首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The structure of the tricarboxylic acid cycle enzyme malate dehydrogenase is highly conserved in various organisms. To test the extent of functional conservation, the rat mitochondrial enzyme and the enzyme from Escherichia coli were expressed in a strain of Saccharomyces cerevisiae containing a disruption of the chromosomal MDH1 gene encoding yeast mitochondrial malate dehydrogenase. The authentic precursor form of the rat enzyme, expressed using a yeast promoter and a multicopy plasmid, was found to be efficiently targeted to yeast mitochondria and processed to a mature active form in vivo. Mitochondrial levels of the polypeptide and malate dehydrogenase activity were found to be similar to those for MDH1 in wild-type yeast cells. Efficient expression of the E. coli mdh gene was obtained with multicopy plasmids carrying gene fusions encoding either a mature form of the procaryotic enzyme or a precursor form with the amino terminal mitochondrial targeting sequence from yeast MDH1. Very low levels of mitochondrial import and processing of the precursor form were obtained in vivo and activity could be demonstrated for only the expressed precursor fusion protein. Results of in vitro import experiments suggest that the percursor form of the E. coli protein associates with yeast mitochondria but is not efficiently internalized. Respiratory rates measured for isolated yeast mitochondria containing the mammalian or procaryotic enzyme were, respectively, 83 and 62% of normal, suggesting efficient delivery of NADH to the respiratory chain. However, expression of the heterologous enzymes did not result in full complementation of growth phenotypes associated with disruption of the yeast MDH1 gene.  相似文献   

2.
The nucleotide sequence corresponding to codons for the 17-amino acid residues in the presumed targeting presequence for yeast mitochondrial malate dehydrogenase was removed by oligonucleotide-directed mutagenesis of the isolated gene (MDH1). Integrative transformation was used to insert the "leaderless" gene (mdhl-) into the MDH1 chromosomal locus of a strain containing a disrupted MDH1 gene. Expression of the mature form of malate dehydrogenase as a primary translation product was verified by demonstrating that the mature form is synthesized in mdhl- cells at the same rate as the precursor form in MDH1 cells in the presence of carbonyl cyanide m-chlorophenylhydrazone and by comparison of in vitro translation products of RNAs from mdhl- and MDH1 cells. Expression of mdhl- restores total cellular malate dehydrogenase activity to levels comparable to those in wild type cells and reverses the phenotype associated with strains containing MDH1 disruptions by restoring wild type rates of growth in media containing acetate as a carbon source. Immunochemical analyses and enzyme assays show comparable levels of malate dehydrogenase in the matrix fractions from mitochondria isolated from mdhl- and MDH1 cells and give no evidence for accumulation of the mature enzyme in the cytosol of mdhl- cells. These results indicate that the presequence for malate dehydrogenase is not essential for efficient mitochondrial localization or function in yeast.  相似文献   

3.
The major nonmitochondrial isozyme of malate dehydrogenase (MDH2) in Saccharomyces cerevisiae cells grown with acetate as a carbon source was purified and shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to have a subunit molecular weight of approximately 42,000. Enzyme assays and an antiserum prepared against the purified protein were used to screen a collection of acetate-nonutilizing (acetate-) yeast mutants, resulting in identification of mutants in one complementation group that lack active or immunoreactive MDH2. Transformation and complementation of the acetate- growth phenotype was used to isolate a plasmid carrying the MDH2 gene from a yeast genomic DNA library. The amino acid sequence derived from complete nucleotide sequence analysis of the isolated gene was found to be extremely similar (49% residue identity) to that of yeast mitochondrial malate dehydrogenase (molecular weight, 33,500) despite the difference in sizes of the two proteins. Disruption of the MDH2 gene in a haploid yeast strain produced a mutant unable to grow on minimal medium with acetate or ethanol as a carbon source. Disruption of the MDH2 gene in a haploid strain also containing a disruption in the chromosomal MDH1 gene encoding the mitochondrial isozyme produced a strain unable to grow with acetate but capable of growth on rich medium with glycerol as a carbon source. The detection of residual malate dehydrogenase activity in the latter strain confirmed the existence of at least three isozymes in yeast cells.  相似文献   

4.
The MDH3 isozyme of Saccharomyces cerevisiae was purified from a haploid strain containing disruptions in genomic loci encoding the mitochondrial MDH1 and nonmitochondrial MDH2 isozymes. Partial amino acid sequence analysis of the purified enzyme was conducted and used to plan polymerase chain reaction techniques to clone the MDH3 gene. The isolated gene was found to encode a 343-residue polypeptide with a molecular weight of 37,200. The deduced amino acid sequence was closely related to those of MDH1 (50% residue identity) and of MDH2 (43% residue identity). The MDH3 sequence was found to contain a carboxyl-terminal SKL tripeptide, characteristic of many peroxisomal enzymes, and immunochemical analysis was used to confirm organellar localization of the MDH3 isozyme. Levels of MDH3 were determined to be elevated in cells grown with acetate as a carbon source, and under these conditions, MDH3 contributed approximately 10% of the total cellular malate dehydrogenase activity. Disruption of the chromosomal MDH3 locus produced a reduction in cellular growth rates on acetate, consistent with the presumed function of this isozyme in the glyoxylate pathway of yeast. Combined disruption of MDH1, MDH2, and MDH3 loci in a haploid strain resulted in the absence of detectable cellular malate dehydrogenase activity.  相似文献   

5.
Two different cDNA clones, pMCPN60-1 and pMCPN60-2, encoding the mitochondrial homologues of chaperonin 60 (Cpn60) were isolated from a cDNA library of germinating pumpkin cotyledons by use of mixtures of synthetic oligonucleotides based on the N-terminal amino acid sequence of the protein. Determination of the complete nucleotide sequences of the two cDNA revealed that pMCPN60-1 and pMCPN60-2 each contain one open reading frame that encodes a protein of 575 amino acids with molecular masses of 61052 Da and 61127 Da, respectively. The deduced amino acid sequences of the two polypeptides include a 32-residue N-terminal putative mitochondrial presequence attached to the mature polypeptides, and they are 95.3% identical. From a comparison of deduced amino acid sequences with other Cpn60, it appears that the mature polypeptides of pumpkin mitochondrial Cpn60 are 44-59% identical to the other Cpn60, namely, GroEL of Escherichia coli, the 60-kDa heat-shock protein (Hsp60) of mitochondria in the yeast Saccharomyces cerevisiae, P1 protein of mammalian mitochondria and the Ribulose-1,5-bisphosphate carboxylase/oxygenase subunit-binding proteins alpha and beta of plastids in higher plants. Genomic Southern-blot analysis identified at least two copies of the gene for mitochondrial Cpn60 in the pumpkin genome. The levels of mRNA for mitochondrial Cpn60 in cotyledons, hooks and hypocotyls of pumpkin seedlings increased in response to heat stress, as deduced from Northern-blot analysis, indicating that pumpkin mitochondrial Cpn60 is a heat-induced stress protein.  相似文献   

6.
MDH2, the nonmitochondrial isozyme of malate dehydrogenase in Saccharomyces cerevisiae, was determined to be a target of glucose-induced proteolytic degradation. Shifting a yeast culture growing with acetate to medium containing glucose as a carbon source resulted in a 25-fold increase in turnover of MDH2. A truncated form of MDH2 lacking amino acid residues 1-12 was constructed by mutagenesis of the MDH2 gene and expressed in a haploid yeast strain containing a deletion disruption of the corresponding chromosomal gene. Measurements of malate dehydrogenase specific activity and determination of growth rates with diagnostic carbon sources indicated that the truncated form of MDH2 was expressed at authentic MDH2 levels and was fully active. However, the truncated enzyme proved to be less susceptible to glucose-induced proteolysis, exhibiting a 3.75-fold reduction in turnover rate following a shift to glucose medium. Rates of loss of activity for other cellular enzymes known to be subject to glucose inactivation were similarly reduced. An extended lag in attaining wild type rates of growth on glucose measured for strains expressing the truncated MDH2 enzyme represents the first evidence of a selective advantage for the phenomenon of glucose-induced proteolysis in yeast.  相似文献   

7.
The mitochondrial tricarboxylic acid cycle enzyme malate dehydrogenase was purified from Saccharomyces cerevisiae, and an antibody to the purified enzyme was obtained in rabbits. Immunoscreening of a yeast genomic DNA library cloned into a lambda gt11 expression vector with anti-malate dehydrogenase immunoglobulin G resulted in identification of a lambda recombinant encoding an immunoreactive beta-galactosidase fusion protein. The yeast DNA portion of the coding region for the fusion protein translates into an amino acid sequence which is very similar to carboxy-terminal sequences of malate dehydrogenases from other organisms. In s. cerevisiae transformed with a multicopy plasmid carrying the complete malate dehydrogenase gene, the specific activity and immunoreactivity of the mitochondrial isozyme are increased by eightfold. Expression of both the chromosomal and plasmid-borne genes is repressed by growth on glucose. Disruption of the chromosomal malate dehydrogenase gene in haploid S. cerevisiae produces mutants unable to grow on acetate and impaired in growth on glycerol plus lactate as carbon sources.  相似文献   

8.
Among highly conserved residues in eucaryotic mitochondrial malate dehydrogenases are those with roles in maintaining the interactions between identical monomeric subunits that form the dimeric enzymes. The contributions of two of these residues, Asp-43 and His-46, to structural stability and catalytic function were investigated by construction of mutant enzymes containing Asn-43 and Leu-46 substitutions using in vitro mutagenesis of the Saccharomyces cerevisiae gene (MDH1) encoding mitochondrial malate dehydrogenase. The mutant enzymes were expressed in and purified from a yeast strain containing a disruption of the chromosomal MDH1 locus. The enzyme containing the H46L substitution, as compared to the wild type enzyme, exhibits a dramatic shift in the pH profile for catalysis toward an optimum at low pH values. This shift corresponds with an increased stability of the dimeric form of the mutant enzyme, suggesting that His-46 may be the residue responsible for the previously described pH-dependent dissociation of mitochondrial malate dehydrogenase. The D43N substitution results in a mutant enzyme that is essentially inactive in in vitro assays and that tends to aggregate at pH 7.5, the optimal pH for catalysis for the dimeric wild type enzyme.  相似文献   

9.
A cDNA clone, named ppcMDH-1 and covering a part of the coding region for the porcine cytosolic malate dehydrogenase (cMDH) mRNA, was isolated from a porcine liver cDNA library. Subsequently, mouse cMDH cDNA clones were isolated from mouse liver and heart cDNA libraries, using the ppcMDH-1 cDNA as a probe. The longest clone, named pmcMDH-5, was sequenced and the primary structure of the mouse cMDH deduced from its cDNA sequence showed that the mouse cMDH consists of the 334-amino acid residues. When the amino acid sequence of the mouse cMDH was compared with that of the porcine cMDH, they shared a 93% homology. On the other hand, the amino acid sequences of mouse cMDH and mitochondrial MDH (mMDH) showed about 23% overall homology. Surprisingly, comparison of the amino acid sequences among the mammalian and bacterial MDHs revealed that the homology between the mouse cMDH and thermophilic bacterial MDH, as well as the homology between the mouse mMDH and Escherichia coli MDH, markedly exceeds the intraspecies sequence homology between mMDH and cMDH from mice.  相似文献   

10.
11.
Characterization and sequence of the Escherichia coli panBCD gene cluster   总被引:2,自引:0,他引:2  
Abstract A metabolic key enzyme malate dehydrogenase (MDH) was purified from a deep-sea psychrophilic bacterium, Vibrio sp. strain no. 5710. The enzyme displayed an optimal activity shifted toward lower temperature and a pronounced heat lability. A gene encoding this enzyme was isolated and cloned. Recombinant Escherichia coli cells harboring the isolated clone expressed MDH activity with temperature stability identical to that of the parental psychrophile. Nucleotide sequencing of the gene revealed that its primary sequence was similar to that of a mesophile E. coli MDH (78% amino acid identity), for which the three-dimensional structure is known. The enzyme is thus suitable for the analysis of molecular adaptations to low temperatures.  相似文献   

12.
The genes (mdh) encoding malate dehydrogenase (MDH) from the mesophile Chlorobium vibrioforme and the moderate thermophile C. tepidum were cloned and sequenced, and the complete amino acid sequences were deduced. When the region upstream of mdh was analyzed, a sequence with high homology to an operon encoding ribosomal proteins from Escherichia coli was found. Each mdh gene consists of a 930-bp open reading frame and encodes 310 amino acid residues, corresponding to a subunit weight of 33,200 Da for the dimeric enzyme. The amino acid sequence identity of the two MDHs is 86%. Homology searches using the primary structures of the two MDHs revealed significant sequence similarity to lactate dehydrogenases. A hybrid mdh was constructed from the 3' part of mdh from C. tepidum and the 5' part of mdh from C. vibrioforme. The thermostabilities of the hybrid enzyme and of MDH from C. vibrioforme and C. tepidum were compared.  相似文献   

13.
M Suissa  K Suda    G Schatz 《The EMBO journal》1984,3(8):1773-1781
To isolate nuclear genes specifying imported mitochondrial proteins, a yeast genomic clone bank was screened by an RNA hybridization-competition assay. This assay exploited the fact that mRNAs for imported mitochondrial proteins are enriched in polysomes which are bound to the mitochondrial surface in cycloheximide-inhibited yeast cells. Clones selectively hybridizing to these enriched mRNAs were further screened by hybrid-selected translation and immunoprecipitation with monospecific antisera against individual mitochondrial proteins. Thirty-six clones were isolated which contained complete or partial copies of 16 different genes for imported mitochondrial proteins. Several of these clones caused expression of the corresponding precursor polypeptide in Escherichia coli or over-expression of the corresponding mature protein in yeast. The gene for the matrix enzyme citrate synthase was sequenced; the derived amino acid sequence of the precursor polypeptide revealed an amino-terminal extension containing basic but no acidic residues.  相似文献   

14.
Trypanosomatids cause important human diseases, like sleeping sickness, Chagas disease, and the leishmaniases. Unlike in the mammalian host, the metabolism of aromatic amino acids is a very simple pathway in these parasites. Trypanosoma brucei and Trypanosoma cruzi transaminate the three aromatic amino acids, the resulting 2-oxo acids being reduced to the corresponding lactate derivatives and excreted. In T. cruzi, two enzymes are involved in this process: a tyrosine aminotransferase (TAT), which despite a high sequence similarity with the mammalian enzyme, has a different substrate specificity; and an aromatic L-2-hydroxyacid dehydrogenase (AHADH), which belongs to the subfamily of the cytosolic malate dehydrogenases (MDHs), yet has no MDH activity. In T. cruzi AHADH the substitution of Ala102 for Arg enables AHADH to reduce oxaloacetate. In the members of the 2-hydroxyacid dehydrogenases family, the residue at this position is known to be responsible for substrate specificity. T. cruzi does not possess a cytosolic MDH but contains a mitochondrial and a glycosomal MDH; by contrast T. brucei and Leishmania spp. possess a cytosolic MDH in addition to glycosomal and mitochondrial isozymes. Although Leishmania mexicana also transaminates aromatic amino acids through a broad specificity aminotransferase, the latter presents low sequence similarity with TATs, and this parasite does not seem to have an enzyme equivalent to T. cruzi AHADH. Therefore, these closely related primitive eukaryotes have developed aromatic amino acid catabolism systems using different enzymes and probably for different metabolic purposes.  相似文献   

15.
We have determined both the nucleotide sequence of the MEL1 gene of Saccharomyces carlsbergensis and the N-terminal amino acid (aa) sequence of its extracellular gene product, alpha-galactosidase (melibiase) (alpha-Gal). The predicted translation product of MEL1 is a pre-alpha-Gal protein containing an 18 aa N-terminal signal sequence for secretion. The purified enzyme is a dimer consisting of two 50-kDal polypeptides, each of which is glycosylated with no more than eight side chains. The 5'-flank of the MEL1 gene contains a region (UASm) having certain areas of sequence homology to similar sites found upstream of the structural genes GAL1, GAL7 and GAL10, which are also regulated by the action of the products of genes GAL4 and GAL80. There are three TATA boxes between UASm and the initiation codon of pre-alpha-Gal, as well as a typical yeast cleavage/polyadenylation sequence in the 3'-flank of the gene.  相似文献   

16.
Cloning and expression of a yeast protein tyrosine phosphatase.   总被引:6,自引:0,他引:6  
To study the regulation of tyrosine phosphorylation/dephosphorylation in Saccharomyces cerevisiae, a protein tyrosine phosphatase (PTPase) was cloned by the polymerase chain reaction (PCR). Conserved amino acid sequences within the mammalian PTPases were used to design primers which generated a yeast PCR fragment. The sequence of the PCR fragment encoded a protein with homology to the mammalian PTPases. The PCR fragment was used to identify the yeast PTP1 gene which has an open reading frame encoding a 335-amino acid residue protein. This yeast PTPase shows 26% sequence identity to the rat PTPase, although highly conserved residues within the mammalian enzymes are invariant in the yeast protein. The yeast PTP1 is physicallt linked to the 5'-end of a heat shock gene SSB1. This yeast PTP1 gene was expressed in Escherichia coli and obtained in a highly purified form by a single affinity chromatography step. The recombinant yeast PTPase hydrolyzed phosphotyrosine containing substrates approximately 1000 times faster than a phosphoserine containing substrate. Gene disruption of yeast PTP1 has no visible effect on vegetative growth.  相似文献   

17.
Mitochondrial thioredoxin reductase was purified from bovine adrenal cortex. The enzyme is a first protein component in the mitochondrial thioredoxin-dependent peroxide reductase system. The purified reductase exhibited an apparent molecular mass of 56 kDa on SDS/PAGE, whereas the native protein was about 100 kDa, suggesting a homodimeric structure. It catalysed NADPH-dependent reduction of 5, 5'dithiobis(2-nitrobenzoic acid) and thioredoxins from various origins but not glutathione, oxidized dithiothreitol, DL-alpha-lipoic acid, or insulin. Amino acid and nucleotide sequence analyses revealed that it had a presequence composed of 21 amino acids which had features characteristic of a mitochondrial targeting signal. The amino acid sequence of the mature protein was similar to that of bovine cytosolic thioredoxin reductase (57%) and of human glutathione reductase (34%) and less similar to that of Escherichia coli (19%) or yeast (17%) enzymes. Human and bovine cytosolic thioredoxin reductase were recently identified to contain selenocysteine (Sec) as one of their amino acid constituents. We also identified Sec in the C-terminal region of mitochondrial (mt)-thioredoxin reductase by means of MS and amino acid sequence analyses of the C-terminal fragment. The four-amino acid motif, Gly-Cys-Sec-Gly, which is conserved among all Sec-containing thioredoxin reductases, probably functions as the third redox centre of the enzyme, as the mitochondrial reductase was inhibited by 1-chloro-2,4-dinitrobenzene, which was reported to modify Sec and Cys covalently. It is known that mammalian thioredoxin reductase is different from bacterial or yeast enzyme in, for example, their subunit molecular masses and domain structures. These two different types of enzymes with similar activity are suggested to have evolved convergently. Our data clearly show that mitochondria, which might have originated from symbiotic prokaryotes, contain thioredoxin reductase similar to the cytosolic enzyme and different from the bacterial one.  相似文献   

18.
Kirby RR 《Gene》2000,245(1):81-88
The evolutionary history of the malate dehydrogenase (MDH) gene family [NAD-dependent MDH; EC 1.1.1.37 and NAD(P)-dependent MDH; EC 1.1.1.82] has received much attention. MDHs have also featured extensively as electrophoretic markers in population genetics and evolutionary ecology, and in many cases, intraspecific variation in MDH has been correlated with environmental variables. However, while the amino acid residues essential for MDH function are known, no studies have examined intraspecific nucleotide variation despite evidence indicating that natural selection may be operating on this locus. This study presents two sets of degenerate oligonucleotide PCR primers to facilitate the cloning of cytosolic MDH (cMDH) and mitochondrial MDH (mMDH) from a broad range of animals (cMDH) and animals and plants (mMDH). These primers were used to obtain putative cMDH and mMDH cDNAs from the mollusc Nucella lapillus. The N. lapillus cMDH cDNA was found to encode a putative cMDH protein of 334aa and 36kDa, while the mMDH cDNA encoded a putative mature mMDH protein of 315aa and 33kDa. The putative amino acid sequences of the two compartmentalised N. lapillus MDHs are presented and compared to other known MDH sequences.  相似文献   

19.
The gene for Aspergillus niger glucose oxidase (EC 1.1.3.4) has been cloned from both cDNA and genomic libraries using oligonucleotide probes derived from the amino acid sequences of peptide fragments of the enzyme. The mature enzyme consists of 583 amino acids and is preceded by a 22-amino acid presequence. No intervening sequences are found within the coding region. The enzyme contains 3 cysteine residues and 8 potential sites for N-linked glycosylation. The protein shows 26% identity with alcohol oxidase of Hansenuela polymorpha, and the N terminus has a sequence homologous with the AMP-binding region of other flavoenzymes such as p-hydroxybenzoate hydroxylase and glutathione reductase. Recombinant yeast expression plasmids have been constructed containing a hybrid yeast alcohol dehydrogenase II-glyceraldehyde-3-phosphate dehydrogenase promoter, either the yeast alpha-factor pheromone leader or the glucose oxidase presequence, and the mature glucose oxidase coding sequence. When transformed into yeast, these plasmids direct the synthesis and secretion of between 75 and 400 micrograms/ml of active glucose oxidase. Analysis of the yeast-derived enzymes shows that they are of comparable specific activity and have more extensive N-linked glycosylation than the A. niger protein.  相似文献   

20.
A 3 kb DNA fragment containing the gene (mdh) encoding malate dehydrogenase (MDH) from the thermophile Thermus aquaticus B was cloned in Escherichia coli and its nucleotide sequence determined. Comparative analysis showed the nucleotide sequence to be very closely related to that determined for the Thermus flavus mdh gene and flanking regions, with no differences between the predicted amino acid sequences of the MDHs. A proximal open reading frame, identified as the sucD gene, and the mdh gene may be parts of the same operon in T. aquaticus B. Expression of the T. aquaticus B mdh gene in E. coli was found to be at a relatively low level. A simple method for purification of thermostable MDH from the E. coli clone containing the T. aquaticus B mdh gene is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号