. Benzene exposure unaffected gastric juice composition. In both media, [Ca2+] and [Mg2] accumulate several times higher than surrounding media, and [Na+] and [K+] are significantly hypo-ionic to haemolymph. Na+ and K+ G/H ratios are lower in crabs acclimated to 34 per thousand SW than in crabs acclimated to 9 per thousand SW. Drinking rates are enhanced by benzene exposure and are higher at 34 per thousand SW than in seawater isosmotic with the haemolymph (26 per thousand SW). Benzene exposure affects significantly osmoregulatory capability, slowing haemolymph dilution after transfer to clean 9 per thousand SW. Lower haemolymph dilution rate accounts for higher osmolality, but 48 h after transfer there is no recovery like in control crabs. Haemolymph transfusion experiments suggest an interaction among effects of benzene and hormonal factors, possibly on water influx.  相似文献   

18.
The adults of Hemigrapsus edwardsii and Hemigrapsus crenulatus are euryhaline crabs and strong hyper-osmoregulators. Their embryos are carried externally attached to the abdominal pleopods of female crabs, where they are exposed to temporal and spatial changes in salinity associated with their intertidal and estuarine habitats. Although embryos lack the branchial and excretory organs responsible for adult osmoregulation, post-gastrula embryos were highly tolerant of exposure to hypo-osmotic sea water. Detached eggs (embryos+envelopes), of both species, at all developmental stages between gastrulation and hatching, exhibited 80-100% survival for periods up to 96 h in sea water (osmolality, 1050 mmol kg(-1)) and in dilutions to 50%, 10%, and 1%. Cleavage stages were less tolerant of dilution; H. edwardsii, <50% survived 24 h in 10% sea water; H. crenulatus <50% survived 6 h in 10% sea water. Post-gastrulation stages strongly hyper-osmoregulated but cleavage stages were hyper-osmoconformers (maintaining internal osmolality approximately 150 mmol kg(-1) above external). Osmoregulatory capacity was reduced just prior hatching, particularly in H. crenulatus, although salinity tolerance remained high. Gastrulation therefore marks a critical stage in the ontogeny of osmoregulation and salinity tolerance. Total Na+/K(+)-ATPase activity increased greatly during embryogenesis of H. crenulatus (undetectable in blastulae; gastrulae 0.31+/-0.05 pmol P(i) embryo(-1) min(-1); pre-hatching 16.4+/-1.0 pmol P(i) embryo(-1) min(-1)). Na+/K(+)-ATPase activity increased in embryos exposed to dilute sea water for 24 h implicating regulation of this transporter in a short-term acclimation response.  相似文献   

19.
Regulation of Na+ transport in brown adipose tissue.   总被引:2,自引:0,他引:2       下载免费PDF全文
In order to test the hypothesis that Na+, K+-ATPase (Na+,K+-dependent ATPase) is involved in the noradrenaline-mediated stimulation of respiration in brown adipose tissue, the effects of noradrenaline on Na+,K+-ATPase in isolated brown-fat-cell membrane vesicles, and on 22Na+ and K+ (86Rb+) fluxes across the membranes of intact isolated cells, were measured. The ouabain-sensitive fraction of the K+-dependent ATPase activity in the isolated membrane-vesicle preparation was small and was not affected by the presence of noradrenaline in the incubation media. The uptake of 86Rb+ into intact hormone-sensitive cells was inhibited by 80% by ouabain, but it was insensitive to the presence of noradrenaline. 22Na+ uptake and efflux measured in the intact cells were 8 times more rapid than the 86Rb+ fluxes and were unaffected by ouabain. This indicated the presence of a separate, more active, transport system for Na+ than the Na+,K+-ATPase. This is likely to be a Na+/Na+ exchange activity under normal aerobic conditions. However, under anaerobic conditions, or conditions simulating anaerobiosis (2 mM-NaCN), the unidirectional uptake of Na+ increased dramatically, while efflux was unaltered.  相似文献   

20.
To better comprehend the structural and biochemical underpinnings of ion uptake across the gills of true freshwater crabs, we performed an ultrastructural, ultracytochemical and morphometric investigation, and kinetically characterized the Na(+),K(+)-ATPase, in posterior gill lamellae of Dilocarcinus pagei. Ultrastructurally, the lamellar epithelia are markedly asymmetrical: the thick, mushroom-shaped, proximal ionocytes contain elongate mitochondria (41% cell volume) associated with numerous (≈14?μm2 membrane per μm3cytoplasm), deep invaginations that house the Na(+),K(+)-ATPase, revealed ultracytochemically. Their apical surface is amplified (7.5?μm2?μm?2)) by stubby evaginations whose bases adjoin mitochondria below the subcuticular space. The apical membrane of the thin, distal ionocytes shows few evaginations (1.6?μm2?μm?2), each surrounding a mitochondrion, abundant in the cytoplasm below the subcuticular space; basolateral invaginations and mitochondria are few. Fine basal cytoplasmic bridges project across the hemolymph space, penetrating into the thick ionocytes, suggesting ion movement between the epithelia. Microsomal Na(+),K(+)-ATPase specific activity resembles marine crabs but is ≈5-fold less than in species from fluctuating salinities, and freshwater shrimps, suggesting ion loss compensation by strategies other than Na(+) uptake. Enzyme apparent K(+) affinity attains 14-fold that of marine crabs, emphasizing the relevance of elevated K(+) affinity to the conquest of fresh water. Western blotting and biphasic ouabain inhibition disclose two α-subunit isoforms comprising distinct functional isoenzymes. While enzyme activity is not synergistically stimulated by NH(4) (+) and K(+), each increases affinity for the other, possibly assuring appropriate intracellular K(+) concentrations. These findings reveal specific structural and biochemical adaptations that may have allowed the establishment of the Brachyura in fresh water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号