首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
2.
3.
4.
On the recognition of helical RNA by cobra venom V1 nuclease   总被引:35,自引:0,他引:35  
The V1 nuclease from cobra venom preferentially hydrolyzes double helical RNA and has been used extensively for detecting RNA secondary structure. To increase the utility of this enzyme as an RNA structure probe, we have investigated its properties and substrate specificity, using assays for polynucleotide hydrolysis based on fluorescent polynucleotide derivatives. Enzymatic activity requires both Na+ and Mg2+, with optima at 100 and 0.3 mM, respectively. From the sharp decrease in enzyme activity above 100 mM Na+ we estimate that 3-4 ionic interactions between the protein and polynucleotide phosphates take place. Analysis of products remaining after extensive V1 digestion also shows that the minimum size substrate is 4-6 nucleotides long. Helical RNAs and DNAs have Michaelis constants a factor of 3-10 times lower than most single-stranded RNAs. However, poly(epsilon A) has a Michaelis constant equal to the best synthetic double helices tested and is hydrolyzed at a rate comparable to helical RNA. The major V1 cutting sites in yeast tRNAPhe have Michaelis constants lower than any synthetic polymers. These data suggest that V1 nuclease recognizes any 4-6-nucleotide segment of polynucleotide backbone with an approximately helical conformation, but does not require that the bases be paired in a helix. A few single-stranded V1 cleavage sites are known in tRNA and rRNA, and their structures are consistent with the suggested V1 recognition site.  相似文献   

5.
6.
7.
We studied the role of the methylphosphate cap structure in the stability and nucleocytoplasmic transport by microinjecting U6, 7SK and B2 RNAs into the Xenopus oocytes. In every case, the methylphosphate capped RNAs were 3 to 9 times more stable than the uncapped RNAs. When a methylphosphate cap structure was placed on human H1 RNA which is normally not capped, its stability was improved 2-7 fold. These data show that the methylphosphate cap enhances the stability of 7SK, B2, H1 and U6 RNAs. The methylphosphate-capped 7SK RNA was transported into the nucleus from cytoplasm, but remained in the nucleus when injected into the nucleus; in this respect, 7SK RNA exhibited properties previously shown for U6 RNA. Both U6 and 7SK RNAs with ppp on their 5' ends were transported from cytoplasm to the nucleus suggesting that the methylphosphate cap structure is not required for transport of these RNAs across the nuclear membrane.  相似文献   

8.
We describe studies concerning the ability of a nuclear dinucleoside triphosphatase to act as a decapping enzyme in RNA catabolism. The enzymatic release of GMP from the Gp3A moiety was determined in the capped RNA model compounds Gp3A3'pA, Gp3A3'pA-isoprop and Gp3A2'pA in isolated rat liver nuclei; i.e., in the environment in which the dinucleoside triphosphatase operates in vivo. The Gp3A cap moiety is hydrolyzed in (3'-5') linked nucleotides only, whereas an extension of the Gp3A in the 2'-direction prevents the nuclear triphosphatase to operate.  相似文献   

9.
The genomic RNAs of flaviviruses such as dengue virus (DEN) have a 5' m7GpppN cap like those of cellular mRNAs but lack a 3' poly(A) tail. We have studied the contributions to translational expression of 5'- and 3'-terminal regions of the DEN serotype 2 genome by using luciferase reporter mRNAs transfected into Vero cells. DCLD RNA contained the entire DEN 5' and 3' untranslated regions (UTRs), as well as the first 36 codons of the capsid coding region fused to the luciferase reporter gene. Capped DCLD RNA was as efficiently translated in Vero cells as capped GLGpA RNA, a reporter with UTRs from the highly expressed alpha-globin mRNA and a 72-residue poly(A) tail. Analogous reporter RNAs with regulatory sequences from West Nile and Sindbis viruses were also strongly expressed. Although capped DCLD RNA was expressed much more efficiently than its uncapped form, uncapped DCLD RNA was translated 6 to 12 times more efficiently than uncapped RNAs with UTRs from globin mRNA. The 5' cap and DEN 3' UTR were the main sources of the translational efficiency of DCLD RNA, and they acted synergistically in enhancing translation. The DEN 3' UTR increased mRNA stability, although this effect was considerably weaker than the enhancement of translational efficiency. The DEN 3' UTR thus has translational regulatory properties similar to those of a poly(A) tail. Its translation-enhancing effect was observed for RNAs with globin or DEN 5' sequences, indicating no codependency between viral 5' and 3' sequences. Deletion studies showed that translational enhancement provided by the DEN 3' UTR is attributable to the cumulative contributions of several conserved elements, as well as a nonconserved domain adjacent to the stop codon. One of the conserved elements was the conserved sequence (CS) CS1 that is complementary to cCS1 present in the 5' end of the DEN polyprotein open reading frame. Complementarity between CS1 and cCS1 was not required for efficient translation.  相似文献   

10.
11.
Multiple 5' terminal cap structures in late polyoma virus RNA.   总被引:31,自引:0,他引:31  
A J Flavell  A Cowie  S Legon  R Kamen 《Cell》1979,16(2):357-371
Nuclear and cytoplasmic polyoma virus-specific RNA extracted from 32P-labeled mouse embryo cells late during productive viral infection was analyzed for the presence of 5' terminal capped structures by complete digestion with RNAases T1, T2 and A, followed by two-dimensional electrophoretic fractionation. Seven major cap I structures (m7 GpppNm1pN2p) were observed in both cases. These termini were further characterized by digestion with penicillium nuclease P1, followed by product analysis in a variety of alternative separate systems. Each structure had an individual combination of N1 and N2 nucleotides, where N1 was always a purine nucleotide but N2 was any nucleotide subject to the single exception that m7GpppGmpCp is found only in low yield. Four different cap II derivatives (m7GpppNm1pNm2pN3p) of four of the cap I structures were also detected in cytoplasmic RNA. None of the termini described derived from contaminating host cell RNA. All of these cap structures mapped on the polyoma viral DNA genome between 66 and 71 map units, a region distant from the 5' end of the bodies of two of the three late polyoma mRNAs. All the polyoma virus-specific cap structures, however, were present in each of the purified 16S, 18S and 19s late mRNAs. These data suggested that families of capped leader sequences of varying sizes are attached to the main body of each late polyoma mRNA species by a splicing mechanism.  相似文献   

12.
Two general pathways of mRNA decay have been characterized in yeast. Both start with deadenylation. The major pathway then proceeds via cap hydrolysis and 5'-exonucleolytic degradation whereas the minor pathway consists of 3'-exonucleolytic decay followed by hydrolysis of the remaining cap structure. In higher eukaryotes, these pathways of mRNA decay are believed to be conserved but have not been well characterized. We have investigated the decay of the hsp70 mRNA in Drosophila Schneider cells. As shown by the use of reporter constructs, rapid deadenylation of this mRNA is directed by its 3'-untranslated region. The main deadenylase is the CCR4.NOT complex; the PAN nuclease makes a lesser contribution. Heat shock prevents deadenylation not only of the hsp70 but also of bulk mRNA. A completely deadenylated capped hsp70 mRNA decay intermediate accumulates transiently and is degraded via cap hydrolysis and 5'-decay. Thus, decapping is a slow step in the degradation pathway. Cap hydrolysis is also inhibited during heat shock. Degradation of reporter RNAs from the 3'-end became detectable only upon inhibition of 5'-decay and thus represents a minor decay pathway. Because two reporter RNAs and at least two endogenous mRNAs were degraded primarily from the 5'-end with cap hydrolysis as a slow step, this pathway appears to be of general importance for mRNA decay in Drosophila.  相似文献   

13.
14.
Trypanosoma brucei mRNA is discontinuously synthesized via the 5' addition of a "mini-exon" sequence. The mini-exon-specific cap structure was purified from a complete RNase T2 and phosphatase digest of in vivo 32P-labeled poly(A)+RNA. The purified cap structure was sequenced by a series of partial and complete enzymatic digests by nuclease P1 and venom phosphodiesterase. This approach demonstrated that the T. brucei mini-exon cap structure consists of N7-methylguanosine linked in a conventional 5'-5' triphosphate bond to five nucleotides, in the sequence A*A*C(2'-O)mU*A (asterisks denote modifications that were not fully characterized in this work). 2'-O-methylations and other modifications appear to be present in this novel cap structure, which could have a functional role in the metabolism of the mini-exon.  相似文献   

15.
16.
I Edery  K A Lee  N Sonenberg 《Biochemistry》1984,23(11):2456-2462
We examined the effects of a eukaryotic mRNA cap binding protein (CBP) complex purified by cap analogue affinity chromatography [Edery, I., Humebelin, M., Darveau, A., Lee, K.A. W., Milburn, S., Hershey, J.W.B., Trachsel, H., & Sonenberg, N. (1983) J. Biol. Chem. 258, 11398 11403], on translation of several capped and naturally uncapped mRNAs in extracts prepared from poliovirus-infected or mock-infected HeLa cells. The CBP complex has activity that restores capped mRNA (globin, tobacco mosaic virus, and others) function in extracts from poliovirus-infected HeLa cells. Translation of two naturally uncapped RNAs (poliovirus and mengovirus RNAs), the translation of which is not restricted in extracts from poliovirus-infected cells, is also not stimulated by the CBP complex. Translation of several capped eukaryotic mRNAs (vesicular stomatitis virus, reovirus, and tobacco mosaic virus) in extracts from mock-infected cells is inhibited when the potassium ion concentration is increased. However, translation of capped AMV-4 RNA, which has negligible secondary structure at its 5' end, is resistant to this inhibition. Furthermore, the CBP complex reverses the high salt induced inhibition of translation of the former mRNAs. Since mRNA secondary structure is more stable at elevated salt concentrations, these data are consistent with a model in which the CBP complex has a role in melting mRNA secondary structure involving 5'-proximal sequences, to facilitate ribosome binding.  相似文献   

17.
18.
Hydrolysis of the mRNA cap plays a pivotal role in initiating and completing mRNA turnover. In nematodes, mRNA metabolism and cap-interacting proteins must deal with two populations of mRNAs, spliced leader trans-spliced mRNAs with a trimethylguanosine cap and non-trans-spliced mRNAs with a monomethylguanosine cap. We describe here the characterization of nematode Dcp1 and Dcp2 proteins. Dcp1 was inactive in vitro on both free cap and capped RNA and did not significantly enhance Dcp2 activity. Nematode Dcp2 is an RNA-decapping protein that does not bind cap and is not inhibited by cap analogs but is effectively inhibited by competing RNA irrespective of RNA sequence and cap. Nematode Dcp2 activity is influenced by both 5' end sequence and its context. The trans-spliced leader sequence on mRNAs reduces Dcp2 activity approximately 10-fold, suggesting that 5'-to-3' turnover of trans-spliced RNAs may be regulated. Nematode Dcp2 decaps both m(7)GpppG- and m(2,2,7)GpppG-capped RNAs. Surprisingly, both budding yeast and human Dcp2 are also active on m(2,2,7)GpppG-capped RNAs. Overall, the data suggest that Dcp2 activity can be influenced by both sequence and context and that Dcp2 may contribute to gene regulation in multiple RNA pathways, including monomethyl- and trimethylguanosine-capped RNAs.  相似文献   

19.
C Hashimoto  J A Steitz 《Cell》1986,45(4):581-591
RNAs containing the polyadenylation sites for adenovirus L3 or E2a mRNA or for SV40 early or late mRNA are substrates for cleavage and poly(A) addition in an extract of HeLa cell nuclei. When polyadenylation reactions are probed with ribonuclease T1 and antibodies directed against either the Sm protein determinant or the trimethylguanosine cap structure at the 5' end of U RNAs in small nuclear ribonucleoproteins, RNA fragments containing the AAUAAA polyadenylation signal are immunoprecipitated. The RNA cleavage step that occurs prior to poly(A) addition is inhibited by micrococcal nuclease digestion of the nuclear extract. The immunoprecipitation of fragments containing the AAUAAA sequence can be altered, but not always abolished, by pretreatment with micrococcal nuclease. We discuss the involvement of small nuclear ribonucleoproteins in the cleavage and poly(A) addition reactions that form the 3' ends of most eukaryotic mRNAs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号