首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The action of magnesium ion on the exchange rate of the proton in C2 of thiamine and thiamine diphosphate is studied at different values of pD. Above pD 5 the ion Mg2+ increases this exchange rate. The phenomenon is markedly enhanced for TDP rather than thiamine and increases with pD. Below pD 5 magnesium decreases the exchange rate. This decrease is greater for TDP than for thiamine. The maximum effect is reached at a magnesium concentration of 0.5/1 for thiamine and of 1/1 for TDP.T1 measurements are made for different pH values with and without magnesium ion. Results seem to prove that an increase in pD values from 3.9 to 5.9 leads to an accentuation of the molecules «folded form. Nevertheless for a given pD value the TDP-Mg complex seems to have a more «folded form than TDP.  相似文献   

2.
3.
The conformation and dynamic structure of single-stranded poly(inosinic acid), poly(I), in aqueous solution at neutral pH have been investigated by nmr of four nuclei at different frequencies: 1H (90 and 250 MHz), 2H (13.8 MHz), 13C (75.4 MHz), and 31P (36.4 and 111.6 MHz). Measurements of the proton-proton coupling constants and of the 1H and 13C chemical shifts versus temperature show that the ribose is flexible and that base-base stacking is not very significant for concentrations varying from 0.04 to 0.10M in the monomer unit. On the other hand, the proton T1 ratios between the sugar protons, T1 (H1′)/T1 (H3′), indicate a predominance of the anti orientation of the base around the glycosidic bond. The local motions of the ribose and the base were studied at different temperatures by measurements of nuclear Overhauser enhancement (NOE) of protonated carbons, the ratio of the proton relaxation times measured at two frequencies (90 and 250 MHz), and the deuterium quadrupolar transverse relaxation time T2. For a given temperature between 22 and 62°C, the 13C-{1H} NOE value is practically the same for seven protonated carbons (C2, C8, C1′, C2′, C3′, C4′, C5′). This is also true for the T1 ratio of the corresponding protons. Thus, the motion of the ribose–base unit can be considered as isotropic and characterized by a single correlation time, τc, for all protons and carbons. The τc values determined from either the 13C-{1H} NOE or proton T1 ratios, T1(90 MHz)/T1(250 MHz), and/or deuterium transverse relaxation time T2 agree well. The molecular motion of the sugar-phosphate backbone (O-P-O) and the chemical-shift anisotropy (CSA) were deduced from T1 (31P) and 31P-{1H} NOE measurements at two frequencies. The CSA contribution to the phosphorus relaxation is about 12% at 36.4 MHz and 72% at 111.6 MHz, corresponding to a value of 118 ppm for the CSA (σ = σ∥ ? σ?). Activation energies of 2–6 kcal/mol for the motion of the ribose–base unit and the sugarphosphate backbone were evaluated from the proton and phosphorus relaxation data.  相似文献   

4.
The temperature and cell volume dependence of the NMR water proton linewidth, spin-lattice, and spin-spin relaxation times have been studied for normal and sickle erythrocytes as well as hemoglobin A and hemoglobin S solutions. Upon deoxygenation, the spin-spin relaxation time (T2) decreases by a factor of 2 for sickle cells and hemoglobin S solutions but remains relatively constant for normal cells and hemoglobin A solutions. The spin-lattice relaxation time (T1) shows no significant change upon dexygenation for normal or sickle packed red cells. Studies of the change in the NMR linewidth, T1 and T2 as the cell hydration is changed indicate that these parameters only slightly by a 10–20% cell dehydration. This result suggests that the reported 10% cell dehydration observed with sickling is not important in the altered NMR properties. Low temperature studies of the linewidth and T1 for oxy and deoxy hemoglobin A and hemoglobin S solutions suggest that the “bound” water possesses similar properties for all four species. The low temperature linewidth ranges from about 250 Hz at ?15°C to 500 Hz at ?36°C and analysis of the NMR curves yield hydration values near 0.4 g water/g hemoglobin for all four species. The low temperature T1 data go through a minimum at ?35°C for measurements at 44.4 MHz and ?50°C for measurements at 17.1 MHz and are similar for oxy and deoxy hemoglobin A and hemoglobin S. These similarities in the low temperature NMR data for oxy and deoxy hemoglobin A and hemoglobin S suggest a hydrophobically driven sickling mechanism. The room temperature and low temperature relaxation time data for normal and sickle cells are interpreted in terms of a three-state model for intracellular water. In the context of this model the relaxation time data imply that type III, or irratationally bound water, is altered during the sickling process.  相似文献   

5.
NMR relaxation times have been used to characterize molecular motion and intermolecular complexes in the aqueous phase of bovine chromaffin granules. Partially relaxed 13C and proton spectra have been obtained at 3 and 25°C. T1 measurements of five protonated carbons on epinephrine (C2, C5, C6 CHOH and NCH3) give a correlation time of 0.15 (10?9) s at 25°C for the catechol ring and methine carbon, while the effective correlation time for the NCH3 group is somewhat shorter due to its internal degree of rotational freedom. Resonances of protonated carbons on the soluble protein chromogranin give very similar corerlation times: 0.20 (10?9) s for the peptide α-carbon and 0.2 (10?9) s for the methylene sidechain carbons of glutamic acid. The correlation time (τR) of ATP was not measured direrctly using 13C T1 data due to the weakness of its spectrum, but its reorinetation appears to be substantially slower than that of epinephrine or chromogranin. This conclusion is based on three observations: (1) the qualitative temperature dependence of T1 for H2 and H8 on the adenine ring places τR for ATP to the right of the T1 minimum, or τR ? 1.0 (10?9) s; (2) 13C resonances of ATP have anomalously low amplitudes compared with epinphrine resonances, a fact that is readily explained only if ATP undergoes substantially slower reorientation; and (3) a comparision of the T1 data on H8 on chromaffin granules and in a dilute aqueous solution, where ρR for ATP cam be measured directly, indicates that τR ~ 1.0 (10?9 s at 25°C in the granules. The relaxation data are consistent with the concept of a storage complex based on electrostatic interaction between a polyion (chromogranin) and its counterious (ATP and epinephrine), in which ATP cross-links cationic sidechains of the protein.  相似文献   

6.
13C NMR relaxation measurements have been carried out on phospholipid bilayer systems formed from synthetic di-10-methyl-stearoyl phosphatidylcholine with 92% enrichment in one of the N-methyl carbons. Studies on single-walled vesicles prepared by sonication from this lipid, and on large multi-lamellar liposomes show that although T1 values are nearly the same, T21 values are markedly different. It is proposed that equivalent segmental motions in the two systems give rise to similar T1 values. The T21 values, on the other hand, are consistent with the view that the single-walled vesicles have a more disordered molecular organization than do the multi-lamellar bilayers.  相似文献   

7.
Candida albicans cells grown on alkanes of different chain lengths (C13, C14, C15, C16, C17, and C18) exhibited a low growth rate and gradual increase in the total lipid content with the increase in the length of alkanes. There was a significant change in the phospholipids and sterols content of various alkane-grown cells compared to glucose-grown cells. In glucose-grown cells, the transport of various amino acids, e.g., proline, glutamic acid, lysine, glycine, phenylalanine, serine, methionine, and leucine was found to be energy dependent and against a concentration gradient. In alkane-grown cells, the transport of lysine, proline, serine, and methionine was reduced, however, there was no effect on the uptake of glycine, glutamic acid, phenylalanine, and leucine. The results were interpreted as different carrier(s) responsible for amino acid uptake responsed differently to the change of lipid environment.  相似文献   

8.
1H Nuclear Magnetic Resonance spectra of a number of viruses and E. Coli ribosomes revealed that experimental values of the linewidth (πT2)?1 (< 320 Hz) and T1 (< 1 sec) of the observable nuclei are too small to be accounted for by the system's molecular weight. The nuclei therefore must be internally mobile. From 13C Nuclear Magnetic Resonance spectra of 12% 13C enriched E. Coli ribosomes, it follows that 30% of the 5000 CH2CH3 groups, 10–20% of the 225 Phe residues, 20% of the δ-Arg and β-Lys carbons, ~ 100 nucleotides and a number of Cα carbons are internally mobile. It is demonstrated that 13C Nuclear Magnetic Resonance can fruitfully be applied to intact ribosomes.  相似文献   

9.
P Gupta-Bhaya 《Biopolymers》1975,14(6):1143-1160
The electron-mediated spin–spin coupling constant J between the amide NH and the α-CH protons in the dipeptide fragment Cα? CO(NH? CαH)R? C′ONH? Cα is dependent on the dihedral angle of rotation (Φ) around the N? C bond. Measurement of J in a series of zwitterionic dipeptides H3N+? CHR1? CONH? CHR2? CO2? (which is conformationally similar to the dipeptide fragment) in TFA solution shows that J is independent of R1, but dependent on the steric bulk of R2. The data are interpreted in terms of a model that assumes that what we measure is an average value of J? a thermal average over all the possible rotamers. The groups R1 and R2 are, in most cases, sterically kept apart by the trans and planar amide bonds, and hence the independence of J of R1. This model is consistent with the theoretical calculations done on the dipeptide fragment. The effect of the structural characteristics of the side chains (e.g., the effect of lengthening and branching the side chains) on the J values in dipeptides is discussed in the light of the existing results of theoretical calculations. Study of 〈J〉 values in tripeptides (C6H5CH2OCONH? CHR1? CONH? CHR2? CO2CH3, essentially three linked peptide units) shows that electrostatic interaction between the two amide bonds modifies the potential energy surface and the 〈J〉 value of a dipeptide subunit in the tripeptides. Also in some cases, direct steric interaction between the two side chains in the two adjacent dipeptide subunits in the tripeptide affects the potential energy surfaces of the individual dipeptide subunits and hence the 〈J〉 values. The influence of the structural characteristics of the side chains of individual amino acids on structure formation at or beyond the dipeptide level is discussed at various points. The J(NH? αCH) values of CH3CONH? CHR? CONH2 and CH3CONH? CHR? CO2CH3 with the same R are quite different for R = valine, leucine, phenylalanine, methionine, but equal for R = glycine. This, coupled with the fact that one of the carboxamide NH resonances has a chemical shift different from its counterpart in simple amides like CH3CONH2 and the other carboxamide NH has the same chemical shift as its counterpart in CH3CONH2, suggest the presence of a hydrogen bond in dipeptide CH3CONH? CHR? CONH2 with carboxamide NH as the donor. Theoretical evidence for two seven-membered hydrogen-bonded rings with the carboxamide NH as donor and the acetyl oxygen as acceptor is summarized. Our data cannot suggest the number of such hydrogen-bonded rings, nor can they conclude the relative proportion of these rings in a particular dipeptide. A discussion of the difficulty of interpretation is presented and the data are discussed under certain simplifying assumptions.  相似文献   

10.
Abstract

An iodoacetamide azaadamantyl spin label was studied in fluid solution and in 9:1 trehalose:sucrose glass. In 9:1 toluene:CH2Cl2 solution at 293 K, the isotropic nitrogen hyperfine coupling is 19.2?G, T1 is 0.37 µs and T2 is 0.30–0.35 µs. Between about 80 and 150 K 1/Tm in 9:1 trehalose:sucrose is approximately independent of temperature demonstrating that the absence of methyl groups decreases 1/Tm relative to that which is observed in spin labels with methyl groups on the alpha carbons. Spin lattice relaxation rates between about 80 and 293 K in 9:1 trehalose:sucrose are similar to those observed for other nitroxide spin labels, consistent with the expectation that relaxation is dominated by Raman and local mode processes. Although complexation of the azaadamantyl spin label with β-cyclodextrin slows tumbling in aqueous solution by about a factor of 10, it has little impact on 1/T1 or 1/Tm in 9:1 trehalose:sucrose between 80 and 293 K.  相似文献   

11.
Solvent1H T?11 values at magnetic fields between 2.3 × 10?4 and 1.2 T were measured for ethyleneglycol solutions of manganese(II), cobalt(II), nickel(II), copper(II), and gadolinium(III) salts in the temperature range ?10–+40 °C. The T?11 profiles were interpreted on the ground of the available theories according to whether the electronic relaxation times or the rotational times are the correlation times for the interaction. The comparison among systems experiencing different correlation times and electronic structures (metal ions in water, ethyleneglycol, and in proteins) allowed us to test the general theoretical approach regarding nuclear relaxation times in paramagnetic systems. Such theoretical approaches allow researchers to extract structural parameters and information on the correlation times and dynamic processes operative in the various investigated systems.  相似文献   

12.
Proton two‐dimensional time domain nmr involving T1, T, T1D, and T2 measurements was applied to hydrated polyglycine powders. The results were analyzed for magnetization exchange and found to be consistent with a general three‐site (glycine–water–glycine) exchange model. The intrinsic glycine and water proton relaxation parameters as well as the three exchange rates were obtained. Estimates of correlation times for water molecule motion at hydration sites are presented. © 1999 John Wiley & Sons, Inc. Biopoly 50: 630–640, 1999  相似文献   

13.
13C spin-lattice relaxation times (T1's) of four cyclic hexapeptides of sequence, (X-L -Pro-Y)2, are reported. The T1's of the protonated carbons, which undergo dipolar relaxation, are interpreted qualitatively in terms of the overall tumbling motion of the molecule and in terms of internal motion. It is found that three of the cyclic hexapeptides, those which adopt all-trans β-conformers, tumble isotropically and appear to lack internal motion in the peptide backbone. The method of Torchia and Lyerla was applied to these compounds in order to compare the mobility of the proline rings. The results show that the sequence and particular type of β-turn present affect the internal motion of the Pro ring. Data on a fourth cyclic hexapeptide, which occurs in a conformation with two-cis X-Pro bonds, suggests that internal motion of the backbone contributes an additional frequency component to the motion of the Y residue α-carbons. A consideration of the mobility of the proline rings in the conformer with two-cis peptide bonds revealed that they are significantly more rigid in the two-cis structure than in the all-trans.  相似文献   

14.
Relaxation measurements of side-chain 13CH2-groups of uniformly 13C labeled human ubiquitin were performed at 600 MHz and 800 MHz magnetic field strength at 30°C. Dipole-dipole cross-correlated relaxation effects in T1 experiments were suppressed by the combination of radio-frequency pulses and pulsed field gradients during the relaxation delay leading to monoexponential relaxation decays that allow a more accurate extraction of the 13C T1 relaxation times. Heteronuclear 1H-13C NOEs obtained by using different proton saturation schemes indicate that the influence of cross-correlation is small. The experimental T1 and NOE data were interpreted in a model-free way in terms of a generalized order parameter and an internal correlation time.  相似文献   

15.
Summary Relaxation times of 13C carbons of uniformly 13C/15N-enriched probes have been investigated. The relaxation behaviour was analyzed in terms of a multispin system. Pulse sequences for the determination of T1, T2 and the heteronuclear NOE of 13C in uniformly 13C/15N-enriched ribonuclease T1 are presented. The experiments performed in order to obtain T1 and the heteronuclear NOE were similar to those of the corresponding 15N experiments published previously. The determination of T2 for the C-carbon in a completely labeled protein is more complicated, since the magnetization transfer during the T2 evolution period owing to the scalar coupling of C–C must be suppressed. Various different pulse sequences for the T2 evolution period were simulated in order to optimize the bandwidth for which reliable T2 relaxation times can be obtained. A proof for the quality of these pulse sequences is given by fitting the intensity decay of individual 1H–13C cross peaks, in a series of (1H, 13C)-ct-HSQC spectra with a modified CPMG sequence as well as a T1p sequence for the transverse relaxation time, to a single exponential using a simplex algorithm.  相似文献   

16.
Peptide GVKGDKGNPGWPGAPY from the triple-helix domain of type IV collagen aggregates in solution at a critical aggregation concentration of 18 mM. This molecular self association process is investigated by 1H- and 13C-nmr spectroscopy. As a function of increasing peptide concentration, selective 1H resonances are cooperatively chemically shifted by up to 0.04 ppm to apparently saturable values at high concentration. Pulsed field gradient nmr was used to derive translation diffusion constants that, as the peptide concentration is increased, also cooperatively and monotonically decrease to an apparent limiting value. An average number of 6 monomer units per aggregate have been estimated from diffusion constant and 13C relaxation data. Comparative 1H nuclear Overhauser effect spectroscopy (NOESY) spectra accumulated at high and low peptide concentrations suggest that average internuclear distances are decreased as a result of peptide association. 13C-nmr multiplet spin-lattice relaxation and 13C- {1H} NOE effects on 13C-enriched glycine methylene positions in the peptide demonstrate that overall molecular tumbling and backbone internal motions are attenuated in the aggregate state. Lowering the solution pD from pD 6 to pD 2 disrupts the aggregate state, suggesting a role for electrostatic interactions in the association process. Based on thermodynamic considerations, hydrophobic interactions also probably act to stabilize the aggregate state. These data are discussed in terms of an nmr/NOE constrained computer-modeled structure of the peptide. © 1993 John Wiley & Sons, Inc.  相似文献   

17.
The molecular and crystal structures of one derivative and three homopeptides (from the di-to the tetrapeptide level) of the chiral, Cα, α-disubstituted glycine Cα-methyl, Cα-benzylglycine [(αMe)Phe], have been determined by x-ray diffraction. The derivative is mClAc-D -(αMe)Phe-OH, and the peptides are pBrBz-[D -(αMe)Phe]2-NHMe, pBrBz-[D -(αMe)Phe]3-OH hemihydrate, and pBrBz-[D -(αMe)Phe]4-OtBu sesquihydrate. All (αMe)Phe residues prefer ?,ψ torsion angles in the helical region of the conformational map. The dipeptide methylamide and the tripeptide carboxylic acid adopt a β-turn conformation with a 1 ← 4 C?O…?H? N intramolecular H bond. The structure of the tripeptide carboxylic acid is further stabilized by a 1 ← 4 C?O…?H? O intramolecular H bond, forming an “oxy-analogue” of a β-turn. The tetrapeptide ester is folded in a regular (incipient) 310-helix. In general, the relationship between (αMe)Phe chirality and helix screw sense is opposite to that exhibited by protein amino acids. A comparison is made with the conclusions extracted from published work on homopeptides from other Cα-methylated α-amino acids. © 1993 John Wiley & Sons, Inc.  相似文献   

18.
We report proton magnetic resonance studies of a series of lysine oligopeptides in H2O solution. At pH 5 the protonated ε-amino groups are seen as broad resonances; the peptide NH proton resonances are split by spin–spin coupling with the Cα-H proton, and appear at positions which depend on position in the chain and on chain length. Assignments were made by the europium shift method, and we observed the expected effect of catalysis by the terminal —NH3+ of exchange of the adjacent peptide NH. Coupling constants and the temperature coefficient of chemical shift values were consistent with a non-hydrogen-bonded structure for the oligolysines. The rate and mechanism of NH hydrogen exchange were investigated by line-broadening measurements of the peptide protons as a function of pH. Exchange was found to be OH? catalyzed, with large differences in the rate depending on position in the chain. Preliminary studies of the complex between double-helical d(pA)3pGpC(pT)3 and tetra(L -lysine) were performed using 1H- and 31P-nmr techniques. Pmr spectra of the complex at pH values ranging from 3.98 to 8.15 showed very complicated patterns. Downfield shifts and reduction in exchange rates were observed for several tetra(L -lysine) protons. 31P-nmr spectra of the complex reveal an upfield shift of 1 ppm for 3′-5′ phosphate diester resonances on complexation. 31P T1 relaxation times change little on complex formation at low temperature but are altered at higher temperature.  相似文献   

19.
Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion NMR experiments are extremely powerful for characterizing millisecond time-scale conformational exchange processes in biomolecules. A large number of such CPMG experiments have now emerged for measuring protein backbone chemical shifts of sparsely populated (>0.5%), excited state conformers that cannot be directly detected in NMR spectra and that are invisible to most other biophysical methods as well. A notable deficiency is, however, the absence of CPMG experiments for measurement of 1Hα and 13Cα chemical shifts of glycine residues in the excited state that reflects the fact that in this case the 1Hα, 13Cα spins form a three-spin system that is more complex than the AX 1Hα13Cα spin systems in the other amino acids. Here pulse sequences for recording 1Hα and 13Cα CPMG relaxation dispersion profiles derived from glycine residues are presented that provide information from which 1Hα, 13Cα chemical shifts can be obtained. The utility of these experiments is demonstrated by an application to a mutant of T4 lysozyme that undergoes a millisecond time-scale exchange process facilitating the binding of hydrophobic ligands to an internal cavity in the protein.  相似文献   

20.
The molecular conformations and dynamics of poly(L -prolyl), poly(hydroxyl-L -prolyl), poly(L -prolyl-glycyl), poly(hydroxyl-L -prolyl), and poly(glycyl-glycyl-L -prolyl-glycyl), in aqueous solution, have been studied using 13C pulse Fourier transform nmr spectroscopy. From a measurement of the intensities of major and minor resonances in the spectra of the copolypeptides, it was determined that 15–20% of the glycyl-prolyl and glycyl-hydroxyprolyl peptide bonds are cis. Effective rotational correlation times (τeff), obtained from measurements of spin-lattice relaxation times (T1) of individual backbone and side-chain carbons, demonstrated that backbone reorientation is approximately isotropic for the five polypeptides and is characterized by correlation times of ca. 0.3–0.6 nanoseconds as a result of rapid segmental motion. In a given polypeptide glycyl and pyrrolidine residues were found to have the same backbone correlation times, but backbone carbon τeff values did decrease as the glycyl content of the peptides increased. A semi-quantitative analysis of Cβ, Cγ, and Cδ correlation times suggests that rapid ring motion in both prolyl and hydroxyprolyl involves primarily Cγ and Cβ, with the prolyl ring being more mobile than the hydroxyprolyl ring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号