首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The present article briefly summarizes the theoretical studies made by the authors and co-workers on the effect of inborn enzyme deficiencies on oxidative phosphorylation in intact tissues and on the genesis of mitochondrial diseases. The dynamic computer model of oxidative phosphorylation developed previously allowed to extrapolate experimental data (especially: threshold curves describing the dependence of oxygen consumption and ATP turnover on activities/concentrations of particular oxidative phosphorylation enzymes) obtained for isolated muscle mitochondria in state 3 at saturating oxygen concentrations to more physiological conditions prevailing in intact tissues. In particular, theoretical studies demonstrated that the threshold value of the relative activity/concentration of a given mitochondrial complex, below which a significant decrease in the respiration rate takes place, increases with an increase in energy demand. This fact was proposed as a possible explanation of the tissue specificity of mitochondrial diseases. Additionally, a decreased oxygen concentration was shown to increase the threshold value (and flux control coefficient) for cytochrome oxidase. We subsequently developed a model called binary mitochondria heteroplasmy, in which there are only two subpopulations of mitochondria: one wild-type and one containing only defected molecules of a given enzyme. In this model we show that a defect has a pronounced effect on oxidative phosphorylation, significantly increasing the threshold value. It was also proposed that a parallel activation in the ATP supply-demand system during an increased energy demand significantly lessens the effect of enzyme deficiencies on oxidative phosphorylation (decreases the threshold value). Finally, the necessity of substrate activation may lead to an instability in the system and to appearance of a second threshold, below which respiration suddenly drops to zero, which is equivalent to the energetic death of a cell.  相似文献   

2.
In intact tissues respiratory substrates (glucose, fatty acids) must be activated with the use of ATP before they may be oxidised and used for energy (ATP) production. This activation by product constitutes an example of a typical positive feedback. In the present paper, the influence of substrate activation on the effect of inborn enzyme deficiencies, inhibitors, lowered oxygen tension, respiratory fuel shortage and increased energy demand on respiration and ATP synthesis is studied with the aid of the dynamic computer model of oxidative phosphorylation in isolated mitochondria developed previously. Computer simulations demonstrate that, in the case where oxidative phosphorylation in the whole organism is partially inhibited, the necessity of substrate activation can have significant impact on the relationship between the activity of (particular steps of) oxidative phosphorylation (or the value of energy demand) and the respiration rate. Depending on the sensitivity of ATP usage to ATP concentration, substrate activation may either slightly enhance the effect of the decrease in the oxidative phosphorylation activity (increase in energy demand) or may lead to a non-stability and sudden collapse of the respiration rate and phosphorylation potential below (above) a certain threshold value of oxidative phosphorylation activity (energy demand). This theoretical finding suggests a possible causal relationship between the affinity of ATP usage to [ATP] and the tissue specificity of mitochondrial diseases.  相似文献   

3.
4.
5.
The existence of a biochemical threshold effect in the metabolic expression of oxidative phosphorylation deficiencies has considerable implications for the understanding of mitochondrial bioenergetics and the study of mitochondrial diseases. However, the molecular bases of this phenomenon remain unclear. We report here a new mechanism to explain this threshold effect, based on a reserve of enzymes not initially participating in the respiratory rate that can be activated either to respond to a flux increase or to compensate for a defect induced by a mutation. We show that this mobilization occurs through 1) the assembly of inactive adenine nucleotide translocator isoform 1 subunits into oligomeric active carriers or 2) conformational changes in the adenine nucleotide translocator isoform 1 in a permeability transition pore-like structure. We discuss how these transitions are sensitive to the steady state of oxidative phosphorylation functioning or tissue and analyze their consequences on the threshold effect.  相似文献   

6.
It has been postulated previously that a direct activation of all oxidative phosphorylation complexes in parallel with the activation of ATP usage and substrate dehydrogenation (the so-called each-step activation) is the main mechanism responsible for adjusting the rate of ATP production by mitochondria to the current energy demand during rest-to-work transition in intact skeletal muscle in vivo. The present in silico study, using a computer model of oxidative phosphorylation developed previously, analyzes the impact of the each-step-activation mechanism on the distribution of control (defined within Metabolic Control Analysis) over the oxygen consumption flux among the components of the bioenergetic system in intact oxidative skeletal muscle at different energy demands. It is demonstrated that in the absence of each-step activation, the oxidative phosphorylation complexes take over from ATP usage most of the control over the respiration rate and oxidative ATP production at higher (but still physiological) energy demands. This leads to a saturation of oxidative phosphorylation, impossibility of a further acceleration of oxidative ATP synthesis, and dramatic drop in the phosphorylation potential. On the other hand, the each-step-activation mechanism allows maintenance of a high degree of the control exerted by ATP usage over the ATP turnover and oxygen consumption flux even at high energy demands and thus enables a potentially very large increase in ATP turnover. It is also shown that low oxygen concentration shifts the metabolic control from ATP usage to cytochrome oxidase and thus limits the oxidative ATP production. respiration rate; parallel activation; oxidative phosphorylation; metabolic control analysis; flux control coefficient; muscle contraction  相似文献   

7.
Cherchenko  A. P.  Todor  I. M. 《Neurophysiology》2001,33(4):224-228
We measured the rate of oxygen consumption by the mitochondria from the brain tissues of rabbits within a remote period after light cranio-cerebral trauma. One and six months after traumatization, oxidative phosphorylation in rabbits of the experimental groups demonstrated no significant difference from that in the control group. Yet, after a 12-month-long interval, clear differences were observed within the cortical zone with post-traumatic epileptic nidus. The coefficient of energy production decreased, and the process of oxidative phosphorylation became uncoupled. When succinate was used as a substrate for oxidation, we observed significant decreases in the rate of oxygen consumption in ADP phosphorylation and in the coefficient of respiration control. A significant decrease in the rate of oxygen consumption in the resting state (V 2), the absence of disturbances in the respiration control, and preservation of a sufficient reserve ATPase activity were characteristic features when glutamate was used as a substrate. It seems probable that such shifts in oxidative phosphorylation can result in creation of an excessive glutamate pool and provide excessive epileptogenic glutamatergic activation of the neurons.  相似文献   

8.
The effect of inhibition of the oxidative phosphorylation of human blood lymphocytes in the presence and absence of phytohaemagglutinin has been investigated. It was found that the incorporation of inorganic phosphate into acid-soluble nucleotides is dependent on, though not a direct measure of oxidative phosphorylation. Optimal concentration for inhibition of oxidative phosphorylation with oligomycin and the uncoupler 4,5,6,7-tetrachloro-2-trifluoromethylbenzimidazole (TTFB) were determined. Under conditions of maximally inhibited Pi incorporation into acid-soluble nucleotides (80%) and maximally increased oxygen consumption and lactate production (4–5 times), the stimulatory effect of phytohaemagglutinin on several glycolytic parameters could still be observed. Therefore, stimulation of cellular processes by PHA is still possible when energy is provided by glycolysis only.  相似文献   

9.
Calorie restriction (CR) without malnutrition increases maximal life span in diverse species. It has been proposed that reduction in energy expenditure and reactive oxygen species (ROS) production could be a mechanism for life span extension with CR. As a step toward testing this theory, mitochondrial proton leak, H2O2 production, and markers of oxidative stress were measured in liver from FBNF1 rats fed control or 40% CR diets for 12 or 18 mo. CR was initiated at 6 mo of age. Proton leak kinetics curves, generated from simultaneous measures of oxygen consumption and membrane potential, indicated a decrease in proton leak after 18 mo of CR, while only a trend toward a proton leak decrease was observed after 12 mo. Significant shifts in phosphorylation and substrate oxidation curves also occurred with CR; however, these changes occurred in concert with the proton leak changes. Metabolic control analysis indicated no difference in the overall pattern of control of the oxidative phosphorylation system between control and CR animals. At 12 mo, no significant differences were observed between groups for H2O2 production or markers of oxidative stress. However, at 18 mo, protein carbonyl content was lower in CR animals, as was H2O2 production when mitochondria were respiring on either succinate alone or pyruvate plus malate in the presence of rotenone. These results indicate that long-term CR lowers mitochondrial proton leak and H2O2 production, and this is consistent with the idea that CR may act by decreasing energy expenditure and ROS production.  相似文献   

10.
The total amount of cellular mitochondrial DNA (mtDNA) varies widely and seems to be related to the nature and metabolic state of tissues and cells in culture. It is not known, however, whether this variation has any significance in vivo, and to which extent it regulates energy production. To better understand the importance of the cellular mtDNA level, we studied the influence of a gradual reduction of mtDNA copy number on oxidative phosphorylation in two models: (a) a control human cell line treated with different concentrations of 2′, 3′-dideoxycytidine, a nucleoside analogue that inhibits mtDNA replication by interfering with mitochondrial DNA polymerase γ, and (b) a cell line derived from a patient presenting mtDNA depletion. The two models were used to construct biochemical and phenotypic threshold curves. Our results show that oxidative phosphorylation activities are under a tight control by the amount of mtDNA in the cell, and that the full complement of mtDNA molecules are necessary to maintain a normal energy production level.  相似文献   

11.
Metabolism in cancer cells is rewired to generate sufficient energy equivalents and anabolic precursors to support high proliferative activity. Within the context of these competing drives aerobic glycolysis is inefficient for the cancer cellular energy economy. Therefore, many cancer types, including colon cancer, reprogram mitochondria-dependent processes to fulfill their elevated energy demands. Elevated glycolysis underlying the Warburg effect is an established signature of cancer metabolism. However, there are a growing number of studies that show that mitochondria remain highly oxidative under glycolytic conditions. We hypothesized that activities of glycolysis and oxidative phosphorylation are coordinated to maintain redox compartmentalization. We investigated the role of mitochondria-associated malate–aspartate and lactate shuttles in colon cancer cells as potential regulators that couple aerobic glycolysis and oxidative phosphorylation. We demonstrated that the malate–aspartate shuttle exerts control over NAD+/NADH homeostasis to maintain activity of mitochondrial lactate dehydrogenase and to enable aerobic oxidation of glycolytic l -lactate in mitochondria. The elevated glycolysis in cancer cells is proposed to be one of the mechanisms acquired to accelerate oxidative phosphorylation.  相似文献   

12.
A potential kinetic impact of parallel activation of different steps during an increased energy demand on the effect of inborn enzyme deficiencies, physiological inhibitors, external poisons and substrate shortage on oxidative phosphorylation was studied in the theoretical way. Numerical simulations were performed with the aid of the previously developed computer model of oxidative phosphorylation. It was demonstrated that the parallel activation mechanism diminishes significantly changes in fluxes and metabolite concentrations occurring at a given degree of inactivation of the system by one of the above-mentioned factors. It was also shown that parallel activation decreases greatly the threshold value of the relative activity of oxidative phosphorylation, below which the oxygen consumption flux and ATP turnover flux become significantly affected. Finally, computer simulations predicted that parallel activation leads to a considerable increase in the apparent affinity of oxidative phosphorylation to oxygen, which delays the effect of inhibitors and poisons competing with oxygen for the active centre of cytochrome oxidase. It is concluded that one of possible functions of parallel direct activation of different steps of oxidative phosphorylation is to increase the resistance of the system to a decrease in the concentration/activity of different oxidative phosphorylation complexes.  相似文献   

13.
Abstract— The effects of acute and long-term exposure to CS2 on oxidation and phosphorylation processes in brain mitochondria of rats were studied. Although rats developed different symptoms of poisoning, depending on the type of exposure, the brain mitochondria of both groups of animals exhibited the same types of disturbances in oxidative phosphorylation. The main characteristic of these disturbances was the uncoupling of oxidative phosphorylation indicated by lower respiratory control indices due to stimulation of oxidation of respiratory substrates by mitochondria in the metabolic state 4. This effect was accompanied by a decreased P:O ratio and a lower ATP-Pi exchange rate. An inhibitory effect of CS2 on the energy transfer processes is also suggested.
The observed changes in oxidative phosphorylation were more distinct in the case of acute poisoning, with a longer period of an uninterrupted exposure enabling a more complete tissue saturation with CS2, than in the case of long-term exposure with shorter periods of intoxication within the day.  相似文献   

14.
We have observed abnormally high membrane cholesterol levels and a subsequent deficiency of oxidative energy production in mitochondria from cultured Morris hepatoma cells (MH7777). Using cholesterol affinity chromatography and MALDI-TOF Mass Spectrometry, we have identified the voltage dependent anion channel (VDAC) as a necessary component of a protein complex involved in mitochondrial membrane cholesterol distribution. VDAC is known to associate strongly with hexokinase, particularly in glycolytic cancers. By constructing an E72Q mutant form of VDAC that inhibits its binding of hexokinase, we report an increase in oxidative phosphorylation activity of MH7777 cells, as well as reduced membrane cholesterol ratios to levels near that of normal liver mitochondria. This paper demonstrates that the ability of VDAC to influence mitochondrial membrane cholesterol distribution may have implications on mitochondrial characteristics such as oxidative phosphorylation and induction of apoptosis, as well as the propensity of cancer cells to exhibit a glycolytic phenotype.  相似文献   

15.
Few, if any, studies have examined the effect of vitamin E deficiency on brain mitochondrial oxidative phosphorylation. The latter was studied using brain mitochondria isolated from control and vitamin E-deficient rats (13 months of deficiency) after exposure to iron, an inducer of oxidative stress. Mitochondria were treated with iron (2 to 50 microM) added as ferrous ammonium sulfate. Rates of state 3 and state 4 respiration, respiratory control ratios, and ADP/O ratios were not affected by vitamin E deficiency alone. However, iron uncoupled oxidative phosphorylation in vitamin E-deficient mitochondria, but not in controls. In vitamin E-deficient mitochondria, iron decreased ADP/O ratios and markedly stimulated state 4 respiration; iron had only a modest effect on these parameters in control mitochondria. Thus, vitamin E may have an important role in sustaining oxidative phosphorylation. Low concentrations of iron (2 to 5 microM) oxidized mitochondrial tocopherol that exists in two pools. The release of iron in brain may impair oxidative phosphorylation, which would be exacerbated by vitamin E deficiency. The results are important for understanding the pathogenesis of human brain disorders known to be associated with abnormalities in mitochondrial function as well as iron homeostasis (e.g., Parkinson's disease).  相似文献   

16.
Normal cells of aerobic organisms synthesize the energy they require in the form of ATP via the process of oxidative phosphorylation. This complex system resides in the mitochondria of cells and utilizes oxygen to produce a majority of cellular ATP. However, in most tumors, especially those with elevated cholesterogenesis, there is an increased reliance on glycolysis for energy, even in conditions where oxygen is available. This aerobic glycolysis (the Warburg effect) has far reaching ramifications on the tumor itself and the cells that surround it. In this brief review, we will discuss how abnormally high membrane cholesterol levels can result in a subsequent deficiency of oxidative energy production in mitochondria from cultured Morris hepatoma cells (MH-7777). We have identified the voltage dependent anion channel (VDAC) as a necessary component of a protein complex involved in mitochondrial membrane cholesterol distribution and transport. Work in our laboratory demonstrates that the ability of VDAC to influence mitochondrial membrane cholesterol distribution may have implications on mitochondrial characteristics such as oxidative phosphorylation and induction of apoptosis, as well as the propensity of cancer cells to exhibit a glycolytic phenotype.  相似文献   

17.
The ratio of myocardial phosphocreatine (PCr)/ATP reflects the balance of energy consumption and energy supply in the heart. It is reduced in a range of important physiological conditions including during and after acute hypoxia, after a prolonged visit to high-altitude, and in those suffering from both type 2 diabetes mellitus and various forms of heart failure. Yet despite its significance, the factors underlying the reduced PCr/ATP ratio seen in heart failure remain poorly understood. Given that oxidative phosphorylation is the only viable steady-state provider of ATP in the heart, the argument has been put forward that the observed reduction in myocardial PCr/ATP in all these conditions can be accounted for by some form of mitochondrial insufficiency. Thus we used a computer model of oxidative phosphorylation, coupled with creatine kinase, to study the effects of hypoxia and mitochondrial dysfunction on myocardial PCr/ATP. In physiological normoxia, all oxidative phosphorylation complexes, NADH supply and proton leak exerted comparable (of the same order of magnitude) control over PCr/ATP, as defined within Metabolic Control Analysis (MCA). Under hypoxia, the control increased considerably for all components of the system, especially for cytochrome oxidase and mitochondrial proton leak. Hypoxia alone, without any changes in other factors, exerted a pronounced effect on PCr/ATP. Our simulations support three important ideas: First, that mitochondrial abnormalities can contribute considerably to a blunted PCr/ATP; second, that hypoxia and mitochondrial dysfunction can interact in important ways to determine the energy status of the failing heart; and third, that hypoxia alone can account for significant decreases in cardiac PCr/ATP.  相似文献   

18.
In early studies on energy metabolism of tumor cells, it was proposed that the enhanced glycolysis was induced by a decreased oxidative phosphorylation. Since then it has been indiscriminately applied to all types of tumor cells that the ATP supply is mainly or only provided by glycolysis, without an appropriate experimental evaluation. In this review, the different genetic and biochemical mechanisms by which tumor cells achieve an enhanced glycolytic flux are analyzed. Furthermore, the proposed mechanisms that arguably lead to a decreased oxidative phosphorylation in tumor cells are discussed. As the O(2) concentration in hypoxic regions of tumors seems not to be limiting for the functioning of oxidative phosphorylation, this pathway is re-evaluated regarding oxidizable substrate utilization and its contribution to ATP supply versus glycolysis. In the tumor cell lines where the oxidative metabolism prevails over the glycolytic metabolism for ATP supply, the flux control distribution of both pathways is described. The effect of glycolytic and mitochondrial drugs on tumor energy metabolism and cellular proliferation is described and discussed. Similarly, the energy metabolic changes associated with inherent and acquired resistance to radiotherapy and chemotherapy of tumor cells, and those determined by positron emission tomography, are revised. It is proposed that energy metabolism may be an alternative therapeutic target for both hypoxic (glycolytic) and oxidative tumors.  相似文献   

19.
Phosphate (Pi) is a putative cytosolic signaling molecule in the regulation of oxidative phosphorylation. Here, by using a multiparameter monitoring system, we show that Pi controls oxidative phosphorylation in a balanced fashion, modulating both the generation of useful potential energy and the formation of ATP by F1F0-ATPase in heart and skeletal muscle mitochondria. In these studies the effect of Pi was determined on the mitochondria [NADH], NADH generating capacity, matrix pH, membrane potential, oxygen consumption, and cytochrome reduction level. Pi enhanced NADH generation and was obligatory for electron flow under uncoupled conditions. Pi oxidized cytochrome b (cyto-b) and reduced cytochrome c (cyto-c), potentially improving the coupling between the NADH free energy and the proton motive force. The apparent limitation in reducing equivalent flow between cyto-b and cyto-c in the absence of Pi was confirmed in the intact heart by using optical spectroscopic techniques under conditions with low cytosolic [Pi]. These results demonstrate that Pi signaling results in the balanced modulation of oxidative phosphorylation, by influencing both deltaGH+ generation and ATP production, which may contribute to the energy metabolism homeostasis observed in intact systems.  相似文献   

20.
Intrauterine growth restriction (IUGR) is associated with an increased risk of developing obesity, insulin resistance and cardiovascular disease. However, its effect on energetics in heart remains unknown. In the present study, we examined respiration in cardiac muscle and liver from adult mice that were undernourished in utero. We report that in utero undernutrition is associated with impaired cardiac muscle energetics, including decreased fatty acid oxidative capacity, decreased maximum oxidative phosphorylation rate and decreased proton leak respiration. No differences in oxidative characteristics were detected in liver. We also measured plasma acylcarnitine levels and found that short-chain acylcarnitines are increased with in utero undernutrition. Results reveal the negative impact of suboptimal maternal nutrition on adult offspring cardiac energy metabolism, which may have life-long implications for cardiovascular function and disease risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号