首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synergistic interaction between H-ras and p53 were systematically examined during skin tumorigenesis. Concurrent expression of an activated H-ras gene and a mutant p53 gene was accomplished by crossing p53(Val135/wt) mice with TG.AC mice. Topical application to wild-type mice with benzo(a)pyrene (BaP) alone produced approximately 26% skin tumor incidence, whereas BaP treatment of p53(wt/wt)Hras(TG.AC/wt), p53(Val135/wt)Hras(wt/wt), and p53(Val135/wt)Hras(TG.AC/wt) mice produced a 75%, 77%, and 100% incidence of skin tumors, respectively. An average of 0.33 tumor per mouse was observed in wild-type (p53(wt/wt)Hras(wt/wt)) mice, whereas approximately 1.54, 1.96, and 3.08 tumors per mouse were seen in BaP-treated p53(wt/wt)Hras(TG.AC/wt), p53(Val135/wt)Hras(wt/wt), and p53(Val135/wt)Hras(TG.AC/wt) mice, respectively. The effects on total tumor volume were even more striking with 7-, 48-, and 588-fold increases in tumor volume compared with wild-type (p53(wt/wt)Hras(wt/wt)) in p53(wt/wt)Hras(TG.AC/wt), p53(Val135/wt)Hras(wt/wt), and p53(Val135/wt)Hras(TG.AC/wt) mice, respectively. Histopathologically, all tumors from p53(wt/wt)Hras(wt/wt) mice were either papillomas or well-differentiated squamous cell carcinomas, whereas the tumors in p53(wt/wt)Hras(TG.AC/wt), p53(Val135/wt)Hras(wt/wt), and p53(Val135/wt)Hras(TG.AC/wt) mice were principally squamous cell carcinomas with varying degree of invasiveness. Particularly, tumors in p53(Val135/wt)Hras(TG.AC/wt) mice exhibited the most rapid growth and the extreme form of tumor invasion. Microarray analysis revealed that dominant-negative p53 (Val135) and activated H-ras affected several cellular processes involved in tumorigenesis possibly through its effects on apoptosis, cell cycle arrest, and Ras-mitogen-activated protein kinase pathways. The present study provides the first in vivo evidence that a germ line p53 mutation and activated H-ras act synergistically to profoundly enhance tumor progression.  相似文献   

2.
Mice with a germ line p53 mutation (p53(Ala135Val/wt)) display increased susceptibility to lung, skin, and colon carcinogenesis. Here, we show that p53(Ala135Val/wt) mice developed ovarian tumors significantly more rapidly than their wild-type littermates after 7,12-dimethylbenz(a)anthracene (DMBA) treatment. Approximately 50% of the ovarian tumors in p53(wt/wt) mice and 23% in p53(Ala135Val/wt) mice are adenocarcinomas and the remaining tumors were adenocarcinoma mixed with sarcoma or ovarian sarcomas. All of the p53(Ala135Val/wt) mice had died of ovarian tumors 25 weeks after the initial DMBA treatment, whereas >50% of p53(wt/wt) mice were still alive. These mice not only have a shortened tumor latency but also closely resemble a subset of human ovarian tumors containing the p53 mutation. Microarray and GenMAPP analyses revealed that the mutant p53 (Ala135Val) affected several cellular processes, including the cell cycle, apoptosis, and Wnt pathways. These findings indicate that a germ line p53 mutation significantly enhanced DMBA-induced ovarian tumor development and progression.  相似文献   

3.
Expression of the α2β1 integrin, a receptor for collagens and laminin, is altered during tumor progression. Recent studies have linked polymorphisms in the α2 integrin gene with oral, squamous cell carcinoma (SCC). To determine the α2β1 integrin's role in SCC progression, we crossed α2-null mice with K14-HPV16 transgenic animals. Pathological progression to invasive carcinoma was evaluated in HPV-positive, α2-null (HPV/KO) and HPV-positive, wild-type (HPV/WT) animals. α2β1 integrin expression stimulated progression from hyperplasia and papillomatosis to dysplasia with concomitant dermal mast cell infiltration. Moreover, lymph node metastasis was decreased by 31.3% in HPV/KO, compared to HPV/WT, animals. To evaluate the integrin-specific impact on the malignant epithelium versus the microenvironment, we developed primary tumor cell lines. Although transition from dysplasia to carcinoma was unaltered during spontaneous tumor development, isolated primary HPV/KO SCC cell lines demonstrated decreased migration and invasion, compared to HPV/WT cells. When HPV/WT and HPV/KO SCC cells were orthotopically injected into WT or KO hosts, tumor α2β1 integrin expression resulted in decreased tumor latency, regardless of host integrin status. HPV/WT SCC lines failed to demonstrate a proliferative advantage in vitro, however, the HPV/WT tumors demonstrated increased growth compared to HPV/KO SCC lines in vivo. Although contributions of the integrin to the microenvironment cannot be excluded, our studies indicate that α2β1 integrin expression by HPV-transformed keratinocytes modulates SCC growth and progression.  相似文献   

4.
In glial C6 cells constitutively expressing wild-type p53, synthesis of the calcium-binding protein S100B is associated with cell density-dependent inhibition of growth and apoptosis in response to UV irradiation. A functional interaction between S100B and p53 was first demonstrated in p53-negative mouse embryo fibroblasts (MEF cells) by sequential transfection with the S100B and the temperature-sensitive p53Val135 genes. We show that in MEF cells expressing a low level of p53Val135, S100B cooperates with p53Val135 in triggering calcium-dependent cell growth arrest and cell death in response to UV irradiation at the nonpermissive temperature (37.5°C). Calcium-dependent growth arrest of MEF cells expressing S100B correlates with specific nuclear accumulation of the wild-type p53Val135 conformational species. S100B modulation of wild-type p53Val135 nuclear translocation and functions was confirmed with the rat embryo fibroblast (REF) cell line clone 6, which is transformed by oncogenic Ha-ras and overexpression of p53Val135. Ectopic expression of S100B in clone 6 cells restores contact inhibition of growth at 37.5°C, which also correlates with nuclear accumulation of the wild-type p53Val135 conformational species. Moreover, a calcium ionophore mediates a reversible G1 arrest in S100B-expressing REF (S100B-REF) cells at 37.5°C that is phenotypically indistinguishable from p53-mediated G1 arrest at the permissive temperature (32°C). S100B-REF cells proceeding from G1 underwent apoptosis in response to UV irradiation. Our data support a model in which calcium signaling and S100B cooperate with the p53 pathways of cell growth inhibition and apoptosis.  相似文献   

5.
p53 is a key protein that participates in cell-cycle control, and its malfunction can lead to cancer. This tumour suppressor protein has three main domains; the N-terminal transactivation domain, the CTD (C-terminal domain) and the core domain (p53C) that constitutes the sequence-specific DBD (DNA-binding region). Most p53 mutations related to cancer development are found in the DBD. Aggregation of p53 into amyloid oligomers and fibrils has been shown. Moreover, amyloid aggregates of both the mutant and WT (wild-type) forms of p53 were detected in tumour tissues. We propose that if p53 aggregation occurred, it would be a crucial aspect of cancer development, as p53 would lose its WT functions in an aggregated state. Mutant p53 can also exert a dominant-negative regulatory effect on WT p53. Herein, we discuss the dominant-negative effect in light of p53 aggregation and the fact that amyloid-like mutant p53 can convert WT p53 into more aggregated species, leading into gain of function in addition to the loss of tumour suppressor function. In summary, the results obtained in the last decade indicate that cancer may have characteristics in common with amyloidogenic and prion diseases.  相似文献   

6.
p53 mutations are frequently found in human cancers and are often associated with the overexpression of wild-type (WT) protein or peptide sequences, supporting the notion that WT p53 epitopes may serve as potential targets for tumor immunotherapy. We have developed a cytotoxic T lymphocyte (CTL)/p53 tumor-associated antigen (TAA) model, based on immune recognition of a WT p53 determinant. WT p53-peptide-specific, major histocompatibility complex (MHC) classI-restricted CTL were produced from immunocompetent C57BL/6 (H-2b) mice after immunization with a previously defined WT p53 peptide (p53(232-240)) Epitope-specific CTL were then employed to identify syngeneic tumor cell populations expressing that antigenic determinant. Two syngeneic tumor cell lines, MC38 colon carcinoma and MC57G fibrosarcoma, were demonstrated to express the endogenous WT p53(232-240) determinant naturally, as defined by CD8 + CTL recognition. Cold-target inhibition assays confirmed that CTL-mediated lysis was due to immune recognition of the p53(232-240) peptide epitope. The p53(232-240)-specific CTL line did not lyse syngeneic normal cells (i.e., mitogen-activated splenocytes) in the absence of exogenous peptide, suggesting that the WT-p53-specific CTL could distinguish between tumor cells expressing self-TAA and normal host cells. We have demonstrated, for the first time, that the adoptive transfer of WT-p53-specific CTL to mice with established pulmonary metastasis resulted in antitumor activity in vivo. The ability to generate MHC-class-I-restricted CD8- CTL lines specific for a non-mutated p53 determinant from normal, immunocompetent mice, which display antitumor activity both in vitro and in vivo (by adoptive transfer), may have implications for the immunotherapy of certain p53-expressing malignancies.  相似文献   

7.
P Hainaut  J Milner 《The EMBO journal》1992,11(10):3513-3520
In intact cells, hsp70 proteins selectively complex with mutant p53. We report here that rabbit reticulocyte lysate contains hsp70 which selectively complexes with the mutant p53 translated in vitro. Hsp70 complexes with dimers and possibly monomers of p53 in a manner that requires the terminal 28 amino acids of p53. Using murine p53Val135, which is temperature-sensitive for phenotype, we demonstrate that p53-hsp70 complexes can occur after post-translational switching from wild-type to mutant p53 phenotype. Moreover, the temperature-induced switch of full-length p53Val135 from wild-type to mutant phenotype is ATP-independent, whereas the switch from mutant to wild-type form requires ATP hydrolysis and involves hsp70. These results imply that hsp70 is involved in the regulation of p53 conformation.  相似文献   

8.
The calcium ionophore ionomycin cooperates with the S100B protein to rescue a p53-dependent G(1) checkpoint control in S100B-expressing mouse embryo fibroblasts and rat embryo fibroblasts (REF cells) which express the temperature-sensitive p53Val135 mutant (C. Scotto, J. C. Deloulme, D. Rousseau, E. Chambaz, and J. Baudier, Mol. Cell. Biol. 18:4272-4281, 1998). We investigated in this study the contributions of S100B and calcium-dependent PKC (cPKC) signalling pathways to the activation of wild-type p53. We first confirmed that S100B expression in mouse embryo fibroblasts enhanced specific nuclear accumulation of wild-type p53. We next demonstrated that wild-type p53 nuclear translocation and accumulation is dependent on cPKC activity. Mutation of the five putative cPKC phosphorylation sites on murine p53 into alanine or aspartic residues had no significant effect on p53 nuclear localization, suggesting that the cPKC effect on p53 nuclear translocation is indirect. A concerted regulation by S100B and cPKC of wild-type p53 nuclear translocation and activation was confirmed with REF cells expressing S100B (S100B-REF cells) overexpressing the temperature-sensitive p53Val135 mutant. Stimulation of S100B-REF cells with the PKC activator phorbol ester phorbol myristate acetate (PMA) promoted specific nuclear translocation of the wild-type p53Val135 species in cells positioned in early G(1) phase of the cell cycle. PMA also substituted for ionomycin in the mediating of p53-dependent G(1) arrest at the nonpermissive temperature (37.5 degrees C). PMA-dependent growth arrest was linked to the cell apoptosis response to UV irradiation. In contrast, growth arrest mediated by a temperature shift to 32 degrees C protected S100B-REF cells from apoptosis. Our results suggest a model in which calcium signalling, linked with cPKC activation, cooperates with S100B to promote wild-type p53 nuclear translocation in early G(1) phase and activation of a p53-dependent G(1) checkpoint control.  相似文献   

9.
The tumor suppressor protein p53 loses its function in more than 50% of human malignant tumors. Recent studies have suggested that mutant p53 can form aggregates that are related to loss-of-function effects, negative dominance and gain-of-function effects and cancers with a worsened prognosis. In recent years, several degenerative diseases have been shown to have prion-like properties similar to mammalian prion proteins (PrPs). However, whereas prion diseases are rare, the incidence of these neurodegenerative pathologies is high. Malignant tumors involving mutated forms of the tumor suppressor p53 protein seem to have similar substrata. The aggregation of the entire p53 protein and three functional domains of p53 into amyloid oligomers and fibrils has been demonstrated. Amyloid aggregates of mutant p53 have been detected in breast cancer and malignant skin tumors. Most p53 mutations related to cancer development are found in the DNA-binding domain (p53C), which has been experimentally shown to form amyloid oligomers and fibrils. Several computation programs have corroborated the predicted propensity of p53C to form aggregates, and some of these programs suggest that p53C is more likely to form aggregates than the globular domain of PrP. Overall, studies imply that mutant p53 exerts a dominant-negative regulatory effect on wild-type (WT) p53 and exerts gain-of-function effects when co-aggregating with other proteins such as p63, p73 and acetyltransferase p300. We review here the prion-like behavior of oncogenic p53 mutants that provides an explanation for their dominant-negative and gain-of-function properties and for the high metastatic potential of cancers bearing p53 mutations. The inhibition of the aggregation of p53 into oligomeric and fibrillar amyloids appears to be a promising target for therapeutic intervention in malignant tumor diseases.  相似文献   

10.
Mutations in the tumor suppressor gene p53 were found in more than 90% of all human squamous cell carcinomas (SCC). To study the function of p53 in a keratinocyte background, a tetracycline-controlled p53 transgene was introduced into a human SCC cell line (SCC15), lacking endogenous p53. Conditional expression of wild-type p53 protein upon withdrawal of tetracycline was accompanied with increased expression of p21(WAF1/Cip1) resulting in reduced cell proliferation. Flow-cytometric analysis revealed that these cells were transiently arrested in the G1/S phase of the cell cycle. However, when SCC15 cells expressing p53 were exposed to ionizing radiation (IR), a clear shift from a G1/S to a G2/M cell cycle arrest was observed. This effect was greatly depending on the presence of wild-type p53, as it was not observed to the same extent in SCC15 cells lacking p53. Unexpectedly, the p53- and IR-dependent G2/M cell cycle arrest in the keratinocyte background was not depending on increased expression or stabilization of 14-3-3sigma, a p53-regulated effector of G2/M progression in colorectal cancer cells. In keratinocytes, 14-3-3sigma (stratifin) is involved in terminal differentiation and its cell cycle function in this cell type might diverge from the one it fulfills in other cellular backgrounds.  相似文献   

11.
12.
13.
14.
We recently demonstrated that not all organs with a high rate of induction of mutation in the lacZ transgene develop tumors in the lambdalacZ transgenic mice (MutaMouse) used for a long-term carcinogenicity study with benzo[a]pyrene (BP). To better understand the role of chemical-induced in vivo mutations in carcinogenesis, we compared the mutational spectra of the lacZ transgene in four organs of the MutaMouse obtained 2 weeks after five daily consecutive oral treatments with 125 mg/kg/day BP. lacZ transgenes were analyzed in two target organs (forestomach and spleen) and two non-target organs (colon and glandular stomach) for BP-induced carcinogenesis in MutaMouse, and all of these organs were highly mutated in the lacZ transgene. The sequence data showed similar mutational spectra of the lacZ transgene between the two target organs; the predominant mutations were G:C-->T:A transversions (55% and 50% for forestomach and spleen, respectively), followed by deletions (20% and 21% for forestomach and spleen, respectively) mainly at G:C site. The frequent G:C-->T:A transversions are consistent with reports of the mutational spectra produced in the p53 gene in tumors generated in rats and mice exposed to BP. In contrast, the mutational spectra of the lacZ transgene in the two non-target organs are different from those in the target organs, and are also suggested to differ from one another. These findings suggest an organ/tissue-specific mechanism of mutagenesis.  相似文献   

15.
This study identified that the carcinogenesis of hamster buccal pouch (HBP) induced by 7,12-dimethylbenz[a]anthracene (DMBA) was greatly enhanced (18 folds) by a combination treatment with Taiwanese betel quid (BQ) extract. A new cell line, HCDB-1, has been established from induced carcinomas. The cultured monolayer cells were epithelioid in shape with irregular nuclei. They demonstrated abundant cytokeratin and tonofilaments; however, ultrastructural well-organized desmosomes were lacking. The HCDB-1 cell exhibited population doubling in 19 h and was highly tumorigenic in nude mice. A C-->T transition at codon 141 (Ala to Val) of the p53 gene was detected in this cell. This mutation is equivalent to a specific temperature-sensitive mouse p53Ala135Val mutant that causes transformation by shifting to 37.5 degrees C. HCDB-1 is the first cell line established from the HBP model of oral carcinogenesis induced by DMBA/Taiwanese BQ extract. It might be valuable for exploring the molecular pathogenesis of oral cancer.  相似文献   

16.
In agreement with Knudson's two-hit theory, recent findings indicate that the inactivation of tumor suppressor genes is not only mediated by the loss of function but also by the dominant-negative or gain-of-function activity. The former generally accompanies loss of a wild-type allele whereas in the latter a wild-type allele is retained. N-Ethyl-N-nitrosourea (ENU), which efficiently induces point mutations, reportedly leads to the development of tumors by activating ras oncogenes. Little is known about how ENU affects tumor suppressor genes and, therefore, we examined ENU-induced mutations of p53 and Ikaros in thymic lymphomas and compared these with mutations of Kras. In addition, loss of heterozygosity was examined for chromosome 11 to which both p53 and Ikaros were mapped. The frequency of point mutations in p53 and Ikaros was 30% (8/27) and 19% (5/27), respectively, comparable to that observed in Kras (33%: 9/27). In total, 14 of the 27 thymic lymphomas examined (52%) harbored mutations in at least one of these genes. One Ikaros mutation was located at the splice donor site, generating a novel splice isoform lacking zinc finger 3, Ik (F3del). Interestingly, 90% (10/11) of the tumors with point mutations retained wild-type alleles of p53 and Ikaros. Sequence analysis revealed that the most common nucleic acid substitutions were T>A (4/8) in p53, T>C (4/5) in Ikaros and G>A/T (8/9) in Kras, suggesting that the spectrum of mutations was gene dependent. These results suggest that point mutations in tumor suppressor genes without loss of the wild-type allele play an important role in ENU-induced lymphomagenesis.  相似文献   

17.
Tumor suppressor genes are generally viewed as being recessive at the cellular level, so that mutation or loss of both tumor suppressor alleles is a prerequisite for tumor formation. The tumor suppressor gene, p53, is mutated in approximately 50% of human sporadic cancers and in an inherited cancer predisposition (Li-Fraumeni syndrome). We have analyzed the status of the wild-type p53 allele in tumors taken from p53-deficient heterozygous (p53+/-) mice. These mice inherit a single null p53 allele and develop tumors much earlier than those mice with two functional copies of wild-type p53. We present evidence that a high proportion of the tumors from the p53+/- mice retain an intact, functional, wild-type p53 allele. Unlike p53+/- tumors which lose their wild-type allele, the tumors which retain an intact p53 allele express p53 protein that induces apoptosis following gamma-irradiation, activates p21(WAF1/CIP1) and Mdm2 expression, represses PCNA expression (a negatively regulated target of wild-type p53), shows high levels of binding to oligonucleotides containing a wild-type p53 response element and prevents chromosomal instability as measured by comparative genomic hybridization. These results indicate that loss of both p53 alleles is not a prerequisite for tumor formation and that mere reduction in p53 levels may be sufficient to promote tumorigenesis.  相似文献   

18.
Use of the chemotherapeutic agent doxorubicin (Dox) is limited by dose-dependent cardiotoxic effects. The molecular mechanism underlying these toxicities are incompletely understood, but previous results have demonstrated that Dox induces p53 expression. Because p53 is an important regulator of the cell birth and death we hypothesized that targeted disruption of the p53 gene would attenuate Dox-induced cardiotoxicity. To test this, female 6–8 wk old C57BL wild-type (WT) or p53 knockout (p53 KO) mice were randomized to either saline or Dox 20 mg/kg via intraperitoneal injection. Animals were serially imaged with high-frequency (14 MHz) two-dimensional echocardiography. Measurements of left ventricle (LV) systolic function as assessed by fractional shortening (FS) demonstrated a decline in WT mice as early as 4 days after Dox injection and by 2 wk demonstrated a reduction of 31± 16% (P < 0.05) from the baseline. In contrast, in p53 KO mice, LV FS was unchanged over the 2 wk period following Dox injection. Apoptosis of cardiac myocytes as measured by the TUNEL and ligase reactions were significantly increased at 24 h after Dox treatment in WT mice but not in p53 KO mice. After Dox injection, levels of myocardial glutathione and Cu/Zn superoxide dismutase were preserved in p53 KO mice, but not in WT animals. These observations suggest that p53 mediated signals are likely to play a significant role in Dox-induced cardiac toxicity and that they may modulate Dox-induced oxidative stress.These two authors equally contributed to this study.  相似文献   

19.
P~(53) PROTEIN OVEREXPRESSION IN PREMALIGNANT AND MALIGNANT LESIONS OF ORAL MUCOSA:IMMUNOHISTOCHEMICAL OBSERVATIONP~(53)PROTEI...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号