首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
The diversity and distribution of sulfate-reducing prokaryotes (SRP) was investigated in the Nankai Trough sediments of off-central Japan by exploring the diversity of a functional gene, dissimilatory sulfite reductase (dsrAB). Bulk DNAs were extracted from five piston-cored samples (up to 4.5 m long) with 41 vertical sections, and full-length dsrABgene sequences (ca. 1.9 kb) were PCR amplified and cloned. A total of 382 dsrAB clones yielded eight phylogenetic groups with an indigenous group forming a unique dsrAB lineage. The deltaproteobacterial dsrAB genes were found in almost all sediment samples, especially in the surface layer. One unique dsrAB clone group was also widespread in the dsrAB profiles of the studied sediments, and the percentage of its clones was generally shown gradual increase with sediment depth.  相似文献   

2.
The microbial community structures of gas hydrate-bearing (Core 9) and non-hydrate-bearing (Core 1) marine sediments were investigated at Mississippi Canyon (MC) 118 in the Gulf of Mexico. Quantification by quantitative competitive (QC)-PCR showed that bacterial abundance was 2–3 orders of magnitude higher than archaeal abundance in these cores. Sulfate-reducing bacteria (SRB) were present at 103–104 dsrAB gene copies/g in both cores; methanogens or anaerobic methanotrophs were only present in Core 9 (102–105 mcrA gene copies/g). Denaturing gradient gel electrophoresis (DGGE) showed distinct patterns of bacterial community structure between Core 9 and Core 1 with ε-Proteobacteria predominating in the former and γ-Proteobacteria in the latter. Clone libraries were successfully constructed for both Archaea and Bacteria using functional genes (mcrA and dsrAB, respectively). The mcrA gene was present in Core 9, suggesting enhanced abundance or activity of methanogens or methane-oxidizing archaea in the hydrate-impacted sediment. The mcrA gene sequences were dominated by group c-d and group e. The majority (80%) of the dsrAB gene sequences fell into Syntrophobacteraceae-related group. This study indicates that microbial community structures are considerably different between the hydrate-bearing and non-hydrate-bearing sediment at MC 118. Our study is among the initial steps toward a comprehensive and long-term monitoring of microbial dynamics associated with gas hydrates in the Gulf of Mexico.  相似文献   

3.
The energy metabolism of essential microbial guilds in the biogeochemical sulfur cycle is based on a DsrAB-type dissimilatory (bi)sulfite reductase that either catalyzes the reduction of sulfite to sulfide during anaerobic respiration of sulfate, sulfite and organosulfonates, or acts in reverse during sulfur oxidation. Common use of dsrAB as a functional marker showed that dsrAB richness in many environments is dominated by novel sequence variants and collectively represents an extensive, largely uncharted sequence assemblage. Here, we established a comprehensive, manually curated dsrAB/DsrAB database and used it to categorize the known dsrAB diversity, reanalyze the evolutionary history of dsrAB and evaluate the coverage of published dsrAB-targeted primers. Based on a DsrAB consensus phylogeny, we introduce an operational classification system for environmental dsrAB sequences that integrates established taxonomic groups with operational taxonomic units (OTUs) at multiple phylogenetic levels, ranging from DsrAB enzyme families that reflect reductive or oxidative DsrAB types of bacterial or archaeal origin, superclusters, uncultured family-level lineages to species-level OTUs. Environmental dsrAB sequences constituted at least 13 stable family-level lineages without any cultivated representatives, suggesting that major taxa of sulfite/sulfate-reducing microorganisms have not yet been identified. Three of these uncultured lineages occur mainly in marine environments, while specific habitat preferences are not evident for members of the other 10 uncultured lineages. In summary, our publically available dsrAB/DsrAB database, the phylogenetic framework, the multilevel classification system and a set of recommended primers provide a necessary foundation for large-scale dsrAB ecology studies with next-generation sequencing methods.  相似文献   

4.
Sulfate reduction and sediment metabolism in Tomales Bay,California   总被引:3,自引:1,他引:2  
Sulfate reduction rates (SRR) in subtidal sediments of Tomales Bay, California, were variable by sediment type, season and depth. Higher rates were measured in near-surface muds during summer (up to 45 nmol cm-3 h-1), with lower rates in sandy sediments, in winter and deeper in the sediment. Calculations of annual, average SRR throughout the upper 20 cm of muddy subtidal sediments (about 30 mmol S m-2 d-1) were much larger than previously reported net estimates of SRR derived from both benthic alkalinity flux measurements and bay wide, budget stoichiometry (3.5 and 2.6 mmol m-2 d-1, respectively), indicating that most reduced sulfur in these upper, well-mixed sediments is re-oxidized. A portion of the net alkalinity flux across the sediment surface may be derived from sulfate reduction in deeper sediments, estimated from sulfate depletion profiles at 1.5 mmol m-2 d-1. A small net flux of CO2 measured in benthic chambers despite a large SRR suggests that sediment sinks for CO2 must also exist (e.g., benthic microalgae).  相似文献   

5.
The impact of sediment coring on measured rates of sulfate reduction(SRR) by the whole core 35S-injection technique was assessed inmarshsediment vegetated by Spartina anglica. Simultaneously,therole of extraction method (centrifugation vs. sippers) for determination ofporewater DOC in vegetated sediment was evaluated. SRR was measuredinsitu with radiotracer injected directly into the sediment and in atime series from 1 to 24 h after coring. SRR incubations carriedout within 6 h (June) or 12 h (August) of coringyielded up to an order of magnitude higher rates than measured insitu. The enhancement of SRR was instantaneous but temporary andcorrelated with measured porewater DOC concentrations. Cores sampled fromrootedsediments should therefore not be used for sulfate reduction incubations withinthe first 12 h due to the effect of DOC leaching from roots cutduring the coring procedure. The labile fraction of leached DOC appears to beexhausted after a pre-incubation period of at least 12 h.Measurement of porewater DOC is also problematic in vegetated sediment.Porewater extraction by centrifugation of sediment may result in up to oneorderof magnitude higher DOC concentrations than in porewater obtained by anondestructive sipper technique. DOC is probably forced out of roots duringcentrifugation resulting in erroneously high porewater DOC concentrations.  相似文献   

6.
The physical limnology of Augher Lough (Northern Ireland)   总被引:2,自引:0,他引:2  
SUMMARY.
  • 1 The physical limnology of Augher Lough, Northern Ireland (area=9.25 ha. z=5.5 m), including stratification pattern, heat budget, thermocline erosion rate, eddy diffusion rate in the thermocline and hypolimnion and areal hypolimnetic oxygen deficit is described.
  • 2 Oxygen and temperature profiles, recorded at two sites during 1978 and four sites during 1979, showed that spatial variability of these quantities was low and allowed the following lake characteristics to be estimated. Heat budgel was 5.30 kcal cm-2 (standard deviation=s=0.26) in 1978 and 5.00 (s= 0.26) in 1979. The thermocline depth was 3.5–6.5 m with an erosion rate of 1.9X10-7 m s-1 in 1979. Eddy diffusion coefficients of heat in the thermocline and hypolimnion normally ranged from 0.48X 10-2 cm2 s-1 (s=0.20X10-2) to 5.4X10-2 (s=2.6X10-2), but reached 10X10-2 cm2s-l (s=9X10-2) in early July 1978 after a cooling-mixing episode in the epilimnion. The hypolimnetic oxygen deficit was 680 mg O2 m-2 d-1 (s=76) and varied strongly with depth.
  • 3 A cooling-mixing episode in the epilimnion in June-July 1978 caused the movement of heat down to 8 m, movement of oxygen down to 6 m and increased the eddy diffusion coefficients of heat by an order of magnitude.
  相似文献   

7.
The effect of brassinolide (BL) on cultured calluses of Spartina patens (Ait.) Muhl. (Poaceae), a halophyte monocot was studied. BL at 0.03–0.04 mg l–1 at fixed concentrations of IAA (0.2 mg l–1) and BA (3.0 mg l–1) added in MS medium increased the ratio for fresh weight (CIRFW) to dry weight (CIRDW) by 96–111% and 235–326%. Similarly, in callus regeneration capacity, BL at 0.03 mg l–1 was most effective, increasing the shoot regeneration ratio (SRR) by 425%. BL at 0.04 mg l–1 had not such an increasing effect as BL at 0.03 mg l–1, which increased SRR by 79%. However, BL at 0.005 mg l–1 promoted regenerated shoot growth most significantly, increasing the shoot height increasing ratio (SHIR) by 395% after a 40-day culture. BL at 0.05 mg l–1 was least effective in the callus regeneration and regenerated shoot growth, decreasing SRR by 27% and SHIR by 52%. Present results suggest that BL at 0.03 mg l–1 is suitable for the callus growth and shoot regeneration, while BL at 0.005 mg l–1 effectively enhanced the regenerated shoot growth.  相似文献   

8.
Aim: To determine the cold tolerance and plant growth promotion potential of Serratia marcescens strain SRM (MTCC 8708). Methods and Results: Serratia marcescens strain SRM was isolated from the flowers of summer squash plants, showing no apparent symptoms of yellow vine disease. It was evaluated for growth and plant growth promotion attributes at 15 and 4°C. At 15°C, the isolate was able to solubilize 76·6 μg ml?1 of P and produce Indole Acetic Acid, IAA (11·1 μg ml?1). HCN and siderophore production were also detected at 15°C. The isolate retained all the plant growth promotion traits at 4°C. Seed bacterization with the isolate significantly enhanced plant biomass and nutrient uptake of wheat seedlings grown in cold temperatures. Conclusion: Serratia marcescens strain SRM is a promising cold‐tolerant isolate that can significantly influence wheat seedling growth at cold temperatures. Significance and Impact of the Study: This strain can be employed as a bioinoculant in cold temperature conditions.  相似文献   

9.
This study was undertaken to determine the rates and controls ofanaerobic respiration reactions coupled to organic matter mineralization as afunction of space and time along a transect from a bioturbated creekbank to themidmarsh in Georgia saltmarsh sediments. Sulfate reduction rates (SRR) weremeasured at 3 sites during 5 sampling periods throughout the growth season. Thesites differed according to hydrologic regime and the abundance of dominantplants and macrofauna. SRR and pore water / solid phase geochemistry showedevidence of enhanced sediment oxidation at sites exposed to intensebioturbation. Iron(III) reduction rates (FeRR) were directly determined insaltmarsh sediments for the first time, and in agreement with measured SRR,higher rates were observed at the bioturbated, unvegetated creekbank (BUC) andbioturbated, vegetated levee (BVL) sites in comparison to a vegetated mid-marsh(MM) site. An unexpected result was the fact that SRR varied nearly as muchbetween sites (2–3 x) as it did with temperature or season (3–4 x).The BVL site, vegetated by the tall form of Spartinaalterniflora, always exhibited the highest SRR and carbon oxidationrates (> 4000 nmol cm–3 d–1) with high activity levels extending deep ( 50 cm)into the sediment, while the MM site, dominated by the short form ofSpartina, always exhibited the lowest SRR which werelocalized to the top 15 cm of sediment. SRR and FeRR at BUC wereintermediate between those measured at the BVL and MM. Acetate was the mostabundant microbial fermentation product (concentrations up to > 1mM) in marsh porewaters, and its distribution reflectedrespirationactivity. Chemical exchange, caused by bioturbation, appeared to be the primarycontrol explaining trends in rates of sulfate and Fe(III) reduction withmacrophytes and carbon source acting as secondary controls.  相似文献   

10.
Peatlands of the Lehstenbach catchment (Germany) house as-yet-unidentified microorganisms with phylogenetically novel variants of the dissimilatory (bi)sulfite reductase genes dsrAB. These genes are characteristic of microorganisms that reduce sulfate, sulfite, or some organosulfonates for energy conservation but can also be present in anaerobic syntrophs. However, nothing is currently known regarding the abundance, community dynamics, and biogeography of these dsrAB-carrying microorganisms in peatlands. To tackle these issues, soils from a Lehstenbach catchment site (Schlöppnerbrunnen II fen) from different depths were sampled at three time points over a 6-year period to analyze the diversity and distribution of dsrAB-containing microorganisms by a newly developed functional gene microarray and quantitative PCR assays. Members of novel, uncultivated dsrAB lineages (approximately representing species-level groups) (i) dominated a temporally stable but spatially structured dsrAB community and (ii) represented “core” members (up to 1% to 1.7% relative abundance) of the autochthonous microbial community in this fen. In addition, denaturing gradient gel electrophoresis (DGGE)- and clone library-based comparisons of the dsrAB diversity in soils from a wet meadow, three bogs, and five fens of various geographic locations (distance of ∼1 to 400 km) identified that one Syntrophobacter-related and nine novel dsrAB lineages are widespread in low-sulfate peatlands. Signatures of biogeography in dsrB-based DGGE data were not correlated with geographic distance but could be explained largely by soil pH and wetland type, implying that the distribution of dsrAB-carrying microorganisms in wetlands on the scale of a few hundred kilometers is not limited by dispersal but determined by local environmental conditions.Peatlands contain 15% to 30% of the global soil carbon (13, 79) and represent a net carbon sink that has contributed to global cooling in the past 8,000 to 11,000 years (21). While peatlands are generally resilient to external perturbation, it is predicted that long-term global changes such as warming, decreased precipitation, and increased atmospheric deposition of reactive nitrogen and sulfur compounds will transform peatlands into new ecosystem types, accompanied by unforeseeable changes in the carbon balance (17). The carbon loss from peatlands is mediated largely by the anaerobic microbial decomposition of organic matter to the greenhouse gases carbon dioxide and methane (36), and it is estimated that 10 to 20% of the globally emitted methane is derived from peatlands (30, 87). Primary and secondary fermentation and subsequent methanogenesis are considered to be the main carbon degradation processes because of the absence or limited availability of alternative electron acceptors. However, other microbial processes, such as denitrification and dissimilatory iron and sulfate reduction, can occur together with methanogenesis in the same peat soil fraction and contribute considerably to anaerobic carbon mineralization (4, 5, 43, 44). Fluctuations in environmental conditions on short- and long-term scales govern trophic interdependencies among microorganisms. Transitions between synergistic (e.g., the syntrophic interspecies transfer of hydrogen/formate) and antagonistic (e.g., competition for the same substrates) microbial interactions determine the extent of carbon flow diversion away from methanogenesis. A prime example is the suppression of microorganisms catalyzing methanogenic carbon degradation by sulfate-reducing microorganisms (SRM) that are energetically favored in the competition for substrates such as acetate, alcohols, and hydrogen (22, 81, 82). While sulfate concentrations are generally low in peatlands (10 to 300 μM), ongoing sulfate reduction proceeds at rates (2.5 to 340 nmol cm−3 day−1) that are comparable to rates in sulfate-rich environments such as marine sediments (5, 40, 41). It was previously proposed that such high sulfate reduction rates are fueled by an anoxic recycling of reduced sulfur compounds via the so-called “thiosulfate shunt” (5). The alternative replenishment of the sulfate pool by the reoxidation of reduced sulfur species in the presence of oxygen is dependent on the vegetation type and alternating periods of precipitation and drought (14, 18, 64, 68, 86). In addition, increasing global atmospheric sulfur pollution and acid precipitation contribute to terrestrial sulfate pools and are predicted to repress methane emissions from peatlands by up to 15% within the first third of this century (22).Given the significance of dissimilatory sulfate reduction in peatlands, it is surprising that most information about the identity of microorganisms catalyzing this process in peatlands is derived from studies of a single model fen system (Schlöppnerbrunnen) located in the forested Lehstenbach catchment (Bavaria, Germany). Different redox processes such as fermentation (25), methanogenesis (29), denitrification (63), Fe(III) reduction (69), and sulfate reduction (2, 51) are present and have been studied at this site (4). The atmospheric deposition of sulfur originating from the combustion of soft coal in Eastern Europe until the 1990s led to the accumulation of sulfur species in the soils of this catchment. Although air pollution affecting this site has decreased in recent years (39), historically deposited sulfate stored in upland soils can desorb and is then transported via groundwater flow into the fen, where it drives dissimilatory sulfate reduction (1). DNA stable isotope probing using in situ concentrations of typical 13C-labeled degradation intermediates (mixture of lactate, acetate, formate, and propionate) has shown that a low-abundance Desulfosporosinus species, representing on average only 0.006% of the total bacterial and archaeal 16S rRNA genes, has the potential to be responsible for a substantial part of the sulfate reduction in the studied fen. However, a large fraction of the sulfate reduction observed in situ still remains unexplained (67). Other microorganisms that are potentially involved in sulfate reduction were previously detected in this fen by using 16S rRNA gene- and dsrAB-based diversity analyses. Few of these dsrAB sequences were affiliated with the previously described SRM genera Desulfomonile and Syntrophobacter, but most of the retrieved dsrAB sequences may derive from new taxa, as they represent novel lineages without cultivated representatives (51, 67, 73). Microorganisms that respire sulfite or sulfate anaerobically depend on the dsrAB-encoded key enzyme dissimilatory (bi)sulfite reductase for energy conservation, and thus, these genes have been widely used as markers for PCR-based molecular diversity studies of this guild (16, 38, 46, 84). However, some organisms that are phylogenetically related to SRM but that have seemingly lost the ability for sulfite/sulfate reduction can also harbor dsrAB. The dsrAB sequences of these organosulfonate reducers (45) or syntrophs (32) can be amplified by the commonly used DSR1F-DSR4R PCR primer mix (50). DNA stable isotope probing experiments targeting dsrAB in incubations with a mixture of 13C-labeled lactate, acetate, formate, and propionate could therefore not unambiguously link members of the novel dsrAB lineages to sulfate reduction in the Schlöppnerbrunnen peatland (67). Besides their unknown identity and ecophysiological function, additional important questions regarding the ecology of these enigmatic dsrAB-containing microorganisms remain unanswered: what is their actual abundance in peatlands, are they a stable part of the microbial peatland community or do they occur only sporadically, and are they endemic to the Schlöppnerbrunnen fen site or more widely distributed in different types of wetlands? Using a set of molecular ecology tools, we address these questions in this study and demonstrate that some dsrAB-containing microorganisms are widespread in peatlands and can thrive in these systems in considerable numbers.  相似文献   

11.
Genomic techniques commonly used for assessing distributions of microorganisms in the environment often produce small sample sizes. We investigated artificial neural networks for analyzing the distributions of nitrite reductase genes (nirS and nirK) and two sets of dissimilatory sulfite reductase genes (dsrAB1 and dsrAB2) in small sample sets. Data reduction (to reduce the number of input parameters), cross-validation (to measure the generalization error), weight decay (to adjust model parameters to reduce generalization error), and importance analysis (to determine which variables had the most influence) were useful in developing and interpreting neural network models that could be used to infer relationships between geochemistry and gene distributions. A robust relationship was observed between geochemistry and the frequencies of genes that were not closely related to known dissimilatory sulfite reductase genes (dsrAB2). Uranium and sulfate appeared to be the most related to distribution of two groups of these unusual dsrAB-related genes. For the other three groups, the distributions appeared to be related to pH, nickel, nonpurgeable organic carbon, and total organic carbon. The models relating the geochemical parameters to the distributions of the nirS, nirK, and dsrAB1 genes did not generalize as well as the models for dsrAB2. The data also illustrate the danger (generating a model that has a high generalization error) of not using a validation approach in evaluating the meaningfulness of the fit of linear or nonlinear models to such small sample sizes.  相似文献   

12.
Here we describe the diversity and activity of sulfate reducing bacteria along a salinity gradient in four different soda lakes from the Kulunda Steppe (South East Siberia, Russia). For this purpose, a combination of culture-dependent and independent techniques was applied. The general bacterial and SRB diversity were analyzed by denaturing gradient gel electrophoresis (DGGE) targeting the 16S rDNA gene. DNA was used to detect the microbial populations that were present in the soda lake sediments, whereas ribosomal RNA was used as a template to obtain information on those that were active. Individual DGGE bands were sequenced and a phylogenetic analysis was performed. In addition, the overall activity of SRB was obtained by measuring the sulfate reduction rates (SRR) and their abundance was estimated by serial dilution. Our results showed the presence of minor, but highly active microbial populations, mostly represented by members of the Proteobacteria. Remarkably high SRR were measured at hypersaline conditions (200 g L−1). A relatively high viable count indicated that sulfate reducing bacteria could be highly active in hypersaline soda lakes. Furthermore, the increase of sodium carbonate/bicarbonate seemed to affect the composition of the microbial community in soda lakes, but not the rate of sulfate reduction.  相似文献   

13.
A two-component model of growth and maintenance respiration is used to study the response of northern red oak (Quercus rubra L.) seedlings and 32-year-old trees to sub-ambient (10 μmol h; cumulative dose based on 7 h daily mean), ambient (43 μmol h), and twice-ambient (85 μmolh) ozone. The relative growth rates (RGR) of leaves sampled from seedlings and trees were similar across treatments, as were specific leaf respiration rates (SRR). Growth coefficients estimated from the SRR versus RGR relationship averaged 25-3 mol CO2 kg?1 leaf dry mass produced for seedlings and 21-5 mol kg?1 for trees. Maintenance coefficients ranged from 0-89 to 1-07 mol CO2 kg?1 leaf dry mass d?1 for seedlings and from 0-64 to 0-84 mol kg-1 d?1 for trees. Neither coefficient was affected by ozone. Leaves sampled throughout the growing season also showed little response of respiration to ozone. This occurred despite a 30% reduction in net photosynthesis for trees grown at twice-ambient ozone. These results suggest that growth and maintenance respiration in young northern red oak leaves are not affected by ozone and that in older leaves injury can occur without a parallel increase in so-called ‘maintenance’ respiration.  相似文献   

14.
Aerodynamic theory predicts that power output during flight should vary with body mass by an exponent of 1.56 when wing morphology remains constant (within an individual), and by an exponent of 1.19 when wing morphology changes with body mass (within a species or between species). I tested these predictions by estimating the power input during horizontal flight in three pregnant and two subadult Glossophaga soricina using a multivariate regression model. This analysis yielded power input during resting and flight as well as the energetic equivalent of change in body mass. A comparison of the estimated flight power for pregnant G. soricina, with published data on flight power of non-pregnant adults, revealed that energy turnover in flight is highest for pregnant G. soricina. Flight power of a 13-g pregnant G. soricina was even higher than that of a 16-g non-pregnant Glossophaga longirostris. A least-squares regression analysis yielded the following equations for the intraspecific scaling of flight power with body mass: power input during horizontal flight (P f )=24099 body mass (bm; kg)2.15 (r 2=0.97) for the intra-individual allometry (pregnancy) and P f =113 bm(kg)0.95 (r 2=0.99) for the inter-individual allometry (ontogeny). Both mass exponents are not significantly different from the predicted values for the scaling relationship of flight power within an individual (1.56) and within a species (1.19). This is the first measurement of power input during flight for subadult and pregnant bats. Accepted: 11 May 2000  相似文献   

15.
The contribution which (photo)respiration makes to carbon isotope discrimination (Δ13C) was examined by conducting simultaneous gas exchange measurements and isotopic analysis of carbon dioxide passing over leaves of Triticum aestivum and Phaseolus vulgaris, via manipulations of the carbon isotope composition (δ13C) of source CO2 during growth and measurement. Dark respiration only altered net Δ13C (Δobs) at low CO2 assimilation, and was sensitive to source CO2δ13C during measurement. Photorespiration reduced Δobs relative to Δ13C predicted from pi/pai) over the full range of CO2 assimilation, to a greater degree under elevated oxygen partial pressure (pO2), indicating fractionation during photorespiration (f) in T. aestivum. For P. vulgaris, Δobs was insensitive to elevated pO2 at higher assimilation rates, suggesting that f was minimal. A model was developed to calculate gross discrimination (Δps), independent of (photo)respiration, from which estimates of f were obtained for T. aestivum (3.3‰) and P. vulgaris (0.5‰). Because photorespiratory fractionation varies interspecifically, and influences net Δ13C which is directly reflected in leaf δ13C, consideration of (photo)respiratory fractionation is necessary when interpreting δ13C of leaf material, especially under conditions where (photo)respiratory CO2 losses make a large relative contribution to total plant carbon budgets.  相似文献   

16.
The circadian regulation of leaf hydraulic conductance (Kleaf) was investigated in Helianthus annuus L. (sunflower). Kleaf was measured with an high pressure flow meter during the light and dark period from plants growing at a photoperiod of 12 h. Kleaf was 4.0 e−4 kg s−1 m−2 MPa−1 during the light period (LL) and 30–40% less during the dark period (DL). When photoperiod was inverted and leaves were measured for Kleaf at their subjective light or dark periods, Kleaf adjusted to the new conditions requiring 48 h for increasing from dark to light values and 4 d for the opposite transition. Plants put in continuous dark showed Kleaf oscillating from light to dark values in phase with their subjective photoperiod indicating that Kleaf changes were induced by the circadian clock. Several cuts through the minor veins reduced leaf hydraulic resistance (Rleaf) of both LL and DL to the same value (1.0 e + 3 MPa m2 s kg−1) that equalled the vascular resistance (Rv). The contribution of the non-vascular leaf resistance (Rnv) to Rleaf was of 71.9% in DL and of 58.4% in LL. The dominant Rnv was shown to be reversibly modulated by mercurials, suggesting that aquaporins play a role in diurnal changes of Kleaf.  相似文献   

17.
Donald B. Siano 《Biopolymers》1978,17(12):2897-2908
Light-scattering studies on buffered aqueous solutions of the triple-stranded polyribonucleic acid poly(A)·2poly(U) were carried out at neutral pH and during titration. At pH 7.1 and 22°C, a sample of commercially available polymer in 0.005M phosphate buffer gave a Zimm plot which yielded values for the weight-average molecular weight, M w, of 874,000 ± 1800 g/mol, a root-mean-square radius, ρ of 930 ± 22 Å, and a second viral coefficient of 0.51 ± 0.05 × 10 ?3 cm3g?1 mol. The light-scattering data were also analyzed by serval linear and nonlinear least-squares programs which were devised to determine the model (e.g., rod, coil, or zigzag) which could best describe the shape of the molecule. It was found that a rodlike model, perhaps with a few bends, was in best overall agreement with the data. The assumption that the molecule is a thin rod leads to a value for the linear density of 206 g mol?1 Å?1 and a translation of 3.3 Å per residue. These values are also in close agreement with those expected for a triple-stranded, thin, base-stacked molecule. During titration from neutral pH with 0.1M HCl, the observed apparent molecular weight slowly increased until at about pH 3.5 a sudden, large increase (about 30-fold) occurred. The root-mean-square radius, on the other hand, after an initial small decrease (of about 25%), also exhibited a large increase (about 4-fold). Upon back titration with 0.1M NaOH, the molecular parameters did not retrace the original path, but instead exhibited hysteresis—the M w and ρ z are both larger on the basic branch than on the acid branch at a corresponding pH. A plot of long ρ z against log(M w) during the interval in which the high-moelcular-weight form was present (below pH 3.5 on the acid branch, and on the basic branch) gave a straight line with a slope of ?. This suggests that the aggregates were composed of some tens of rather open radom coils, presumably of poly(A)·poly(A), and that the hysteresis may be caused under conditions by the metastability of the entangled coils.  相似文献   

18.
The life history characteristics of an invasive cyprinid fish, the Prussian carp (Carassius gibelio) were examined in Lake Chimaditis (northern Greece). The population is dominated by females that are able to reproduce gynogenetically. Fish samples were collected using trammel nets from August 2004 to July 2005. Their total length (TL) ranged between 21.9 and 37.0 cm. The length–weight relationship was W = 0.0336TL2.81 (r2 = 0.92, n = 600) and the mean Fulton condition factor exhibited monthly variation from 0.172 (May) to 0.186 (August). According to the annual growth marks present, the lifespan of the Prussian carp in Lake Chimaditis is 6 years. The growth parameters were estimated as L = 34.46 cm, K = 0.297 year?1, t0 = ?1.994 year. Absolute fecundity (FA) ranged between 26 000 and 176 600 oocytes (mean = 66990) and relative fecundity between 78 and 251 oocytes per gram of total weight (mean = 158). Absolute fecundity increased exponentially with length (FA = 0.286 × TL3.66, r2 = 0.66) and weight (FA = 17.93 × W1.36, r2 = 0.73) of the fish.  相似文献   

19.
Nitrous oxide fluxes from savanna (miombo) woodlands in Zimbabwe   总被引:1,自引:0,他引:1  
Aim We test the hypothesis that land use and climate are important controls of nitrous oxide (N2O) emissions from savanna ecosystems, and that these emissions can be represented by a mechanistic model of carbon (C) and nitrogen (N) transformations. Location Miombo woodlands in Zimbabwe are part of widespread woody savanna formations in southern and central Africa that cover more than 2.7 million km2. The rainfall in this region is around 800 mm and is concentrated in the period between November and March. Methods Losses of N2O were measured along transects in two field areas using static chambers over a period of 1 year. The vegetation in both areas was dominated by Julbernardia globiflora and Brachystegia spiciformis, but had differing management systems (burned and unburned), soil properties and site characteristics (slope and drainage). The effects of simulated rainfall and fertilizer additions were studied in laboratory incubations. Results Patterns of N2O emissions were strongly linked to rainfall. The highest fluxes at both sites were measured within 18 days of the onset of the first rains in November, with fluxes of up to 42 μg N m?2 h?1. During the dry season, fluxes were lower, but a large proportion (R2 values between 0.8 and 0.95, P < 0.001) of the N2O flux could be predicted by variations in soil moisture. Soil columns were set up in the laboratory to which simulated rainwater was added, and the amounts and timing of rainwater addition were varied. Losses of N2O were highest within the first week of the laboratory study. Altering the amount of rainwater addition did not significantly affect N2O loss; however, a continuous addition of water resulted in higher losses of N2O (up to 79 μg N m?2 h?1) than periodic addition of the same amount. A model (denitrification–decomposition) was used to simulate N2O release over a 12 month period, using meteorological data recorded in the vicinity of the field site. The simulations and field data suggest that nitrification was the main process responsible for N2O release during the dry season but that denitrification was more important during the wet season. Main conclusions The release of N2O from dryland savannas was shown to constitute an important nutrient flux, and emissions were strongly linked to patterns of rainfall; however, there was evidence to suggest that the magnitude of fluxes is also influenced locally by differences in soil organic matter concentration and drainage.  相似文献   

20.
R.S.S. Wu  N.Y.S. Woo 《Hydrobiologia》1984,119(3):209-217
The respiratory responses and tolerance of hypoxia were studied in two marine teleosts, the red grouper (Epinephelus akaara, a sluggish species) and the black sea bream (Mylio macrocephalus, an active species). Neither species showed abnormal behaviour or mortality when exposed to 2 mg O2 l–1 for 7 h. The black sea bream was, however, comparatively more tolerant when exposed to 1 mg O2 l–1, but tolerance of both species became similar under extremely hypoxic conditions (i.e. 0.5 mg O2 l–1). In contrast to most other teleosts, both species showed a reduction in opercular beating rate during hypoxia, and oxygen conformity was found in the range of 0.5 to 7.0 mg O2l –1. O2 dissociation curves were constructed, and the P50 value of the black sea breams (27 ± 5.6 mm Hg) was found to be much lower than that of the red groupers (50 ± 2.5 mm Hg). For both species, the general levels of venous PO2 showed a direct relationship to ambient PO2, and were markedly reduced after 1 h exposure to various levels of hypoxia. Compared with the red groupers, the black sea breams appeared to be more able to maintain its venous PO2 levels during prolonged hypoxic exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号