首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
Summary A carnivorous ciliate,Didinium nasutum, captures a prey,Paramecium spp., by discharging extrusomes (i.e., toxicysts) from the proboscis. To directly examine the role of Ca2+ for the discharge, we injected Ca2+ intoD. nasutum. Injection of Ca2+ evoked discharge of toxicysts, if the site of the injection was the periphery region of the proboscis. After the discharge,D. nasutum, opened the proboscis and swallowed the discharged toxicysts. These observations demonstrate that a rise in cytoplasmic Ca2+ level is an actual cause of toxicyst discharge inD. nasutum.Abbreviations EGTA ethylene glycol-bis(-aminoethyl ether)-N,N,N,N-tetraacetic acid - FITC fluorescein isothiocyanate  相似文献   

2.
Summary Activators of protein kinase C (PKC) stimulate Na transport (J Na) across frog skin. We have examined the effect of Ca2+ on PKC stimulation ofJ Na. Both the phorbol ester 12-O-tetradecanoylglycerol (DiC8) were used as PKC activators. Blocking Ca2+ entry into the cytosol (either from external or internal stores) reduced the subsequent natriferic effect of the PKC activators. This negative interaction did not simply reflect saturation of activation of the apical Na+ channels, since the stimulations produced by blocking Ca2+ entry and adding cyclic AMP were simply additive.The Ca2+ dependence of the natriferic effect could have reflected either a direct action of cytosolic Ca2+ on PKC or an indirect action on the final receptor site (the Na+ channel). To distinguish between these possibilities, the TPA- and phospholipid-dependent kinase activity of broken-cell preparations was assayed. The kinase activity was not stimulated by physiological levels of Ca2+, and in fact was inhibited at millimolar concentrations of Ca2+.We conclude that the effects of Ca2+ on the natriferic response to PKC activators are indirect. Reducing cytosolic uptake of Ca2+ may have stimulated Na+ transport by a chemical modification of the apical channels observed in other tight epithelia. The usual stimulation of Na+ transport produced by PKC activators in frog skin may reflect the operation of a nonconventional form of PKC. This enzyme is Ca2+ independent and seems related to thenPKC or PKC observed in other systems.  相似文献   

3.
Summary The effects of proteolysis on a hyperpolarization- and Ca2+-dependent K channel from the surface membrane ofParamecium tetraurelia were examined in the inside-out excised patch mode. Treatment with trypsin, pronase or thermolysin removed the Ca2+-dependence of the channel activation, yielding an increase in channel activity greater than 2.5-fold at all Ca2+ concentrations between 10–4 and 10–8 m. Thermolysin addition-ally removed the voltage dependence of channel opening and gave the most activation among the three proteases tested. Proteolysis did not affect the single-channel conductance. In an analogy to the mechanism of activation of many Ca2+-dependent enzymes it is suggested that thisParamecium channel has a cytoplasmic inhibitory domain which can be removed by proteolysis, and that the physiological activation by Ca2+ is due to a temporary removal of this inhibition. Moreover, these findings indicate structural differences between depolarization-, Ca2+-dependent K channels (BK channels) and the hyperpolarization-, Ca2+-dependent K channels inParamecium.  相似文献   

4.
T. Watanabe  N. Haga 《Protoplasma》1996,192(1-2):11-19
Summary Two trichocyst-nondischarge (TND) mutants ofParamecium caudatum, tndl andtnd2, are unable to discharge the trichocyst matrix (tmx) in response to chemical stimuli, although they contain many docked trichocysts at predetermined sites in the cortex. Freeze-fracture electron microscopy (FEM) of the plasma membrane showed thattndl possess two typical intramembrane particle arrays at the trichocyst docking site in the cortex, the outer ring and the inner rosette, as observed in wild-type (WT) cells, whereastnd2 possess the ring but not the rosette. The tmx of both TND mutants are able to expand when they are freed and exposed to an extracellular medium containing 1.5 mM Ca2+. When mutant cells were treated with ionophore A23187 and Ca2+, tmx-expansion took place intnd2, but not intndl cells. Thetnd2 mutant could be rescued by an injection of the WT cytoplasm and also by partial cell fusion during conjugation with the WT andtndl cells. However, the secretion capacity oftndl was not restored either by a microinjection of the WT cytoplasm or by the conjugating pair formation. Freeze-fracture electron microscopy on the double homozygote fortndl andtndl genes, revealed only the parenthesis instead of the ring and the rosette, indicating that trichocysts do not dock to the cortical site. Double mutation at thetndl andtndl loci caused a decrease in the number of the trichocysts at the cortical site. These results suggest that cooperative action of the two TND genes is necessary for stable docking of the trichocysts to the cortical sites.Abbreviations FEM freeze-fracture electron microscopy - IMP intramembrane particle - TD trichocyst discharge: tmx trichocyst matrix - TND trichocyst nondischarge - WT wild-type  相似文献   

5.
Summary The Ca-inward current ofParamecium is related to cGMP production by a Ca-dependent guanylate cyclase. Excitation with Ba2+ increases cGMP levels about ninefold to 45 pmol/ mg within 15 sec. Inhibition of cGMP hydrolysis reveals a large rate of synthesis of up to 25 pmol cGMP/mg·sec–1, or about 1.2 ·108 molecules/cell·sec–1. Because no other factors than the Ca-inward current were found to affect cGMP formation inParamecium, we used it as a quantitative measure of Ca2+ channel activity. After a transient stimulation of cGMP formation by 1mm Ba2+, an additional increase of Ba2+ to 5mm did not result in a renewed elevation of cGMP levels. The extent of desensitization towards a second stimulus was graded with the strength of the first stimulus. Termination of the first stimulus after various time intervals and restimulation after 3 min with 1mm Ba2+ revealed a time-dependent inactivation of the Ca2+ channel, which could be fitted by a single exponential. The inactivated form of the channel was stable for a few minutes at room temperature. The partial desensitization ofParamecium reduced the maximal response, but did not shift the dose-response curve for Ba2+. Veratridine, which activates the Ca2+ channel, was also used as a first stimulus. It effectively and transiently inactivated the channel resulting in a complete loss of both a behavioral response ofParamecium and cGMP elevation towards a second stimulus. The time course of reactivation of channel excitability was studied at different temperatures. Half times of recovery were 51 and 7.5 min at 12 and 25°C, respectively. Reactivation curves can be described by a single exponential, indicating a first order reaction. The activation energy was 100 kJ/mol.The extremely high rate of cGMP turnover inParamecium is reminiscent of findings in visual cells. A model for regulation of the voltage-dependent Ca channel ofParamecium is proposed.  相似文献   

6.
Summary Two behavioral mutants ofParamecium tetraurelia, pantophobiacs A1 and A2, have single amino acid defects in the structure of calmodulin. The mutants exhibit several major ion current defects under voltage clamp: (i) the Ca2+-dependent K+ current activated upon depolarization ofParamecium is greatly reduced or missing in both mutants, (ii) both mutants lack a Ca2+-dependent K+ current activated upon hyperpolarization, and (iii) the Ca2+-dependent Na+ current is significantly smaller in pantophobiac A1 compared with the wild type, whereas this current is slightly increased in pantophobiac A2.Other, minor defects include a reduction in peak amplitude of the depolarization-activated Ca2+ current in pantophobiac A2, increased rates of voltage-dependent inactivation of this Ca2+ current in both pantophobiac A1 and pantophobiac A2, and an increase in the time required for the hyperpolarization-activated Ca2+ current to recover from inactivation in the pantophobiacs.The diversity of the pantophobiac mutations' effects on ion current function may indicate specific associations of calmodulin with a variety of Ca2+-related ion channel species inParamecium.  相似文献   

7.
Summary A new mutant ofParamecium tetraurelia, k-shyA, was characterized behaviorally and electrophysiologically. The mutant cell exhibited prolonged backward swimming episodes in response to depolarizing conditions. Electrophysiological comparison of k-shyA with wild type cells under voltage clamp revealed that the properties of three Ca2+-regulated currents were altered in the mutant. (i) The voltage-dependent Ca2+ current recovered from Ca2+-dependent inactivation two- to 10-fold more slowly than wild type. Ca2+ current amplitudes were also reduced in the mutant, but could be restored by EGTA injection. (ii) The decay of the Ca2+-dependent K+ tail current was slower in the mutant. (iii) The decay of the Ca2+-dependent Na+ tail current was also slower in the mutant. All other membrane properties studied, including the resting membrane potential and resistance and the voltage-sensitive K+ currents, were normal in k-shyA. Considered together, these observations are consistent with a defect in the ability of k-shyA to reduce the free intracellular Ca2+ concentration following stimulation. The possible targets of the genetic lesion and alternative explanations are discussed. The k-shy mutants may provide a useful tool for molecular and physiological analyses of the regulation of Ca2+ metabolism inParamecium.  相似文献   

8.
Summary Patch-clamp studies of cytoplasmic drops from the charophyteChara australis have previously revealed K+ channels combining high conductance (170 pS) with high selectivity for K+, which are voltage activated. The cation-selectivity sequence of the channel is shown here to be: K+>Rb+>NH 4 + Na+ and Cl. Divalent cytosolic ions reduce the K+ conductance of this channel and alter its K+ gating in a voltage-dependent manner. The order of blocking potency is Ba2+>Sr2+>Ca2+>Mg2+. The channel is activated by micromolar cytosolic Ca2+, an activation that is found to be only weakly voltage dependent. However, the concentration dependence of calcium activation is quite pronounced, having a Hill coefficient of three, equivalent to three bound Ca2+ needed to open the channel. The possible role of the Ca2+-activated K+ channel in the tonoplast ofChara is discussed.  相似文献   

9.
The effect of the natural product diindolylmethane on cytosolic Ca2+ concentrations ([Ca2+]i) and viability in PC3 human prostate cancer cells was explored. The Ca2+-sensitive fluorescent dye fura-2 was applied to measure [Ca2+]i. Diindolylmethane at concentrations of 20–50 µM induced [Ca2+]i rise in a concentration-dependent manner. The response was reduced partly by removing Ca2+. Diindolylmethane-evoked Ca2+ entry was suppressed by nifedipine, econazole, SK&F96365, protein kinase C modulators and aristolochic acid. In the absence of extracellular Ca2+, incubation with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin or 2,5-di-tert-butylhydroquinone (BHQ) inhibited or abolished diindolylmethane-induced [Ca2+]i rise. Incubation with diindolylmethane also inhibited thapsigargin or BHQ-induced [Ca2+]i rise. Inhibition of phospholipase C with U73122 reduced diindolylmethane-induced [Ca2+]i rise. At concentrations of 50–100 µM, diindolylmethane killed cells in a concentration-dependent manner. This cytotoxic effect was not altered by chelating cytosolic Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA). Annexin V/PI staining data implicate that diindolylmethane (50 and 100 µM) induced apoptosis in a concentration-dependent manner. In conclusion, diindolylmethane induced a [Ca2+]i rise in PC3 cells by evoking phospholipase C-dependent Ca2+ release from the endoplasmic reticulum and Ca2+ entry via phospholipase A2-sensitive store-operated Ca2+ channels. Diindolylmethane caused cell death in which apoptosis may participate.  相似文献   

10.
Summary The membrane ofParamecium generates a Ca-dependent Na current upon depolarization. There is, however, also a Na current upon hyperpolarization in this membrane. The second Na current was analyzed under voltage clamp and found to have properties identical to those of the first. Both currents could be carried by Na and Li ions and not by K, Cs or choline ion. They were eliminated by either EGTA injection into the cell or Ca removal from the bath. Both currents were eliminated by a single-gene mutation,fast-2, that had no effect on Ca currents. These findings strongly suggest that these two currents are through the same Ca-dependent Na conductance. A hyperpolarization-induced Ca current was also identified, which served to activate the second Na current. These observations support a model that theParamecium membrane has two Ca channels with different voltage dependencies and only one Na channel, which is elicited by a rise of the itternal free Ca2+ concentration. The function of the Ca-dependent Na conductance is discussed.  相似文献   

11.
Summary Veratridine opens voltage-dependent Na+ channels in many metazoans. InParamecium, which has voltage-dependent Ca2+ channels and a Ca/K action potential, no such Na+ channels are known. A Ca-inward current is correlated to an intracellular increase in cGMP. The addition of veratridine toParamecium wildtype and to pawn mutant cells, which lack the Ca-inward current, transiently increased intracellular levels of cGMP about sevenfold to 40 pmol/mg protein. A half-maximal effect was obtained with 250 m veratridine. The increase in cGMP was maximal about 15 sec after the addition of veratridine and declined rapidly afterwards. Intracellular cAMP levels were not affected. The effect of veratridine on cGMP was dependent on the presence of extracellular Ca2+. The time dependence and extent of stimulation closely resembled the effects observed after stimulation by Ba2+, which causes the repetitive firing of action potentials, Ca-dependent ciliary reversal, and cGMP formation. The effects of Ba2+ and veratridine were not additive. Wildtype cells and, surprisingly, also pawn mutant cells showed avoiding reactions upon addition of veratridine indicating that it induced a Ca2+ influx into the cilia, which causes ciliary reversal. The potency of veratridine to stimulate cGMP formation was little affected by Na+ in wildtype cells, three pawn mutant strains, and in the cell line fast-2, which is defective in a Ca-dependent Na-inward current. Divalent cations (Ca2+, Mg2+, and Ba2+) inhibited the effects the veratridine similar to metazoan cells. The results indicate that veratridine can open the voltage-operated Ca2+ channels inParamecium wildtype and, most interestingly, in pawn mutant cells. The pawn mutation is suggested to represent a defect in the activation of the Ca2+ channel. This explains the lack of differences in ciliary proteins between wildtype and pawn cells reported earlier.  相似文献   

12.
Summary Under two-electrode voltage clamp, a mutant ofP. tetraurelia, restless (rst/rst), showed a large increase in induced current and an outward tail current when compared to the wildtype cell for hyperpolarizing voltage steps. An increase in the induced and tail currents is also observed for depolarizing voltage steps. The larger current during voltage steps and tail in the mutant were eliminated by the use of CsCl-filled electrodes and tetraethylammonium ion (TEA+) in the bath solution, characterizing the lesion as affecting a K+ conductance. Ionophoretic injection of ethylene glycol bis-(beta-aminoethyl ether) n,n,n,n-tetraacetic acid (EGTA) to buffer internal Ca2+ concentration reduced the increased K+ current and tail of therestless cell, indicating Ca2+ activation of the K+ current. Time course and amplitude of remaining currents after blockage of K+ conductances with Cs+ and TEA+ were similar in wild-type andrestless cells suggesting norestless defect in entry of calcium. The Ca2+-activated sodium current was similar in the mutant to that in wild type arguing against a defect in calcium regulation activating the K+ channel in therestless cell. We conclude that therestless mutation alters a Ca2+-activated potassium conductance other than the one previously described. The multiplicity of Ca2+-activated potassium conductances inParamecium is discussed.  相似文献   

13.
Summary In gemmae ofVittaria graminifolia and prothallia ofOnoclea sensibilis, cell differentiation is initiated by nuclear migration and geometrically asymmetric cell division. The small daughter cells inVittaria develop into antheridia in the presence of gibberellic acid or into rhizoids or new prothallia in its absence. Antheridial differentiation from asymmetric division is induced inOnoclea byPteridium antheridiogen, whereas rhizoid or vegetative cell formation occurs in its absence. Although asymmetric cytokinesis initiates differentiation, it does not in itself determine the developmental fate of the smaller cell. Several histochemical techniques demonstrate that prior to nuclear migration and cell division, Ca2+ accumulates in the cytoplasm and wall of the cell at the site where asymmetric division will occur, regardless of the developmental fate of the small cell. The cytoplasmic localization of Ca2+ appears to reflect a mobilization of Ca2+ from within the cell that eventually moves into the cell wall. We propose that this internal accumulation of Ca2+ leads to a localized decrease in cytosolic [Ca2+] which in turn may regulate developmental events such as nuclear migration.Publishing prior to 1984 as Alix R. Bassel.  相似文献   

14.
T. Hayama  M. Tazawa 《Protoplasma》1980,102(1-2):1-9
Summary The effects of Ca2+ and other cations on chloroplast rotation in isolated cytoplasmic droplets ofChara were investigated by iontophoretically injecting them. Chloroplast rotation stopped immediately after Ca2+ injection and recovered with time, suggesting the existence of a Ca2+-sequestering system in the cytoplasm. The Ca2+ concentration necessary for the stoppage was estimated to be >10–4M. Sr2+ had the same effect as Ca2+. Mn2+ and Cd2+ induced a gradual decrease in the rotation rate with low reversibility. K+ and Mg2+ had no effects. Ba2+ had effects sometimes similar to Ca2+ or Sr2+ and sometimes similar to Mn2+ or Cd2+.Reversible inhibition by Ca2+, together with its specificity, strongly supports the hypothesis that a transient increase in the Ca2+ concentration in the cytoplasm upon membrane excitation directly stops the cytoplasmic streaming inCharaceae internodes (Hayama et al. 1979).  相似文献   

15.
The effect of carvedilol on cytosolic free Ca2+ concentrations ([Ca2+]i) in OC2 human oral cancer cells is unknown. This study examined if carvedilol altered basal [Ca2+]i levels in suspended OC2 cells by using fura-2 as a Ca2+-sensitive fluorescent probe. Carvedilol at concentrations between 10 and 40 µM increased [Ca2+]i in a concentration-dependent fashion. The Ca2+ signal was decreased by 50% by removing extracellular Ca2+. Carvedilol-induced Ca2+ entry was not affected by the store-operated Ca2+ channel blockers nifedipine, econazole, and SK&F96365, but was enhanced by activation or inhibition of protein kinase C. In Ca2+-free medium, incubation with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin did not change carvedilol-induced [Ca2+]i rise; conversely, incubation with carvedilol did not reduce thapsigargin-induced Ca2+ release. Pretreatment with the mitochondrial uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP) inhibited carvedilol-induced [Ca2+]i release. Inhibition of phospholipase C with U73122 did not alter carvedilol-induced [Ca2+]i rise. Carvedilol at 5–50 µM induced cell death in a concentration-dependent manner. The death was not reversed when cytosolic Ca2+ was chelated with 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid acetoxymethyl ester (BAPTA/AM). Annexin V/propidium iodide staining assay suggests that apoptosis played a role in the death. Collectively, in OC2 cells, carvedilol induced [Ca2+]i rise by causing phospholipase C-independent Ca2+ release from mitochondria and non-endoplasmic reticulum stores, and Ca2+ influx via protein kinase C-regulated channels. Carvedilol (up to 50 μM) induced cell death in a Ca2+-independent manner that involved apoptosis.  相似文献   

16.
A multifunctional Ca2+/calmodulin dependent protein kinase was purified approximately 650 fold from cytosolic extract of Candida albicans. The purified preparation gave a single band of 69 kDa on sodium dodecyl sulfate polyacrylamide gel electrophoresis with its native molecular mass of 71 kDa suggesting that the enzyme is monomeric. Its activity was dependent on calcium, calmodulin and ATP when measured at saturating histone IIs concentration. The purified Ca2+/CaMPK was found to be autophosphorylated at serine residue(s) in the presence of Ca2+/calmodulin and enzyme stimulation was strongly inhibited by W-7 (CaM antagonist) and KN-62 (Ca2+/CaM dependent PK inhibitor). These results confirm that the purified enzyme is Ca2+/CaM dependent protein kinase of Candida albicans. The enzyme phosphorylated a number of exogenous and endogenous substrates in a Ca2+/calmodulin dependent manner suggesting that the enzyme is a multifunctional Ca2+/calmodulin-dependent protein kinase of Candida albicans.  相似文献   

17.
Paramecium Na+ channels, which were Ca2+-calmodulin activated, were studied in the inside-out mode of patch clamp. After excision of the membrane patch, they were active in the presence of 10–5 to 10–3 m Ca2+ in the bath. They became much less active in the presence of 10–6 m Ca2+, and their activity subsided completely at 10–8 m Ca2+. A Hill plot showed a dissociation constant of 6 m for Ca2+ binding. This dissociation constant shifted to a submicromolar range in the presence of 1 mm Mg2+. The channels also exhibited a mild voltage dependence. When exposed to 10–8 m Ca2+ for an extended period of 2–4 min, channels were further inactivated even after bath Ca2+ was restored to 10–4 m. Whereas neither high voltage (+100 mV) nor high Ca2+ (10–3 m) was effective in reactivation of the inactive channels, addition of Paramecium wild-type calmodulin together with high Ca2+ to the bath restored channel activity without a requirement of additional Mg2+ and metabolites such as ATP. The channels reactivated by calmodulin had the same ion conductance, ion selectivity and Ca2+ sensitivity as those prior to inactivation. These inactivation and reactivation of the channels could be repeated, indicating that the direct calmodulin effect on the Na+ channel was reversible. Thus, calmodulin is a physiological factor critically required for Na+ channel activation, and is the Ca2+ sensor of the Na+-channel gating machinery.We thank C. Kung for his kind support, and A. Boileau for critical reading. Supported by grants from National Institutes of Health GM 22714-20 and 36386-09.  相似文献   

18.
Summary— Regulated exocytosis of defensive secretory organelles, the trichocysts, as well as a transient Ca2+-influx can be induced in Paramecium by aminoethyldextran (Kerb?uf and Cohen, J Cell Biol (1990) 111, 2527). Knoll et al (Febs Lett (1992) 304, 265) reported that veratridine was also a secretagogue for Paramecium. Here we show that, like aminoethyldextran, veratridine induces a transient Ca2+-influx. Both aminoethyldextran-and veratridine-induced exocytosis and associated Ca2+-influx were: i) blocked in the nd12 thermosensitive mutant at the non-permissive temperature; and ii) inhibited by amiloride and four divalent cations, Ba2+, Mg2+, Sr2+ and Co2+. This suggests that, although of different chemical nature, aminoethyldextran and veratridine act through the same physiological pathway. In addition, the inhibitory doses are comparable to the ones found to inhibit a hyperpolarization-sensitive Ca2+-current described in Paramecium (Preston et al (1992) J Gen Physiol 100, 233). The possibility that the activation of this Ca2+-current by the secretagogue represents an early step in the regulation of trichocyst exocytosis is discussed.  相似文献   

19.
Abstract

Clotrimazole is an antimycotic imidazole derivative that interferes with cellular Ca2+ homeostasis. This study examined the effect of clotrimazole on cytosolic Ca2+ concentrations ([Ca2+]i) and viability in HA59T human hepatoma cells. The Ca2+-sensitive fluorescent dye fura-2 was applied to measure [Ca2+]i. Clotrimazole induced [Ca2+]i rises in a concentration-dependent manner. The response was reduced by removing extracellular Ca2+. Clotrimazole-evoked Ca2+ entry was suppressed by store-operated channel inhibitors (nifedipine, econazole and SK&F96365) and protein kinase C modulators (GF109203X and phorbol, 12-myristate, 13-acetate). In Ca2+-free medium, incubation with the endoplasmic reticulum Ca2+ pump inhibitor 2,5-di-tert-butylhydroquinone abolished clotrimazole-induced [Ca2+]i rise. Inhibition of phospholipase C with U73122 abolished clotrimazole-induced [Ca2+]i rise. At 10–40?µM, clotrimazole inhibited cell viability, which was not reversed by chelating cytosolic Ca2+. Clotrimazole at 10 and 30?µM also induced apoptosis. Collectively, in HA59T cells, clotrimazole-induced [Ca2+]i rises by evoking phospholipase C-dependent Ca2+ release from the endoplasmic reticulum and Ca2+ entry via store-operated Ca2+ channels. Clotrimazole also caused apoptosis.  相似文献   

20.
We investigated the effects of changes in luminal [Ca2+] on the gating of native andpurified sheep cardiac sarcoplasmic reticulum (SR) Ca2+-release channels reconstituted intoplanar phospholipid bilayers. The open probability (P o )of channels activated solely by cytosolic Ca2+ was greater at positive than negative holding potentials. Channels activatedsolely by 10 m cytosolic Ca2+ exhibited no change in steady-stateP o or in the relationship betweenP o and voltage when the luminal[Ca2+] was increased from nanomolar to millimolar concentrations. In the absence of activating concentrationsof cytosolic Ca2+, the channel can be activated by the phosphodiesterase inhibitor sulmazole (AR-L 115BS). However, cytosolicCa2+-independent activation of the channel by sulmazole requires luminal Ca2+. In the presence ofsulmazole, at picomolar luminal [Ca2+] the channel remains completely closed. Increasing the luminal [Ca2+]to millimolar levels markedly increases the P o via an increase in theduration of open events. The P o and duration of the sulmazole-activated, luminalCa2+-dependent channel openings are voltage dependent. In the presence of micromolar luminal Ca2+, theP o and duration of sulmazole-activated openings are greater atnegative voltages. However, at millimolar luminal [Ca2+], long openings are also observed at positive voltages and theP o appears to be similar at positive and negative voltages. Our findings indicate thatthe regulation of channel gating by luminal Ca2+ depends on the mechanism of channel activation.We would like to thank Dr Allan Lindsay for the preparation of the purified SR Ca2+-release channels. This work was supported by the British Heart Foundation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号