首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The plant galactolipids, monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), are the most abundant lipids in chloroplast membranes, and they constitute the majority of total membrane lipids in plants. MGDG is synthesized by two types of MGDG synthase, type-A (MGD1) and type-B (MGD2, MGD3). These MGDG synthases have distinct roles in Arabidopsis. In photosynthetic organs, Type A MGD is responsible for the bulk of MGDG synthesis, whereas Type B MGD is expressed in non-photosynthetic organs such as roots and flowers and mainly contributes to DGDG accumulation under phosphate deficiency. Similar to MGDG synthesis, DGDG is synthesized by two synthases, DGD1 and DGD2; DGD1 is responsible for the majority of DGDG synthesis, whereas DGD2 makes its main contribution under phosphate deficiency. These galactolipid synthases are regulated by light, plant hormones, redox state, phosphatidic acid levels, and various stress conditions such as drought and nutrient limitation. Maintaining the appropriate ratio of these two galactolipids in chloroplasts is important for stabilizing thylakoid membranes and maximizing the efficiency of photosynthesis. Here we review progress made in the last decade towards a better understanding of the pathways regulating plant galactolipid biosynthesis.  相似文献   

2.
Two genes (DGD1 and DGD2) are involved in the synthesis of the chloroplast lipid digalactosyldiacylglycerol (DGDG). The role of DGD2 for galactolipid synthesis was studied by isolating Arabidopsis T-DNA insertional mutant alleles (dgd2-1 and dgd2-2) and generating the double mutant line dgd1 dgd2. Whereas the growth and lipid composition of dgd2 were not affected, only trace amounts of DGDG were found in dgd1 dgd2. The growth and photosynthesis of dgd1 dgd2 were affected more severely compared with those of dgd1, indicating that the residual amount of DGDG in dgd1 is crucial for normal plant development. DGDG synthesis was increased after phosphate deprivation in the wild type, dgd1, and dgd2 but not in dgd1 dgd2. Therefore, DGD1 and DGD2 are involved in DGDG synthesis during phosphate deprivation. DGD2 was localized to the outer side of chloroplast envelope membranes. Like DGD2, heterologously expressed DGD1 uses UDP-galactose for galactosylation. Galactolipid synthesis activity for monogalactosyldiacylglycerol (MGDG), DGDG, and the unusual oligogalactolipids tri- and tetragalactosyldiacylglycerol was detected in isolated chloroplasts of all mutant lines, including dgd1 dgd2. Because dgd1 and dgd2 carry null mutations, an additional, processive galactolipid synthesis activity independent from DGD1 and DGD2 exists in Arabidopsis. This third activity, which is related to the Arabidopsis galactolipid:galactolipid galactosyltransferase, is localized to chloroplast envelope membranes and is capable of synthesizing DGDG from MGDG in the absence of UDP-galactose in vitro, but it does not contribute to net galactolipid synthesis in planta.  相似文献   

3.
The galactolipid digalactosyldiacylglycerol (DGDG), one of the main chloroplast lipids in higher plants, is believed to be synthesized by the galactolipid:galactolipid galactosyltransferase, which transfers a galactose moiety from one molecule of monogalactosyldiacylglycerol (MGDG) to another. Here, we report that Arabidopsis as well as other plant species contain two genes, DGD1 and DGD2, encoding enzymes with DGDG synthase activity. Using MGDG and UDP-galactose as substrates for in vitro assays with DGD2 we could for the first time measure DGDG synthase activity of a heterologously expressed plant cDNA. UDP-galactose, but not MGDG, serves as the galactose donor for DGDG synthesis catalyzed by DGD2, providing clear evidence for the existence of a UDP-galactose-dependent DGDG synthase in higher plants. In in vitro assays, DGD2 was capable of galactosylating DGDG, resulting in the synthesis of an oligogalactolipid tentatively identified as trigalactosyldiacylglycerol. DGD2 mRNA expression in leaves was very low but was strongly induced during growth under phosphate-limiting conditions. This induction correlates with the previously described increase in DGDG during phosphate deprivation. Therefore, in contrast to DGD1, which is responsible for the synthesis of the bulk of DGDG found in chloroplasts, DGD2 apparently is involved in the synthesis of DGDG under specific growth conditions.  相似文献   

4.
Galactolipids make up the bulk of chloroplast lipids. Therefore, the genes involved in the synthesis of the galactolipids monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) play a critical role in chloroplast development. In this study, we analyzed the subcellular localization of the Arabidopsis DGDG synthase DGD1, which was recently identified by complementation of the Arabidopsis dgd1 mutant. In vitro import experiments demonstrated that DGD1 was targeted to the chloroplast outer envelope in an ATP-independent manner. DGD1 could not be extracted from the membranes by high salt or alkali, suggesting that it is an integral membrane protein. Uptake experiments with truncated versions of DGD1 indicated that the information for targeting and insertion into the outer envelope resides in the N-terminal half of DGD1, but not in the first 33 amino acids. DGD1 apparently does not contain a cleavable signal peptide. Antibodies to Arabidopsis DGD1 detected a 90-kDa protein localized to the chloroplast envelopes of both pea and Arabidopsis. Transformation of DGD1 constructs into cyanobacteria resulted in the expression of active DGDG synthase and demonstrated that DGDG synthesis depends on MGDG lipid, but does not require direct interaction with the plant MGDG synthase.  相似文献   

5.
Membrane polyunsaturated fatty acids (PUFA) and particularly linolenic acid (18:3, LA) are known to be implicated in plant tolerance to low temperature. Their role in resistance to drought is much less investigated. In this work, three full-length cDNAs corresponding to omega-3 fatty acid desaturases: fad3 (endoplasmic reticulum), fad7 and fad8 (chloroplastic) were isolated from Vigna unguiculata leaves. Two cowpea cultivars, one drought-tolerant, EPACE-1, and one drought-susceptible, 1183, were compared in terms of fad isoform gene expression and leaf LA contents in plants submitted to water stress followed by rehydration. In EPACE-1, LA content in the main leaf polar lipids increased in response to mild water deficit. Severe water deficits induced a decrease in MGDG LA content while those of PC and DGDG continued to increase. Variations in FAD gene expression, matched those in LA contents. In 1183, LA contents decreased in all lipid classes in response to water stress, as did FAD3 and FAD8 gene expression levels. Rehydration after a moderate water stress induced stimulation mostly in FAD3 gene expression in both cvs. LA contents were equivalent to control levels in EPACE-1. In 1183, they were back to control levels in PC shortly after rehydration but remained low in galactolipids. These results suggested that omega-3 FAD activities were involved in the increase in leaf membrane unsaturation, in the drought tolerant plants whereas the sensitive plants lost PUFAs in response to the treatment. The significance of this discrepancy between the two cvs. in terms of adaptation to drought is discussed.  相似文献   

6.
BACKGROUND AND AIMS: Cell membranes are major targets of environmental stresses. Lipids are important membrane components, and changes in their composition may help to maintain membrane integrity and preserve cell compartmentation under water stress conditions. The aim of this work was to investigate the effects of water stress on membrane lipid composition and other aspects of lipid metabolism in the leaves of the model plant, Arabidopsis thaliana. METHODS: Arabidopsis thaliana (ecotype Columbia) plants were submitted to progressive drought stress by withholding irrigation. Studies were carried out in plants with hydration levels ranging from slight to very severe water deficit. Enzymatic activities hydrolysing MGDG, DGDG and PC were measured. Expression of several genes essential to lipid metabolism, such as genes coding for enzymes involved in lipid biosynthesis (MGDG synthase, DGDG synthase) and degradation (phospholipases D, lipoxygenase, patatin-like lipolytic-acylhydrolase), was studied. KEY RESULTS: In response to drought, total leaf lipid contents decreased progressively. However, for leaf relative water content as low as 47.5 %, total fatty acids still represented 61 % of control contents. Lipid content of extremely dehydrated leaves rapidly increased after rehydration. The time-course of the decrease in leaf lipid contents correlated well with the increase in lipolytic activities of leaf extracts and with the expression of genes involved in lipid degradation. Despite a decrease in total lipid content, lipid class distribution remained relatively stable until the stress became very severe. CONCLUSIONS: Arabidopsis leaf membranes appeared to be very resistant to water deficit, as shown by their capacity to maintain their polar lipid contents and the stability of their lipid composition under severe water loss conditions. Moreover, arabidopsis displayed several characteristics indicative of a so far unknown adaptation capacity to drought-stress at the cellular level, such as an increase in the DGDG : MGDG ratio and fatty acid unsaturation.  相似文献   

7.
The peribacteroid membrane (PBM) surrounding nitrogen fixing rhizobia in the nodules of legumes is crucial for the exchange of ammonium and nutrients between the bacteria and the host cell. Digalactosyldiacylglycerol (DGDG), a galactolipid abundant in chloroplasts, was detected in the PBM of soybean (Glycine max) and Lotus japonicus. Analyses of membrane marker proteins and of fatty acid composition confirmed that DGDG represents an authentic PBM lipid of plant origin and is not derived from the bacteria or from plastid contamination. In Arabidopsis, DGDG is known to accumulate in extraplastidic membranes during phosphate deprivation. However, the presence of DGDG in soybean PBM was not restricted to phosphate limiting conditions. Complementary DNA sequences corresponding to the two DGDG synthases, DGD1 and DGD2 from Arabidopsis, were isolated from soybean and Lotus. The two genes were expressed during later stages of nodule development in infected cells and in cortical tissue. Because nodule development depends on the presence of high amounts of phosphate in the growth medium, the accumulation of the non-phosphorus galactolipid DGDG in the PBM might be important to save phosphate for other essential processes, i.e. nucleic acid synthesis in bacteroids and host cells.  相似文献   

8.
Plant survival in many ecosystems requires tolerance of large radiation loads, unreliable water supply and suboptimal soil fertility. We hypothesized that increased production of neutral lipids (triacylglycerols, TAGs) in plant leaves is a mechanism for dissipating excess radiation energy. In a greenhouse experiment, we combined drought and shade treatments and examined responses among four species differing in life form, habitat, and drought‐ and shade‐tolerance. We also present a lipid extraction protocol suitable for sclerophyllous leaves of native Australian trees (e.g. Acacia, Eucalyptus). Fluorescence measurements indicated that plants exposed to full sunlight experienced mild photoinhibition during our experiment. Accumulation of TAGs did not follow photosynthetic capacity, but instead, TAG concentration increased with non‐photochemical quenching. This suggests that plants under oxidative stress may increase biosynthesis of TAGs. Moderate drought stress resulted in a 60% reduction in TAG concentration in wheat (Triticum aestivum). Shading had no effect on TAGs, but increased concentrations of polar lipids in leaves; for example, acclimation to shade in Austrodanthonia spp., a native Australian grass, resulted in a 60% increase in associated polar lipids and higher foliar chlorophyll concentrations. Shading also reduced the digalactosyldiacylglycerol:monogalactosyldiacylglycerol (DGDG:MGDG) ratio in leaves, with a corresponding increase in the degree of unsaturation and thus fluidity of thylakoid membranes of chloroplasts. Our results suggest that prevention of photodamage may be coordinated with accumulation of TAGs, although further research is required to determine if TAGs serve a photoprotective function in plant leaves.  相似文献   

9.
Two cDNAs of the enzyme glutathione reductase (GR; EC 1.6.4.2) encoding a dual-targeted isoform (dtGR) and a cytosolic isoform (cGR), were cloned from leaves of common bean (Phaseolus vulgaris L.). Moderate drought stress (Psi w=-1.5MPa) followed by re-watering was applied to common bean cultivars, one tolerant to drought (IPA), the other susceptible (Carioca) and to cowpea (Vigna unguiculata L. Walp) cultivars, one tolerant to drought (EPACE-1), and the other susceptible (1183). mRNA levels were much higher for PvcGR than for PvdtGR in all cases. Moderate drought stress induced an up-regulation of the expression of PvcGR in the susceptible cultivars. On the contrary, PvdtGR expression decreased. In the tolerant cowpea EPACE-1, GR gene expression remained stable under drought. During recovery from drought, an up-regulation of the two GR isoforms occurred, with a peak at 6-10h after re-hydration. This suggests that moderate drought stress may lead to a hardening process and acclimation tolerance. The role of GR isoforms in plant tolerance and capacity to recover from drought stress is discussed.  相似文献   

10.
Plants are constantly challenged with various abiotic stresses in their natural environment. Elevated temperatures have a detrimental impact on overall plant growth and productivity. Many plants increase their tolerance to high temperatures through an adaptation response known as acquired thermotolerance. To identify the various mechanisms that plants have evolved to cope with high temperature stress, we have isolated a series of Arabidopsis mutants that are defective in the acquisition of thermotolerance after an exposure to 38 degrees C, a treatment that induces acquired thermotolerance in wild-type plants. One of these mutants, atts02, was not only defective in acquiring thermotolerance after the treatment, but also displayed a reduced level of basal thermotolerance in a 30 degrees C growth assay. The affected gene in atts02 was identified by positional cloning and encodes digalactosyldiacylglycerol synthase 1 (DGD1) (the atts02 mutant was, at that point, renamed dgd1-2). An additional dgd1 allele, dgd1-3, was identified in two other mutant lines displaying altered acquired thermotolerance, atts100 and atts104. Expression patterns of several heat shock proteins (HSPs) in heat-treated dgd1-2 homozygous plants were similar to those from identically treated wild-type plants, suggesting that the thermosensitivity in the dgd1-2 mutant was not caused by a defect in HSP induction. Lipid analysis of wild-type and mutant plants indicated a close correlation between the ability to acquire thermotolerance and the increases in digalactosyldiacylglycerol (DGDG) level and in the ratio of DGDG to monogalactosyldiacylglycerol (MGDG). Thermosensitivity in dgd1-2 and dgd1-3 was associated with (1) a decreased DGDG level and (2) an inability to increase the ratio of DGDG to MGDG upon exposure to a 38 degrees C sublethal temperature treatment. Our results suggest that the DGDG level and/or the ratio of DGDG to MGDG may play an important role in basal as well as acquired thermotolerance in Arabidopsis.  相似文献   

11.
干旱胁迫是严重影响全球作物生产的非生物胁迫之一,研究植物耐旱机制已成为一个重要领域。水通道蛋白是一类特异、高效转运水及其它小分子底物的膜通道蛋白,在植物中具有丰富的亚型,参与调节植物的水分吸收和运输。近10年来,水通道蛋白在植物不同生理过程中的作用,一直受到研究人员的关注,特别是在非生物胁迫方面,而研究表明水通道蛋白在干旱胁迫下对植物的耐旱性起着至关重要的作用,能维持细胞水分稳态和调控环境胁迫快速响应。水通道蛋白在植物耐旱过程中的调控机制及功能较复杂,而关于其应答机制和不同亚型功能性研究的报道甚少。该文综述了植物水通道蛋白的分类、结构、表达调控和活性调节,分别从植物水通道蛋白响应干旱表达调控机制、水通道蛋白基因表达的时空特异性、水通道蛋白基因的表达与蛋白丰度,水通道蛋白基因的耐旱转化四个方面阐明干旱胁迫下植物水通道蛋白的表达,重点阐述其参与植物干旱胁迫应答的作用机制,并提出水通道蛋白研究的主要方向。  相似文献   

12.
13.
The phytohormone abscisic acid (ABA) regulates plant growth and development as well as stress tolerance. The Arabidopsis sad1 (supersensitive to ABA and drought) mutation increases plant sensitivity to drought stress and ABA in seed germination, root growth, and the expression of some stress-responsive genes. sad1 plants are also defective in the positive feedback regulation of ABA biosynthesis genes by ABA and are impaired in drought stress induction of ABA biosynthesis. SAD1 encodes a polypeptide similar to multifunctional Sm-like snRNP proteins that are required for mRNA splicing, export, and degradation. These results suggest a critical role for mRNA metabolism in the control of ABA signaling as well as in the regulation of ABA homeostasis.  相似文献   

14.
15.
16.
Drought stress is a major constraint on cowpea productivity, since the crop is grown under warm conditions on sandy soils having low water‐holding capacity. For enhanced performance of crops facing terminal drought stress, like cowpea, water‐saving strategies are crucial. In this work, the growth and transpiration rate (TR) of 40 cowpea genotypes with contrasting response to terminal drought were measured under well‐watered conditions across different vapour pressure deficits (VPD) to investigate whether tolerant and sensitive genotypes differ in their control of leaf water loss. A method is presented to indirectly assess TR through canopy temperature (CT) and the index of canopy conductance (Ig). Overall, plants developed larger leaf area under low than under high VPD, and there was a consistent trend of lower plant biomass in tolerant genotypes. Substantial differences were recorded among genotypes in TR response to VPD, with tolerant genotypes having significantly lower TR than sensitive ones, especially at times with the highest VPD. Genotypes differed in TR response to increasing VPD, with some tolerant genotypes exhibiting a clear VPD breakpoint at about 2.25 kPa, above which there was very little increase in TR. In contrast, sensitive genotypes presented a linear increase in TR as VPD increased, and the same pattern was found in some tolerant lines, but with a smaller slope. CT, estimated with thermal imagery, correlated well with TR and Ig and could therefore be used as proxy for TR. These results indicate that control of water loss discriminated between tolerant and sensitive genotypes and may, therefore, be a reliable indicator of terminal drought stress tolerance. The water‐saving characteristics of some genotypes are hypothesised to leave more soil water for pod filling, which is crucial for terminal drought adaptation.  相似文献   

17.
In many soils plants have to grow in a shortage of phosphate, leading to development of phosphate-saving mechanisms. At the cellular level, these mechanisms include conversion of phospholipids into glycolipids, mainly digalactosyldiacylglycerol (DGDG). The lipid changes are not restricted to plastid membranes where DGDG is synthesized and resides under normal conditions. In plant cells deprived of phosphate, mitochondria contain a high concentration of DGDG, whereas mitochondria have no glycolipids in control cells. Mitochondria do not synthesize this pool of DGDG, which structure is shown to be characteristic of a DGD type enzyme present in plastid envelope. The transfer of DGDG between plastid and mitochondria is investigated and detected between mitochondria-closely associated envelope vesicles and mitochondria. This transfer does not apparently involve the endomembrane system and would rather be dependent upon contacts between plastids and mitochondria. Contacts sites are favored at early stages of phosphate deprivation when DGDG cell content is just starting to respond to phosphate deprivation.  相似文献   

18.
To investigate the genetic basis of drought tolerance in soybean ( Glycine max L. Merr.) a recombinant inbred population with 184 F2:7:11 lines developed from a cross between Kefeng1 (drought tolerant) and Nannong1138-2 (drought sensitive) were tested under water-stressed and well-watered conditions in field and greenhouse trials. Traits measured included leaf wilting coefficient, excised leaf water loss and relative water content as indicators of plant water status and seed yield. A total of 40 quantitative trait loci (QTLs) were identified: 17 for leaf water status traits under drought stress and 23 for seed yield under well-watered and drought-stressed conditions in both field and greenhouse trials. Two seed yield QTLs were detected under both well-watered and drought-stressed conditions in the field on molecular linkage group H and D1b, while two seed yield QTLs on molecular linkage group C2 were found under greenhouse conditions. Several QTLs for traits associated with plant water status were identified in both field and greenhouse trials, including two leaf wilting coefficient QTLs on molecular linkage group A2 and one excised leaf water loss QTL on molecular linkage group H. Phenotypic correlations of traits suggested several QTLs had pleiotropic or location-linked associations. These results will help to elucidate the genetic basis of drought tolerance in soybean, and could be incorporated into a marker-assisted selection breeding program to develop high-yielding soybean cultivars with improved tolerance to drought stress.  相似文献   

19.
Changes of endogenous polyamine (PA) levels could be a key adaptive response to drought in plants. White clover pretreated with or without dicyclohexylamine (DCHA), an inhibitor of PA biosynthesis, was subjected to drought stress induced by 18% polyethylene glycol 6000 for 8 days in controlled growth chambers. Results showed that drought stress significantly increased endogenous PA content, whereas DCHA significantly decreased PA accumulation under drought stress. The attenuate PA biosynthesis was unfavorable for plant growth and drought tolerance, as reflected by significantly lower relative water content, relative growth rate, instantaneous water use efficiency, and cell membrane stability in leaves in response to drought. On the basis of proteomic analysis, the inhibition of PA synthesis decreased the accumulation of many key differentially expressed proteins including (1) ribosomal structure and biogenesis: elongation factor, ribosomal protein S10E, and 30S ribosomal protein; (2) amino acid transport and metabolism: cysteine synthase, delta-1-pyrroline-5-carboxylate synthetase, and glutamate decarboxylase; (3) carbohydrate metabolism and energy production: photosystem apoprotein, sucrose-phosphate synthase, phosphogluconate dehydrogenase, sucrose-phosphatase, NADH oxidoreductase, and ATP synthase; (4) antioxidant metabolism: catalase, peroxidase I, ascorbate peroxidase, and glutathione S-transferase; and (5) other biological processes: heat shock protein 70, heat shock protein 90, and calcium-dependent protein kinase associated with the decreased drought tolerance in white clover. These findings indicate that PAs play a critical role in the regulation of growth, ribosome, amino acid and energy metabolism, and antioxidant reactions in white clover under drought stress. Drought-induced increases in endogenous PAs could be one of key adaptive responses against drought stress in white clover.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号