首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Type I interferon (IFN-I) promotes antiviral CD8(+)T cell responses, but the contribution of different IFN-I sources and signaling pathways are ill defined. While plasmacytoid dendritic cells (pDCs) produce IFN-I upon TLR stimulation, IFN-I is induced in most cells by helicases like MDA5. Using acute and chronic lymphocytic choriomeningitis virus (LCMV) infection models, we determined that pDCs transiently produce IFN-I that minimally impacts CD8(+)T cell responses and viral persistence. Rather, MDA5 is the key sensor that induces IFN-I required for CD8(+)T cell responses. In the absence of MDA5, CD8(+)T cell responses to acute infection rely on CD4(+)T cell help, and loss of both CD4(+)T cells and MDA5 results in CD8(+)T cell exhaustion and persistent infection. Chronic LCMV infection rapidly attenuates IFN-I responses, but early administration of exogenous IFN-I rescues CD8(+)T cells, promoting viral clearance. Thus, effective antiviral CD8(+)T cell responses depend on the timing and magnitude of IFN-I production.  相似文献   

2.
Respiratory virus infection results in considerable pulmonary immunopathology, a component of which results from the host immune responses. We have developed a murine model to specifically examine the lung injury due to CD8(+) T cell recognition of an influenza hemagglutinin (HA) transgene on lung epithelium in the absence of replicating virus, after adoptive transfer. Lung injury is largely mediated by chemokines expressed by the epithelial cells upon T cell recognition mediated by TNF-alpha. To determine the critical source of TNF-alpha, HA-specific TNF(-/-) CD8(+) T cells were transferred into HA transgenic animals, and lung injury was not observed, though these T cells exhibited no defect in antiviral activity in vivo. This indicates that the initiating event in the injury process is Ag-specific expression of TNF-alpha by antiviral CD8(+) T cells upon recognition of alveolar epithelial Ag, and that the effector activities responsible for viral clearance may be dissociable from those resulting in immunopathology.  相似文献   

3.
4.
There is an increasing body of evidence suggesting that the transfer of preformed MHC class I:peptide complexes between a virus-infected cell and an uninfected APC, termed cross-dressing, represents an important mechanism of Ag presentation to CD8(+) T cells in host defense. However, although it has been shown that memory CD8(+) T cells can be activated by uninfected dendritic cells (DCs) cross-dressed by Ag from virus-infected parenchymal cells, it is unknown whether conditions exist during virus infection in which naive CD8(+) T cells are primed and differentiate to cytolytic effectors through cross-dressing, and indeed which DC subset would be responsible. In this study, we determine whether the transfer of MHC class I:peptide complexes between infected and uninfected murine DC plays a role in CD8(+) T cell priming to viral Ags in vivo. We show that MHC class I:peptide complexes from peptide-pulsed or virus-infected DCs are indeed acquired by splenic CD8α(-) DCs in vivo. Furthermore, the acquired MHC class I:peptide complexes are functional in that they induced Ag-specific CD8(+) T cell effectors with cytolytic function. As CD8α(-) DCs are poor cross-presenters, this may represent the main mechanism by which CD8α(-) DCs present exogenously encountered Ag to CD8(+) T cells. The sharing of Ag as preformed MHC class I:peptide complexes between infected and uninfected DCs without the restraints of Ag processing may have evolved to accurately amplify the response and also engage multiple DC subsets critical in the generation of strong antiviral immunity.  相似文献   

5.
We previously reported that the lack of serglycin proteoglycan affects secretory granule morphology and granzyme B (GrB) storage in in vitro generated CTLs. In this study, the role of serglycin during viral infection was studied by infecting wild-type (wt) mice and serglycin-deficient (SG(-/-)) mice with lymphocytic choriomeningitis virus (LCMV). Wt and SG(-/-) mice cleared 10(3) PFU of highly invasive LCMV with the same kinetics, and the CD8(+) T lymphocytes from wt and SG(-/-) animals did not differ in GrB, perforin, IFN-gamma, or TNF-alpha content. However, when a less invasive LCMV strain was used, SG(-/-) GrB(+) CD8(+) T cells contained approximately 30% less GrB than wt GrB(+) CD8(+) T cells. Interestingly, the contraction of the antiviral CD8(+) T cell response to highly invasive LCMV was markedly delayed in SG(-/-) mice, and a delayed contraction of the virus-specific CD8(+) T cell response was also seen after infection with vesicular stomatitis virus. BrdU labeling of cells in vivo revealed that the delayed contraction was associated with sustained proliferation of Ag-specific CD8(+) T cells in SG(-/-) mice. Moreover, wt LCMV-specific CD8(+) T cells from TCR318 transgenic mice expanded much more extensively in virus-infected SG(-/-) mice than in matched wt mice, indicating that the delayed contraction represents a T cell extrinsic phenomenon. In summary, the present report points to a novel, previously unrecognized role for serglycin proteoglycan in regulating the kinetics of antiviral CD8(+) T cell responses.  相似文献   

6.
Memory CD8 T cells comprise a critical component of durable immunity because of their capacity to rapidly proliferate and exert effector activity upon Ag rechallenge. During persistent viral infection, memory CD8 T cells repetitively encounter viral Ag and must maintain a delicate balance between limiting viral replication and minimizing immunopathology. In mice infected by polyoma virus, a natural mouse pathogen that establishes long-term persistent infection, the majority of persistence-phase antiviral CD8 T cells express the inhibitory NK cell receptor CD94/NKG2A. In this study, we asked whether CD94/NKG2A expression is associated with Ag-specific recall of polyoma virus-specific CD8 T cells. During the persistent phase of infection, polyoma virus-specific CD8 T cells that express CD94/NKG2A were found to preferentially proliferate; this proliferation was dependent on cognate Ag both in vitro and in vivo. In addition, CD94/NKG2A(+) polyoma-specific CD8 T cells have a markedly enhanced capacity to produce IL-2 upon ex vivo Ag stimulation compared with CD94/NKG2A(-) polyoma-specific CD8 T cells. Importantly, CD94/NKG2A(+) anti-polyoma virus CD8 T cells appear to be essential for Ag-specific recall responses in mice persistently infected by polyoma virus. Because of its higher proliferative potential and capacity to produce IL-2, we propose that the CD94/NKG2A(+) subpopulation represents a less differentiated state than the CD94/NKG2A(-) subpopulation. Identification of proliferation-competent subpopulations of memory CD8 T cells should prove valuable in designing therapeutic vaccination strategies for persistent viral infections.  相似文献   

7.
During many viral infections, antigen-specific CD8(+) T cells undergo large-scale expansion. After viral clearance, the vast majority of effector CD8(+) T cells undergo apoptosis. Previous studies have implicated reactive oxygen intermediates (ROI) in lymphocyte apoptosis. The purpose of the experiments presented here was to determine the role of ROI in the expansion and contraction of CD8(+) T cells in vivo during a physiological response such as viral infection. Mice were infected with lymphocytic choriomeningitis virus (LCMV) and treated with Mn(III)tetrakis(4-benzoic acid)porphyrin chloride (MnTBAP), a metalloporphyrin-mimetic compound with superoxide dismutase activity, from days 0 to 8 postinfection. At the peak of CD8(+)-T-cell response, on day 8 postinfection, the numbers of antigen-specific cells were 10-fold lower in MnTBAP-treated mice than in control mice. From days 8 to 30, a contraction phase ensued where the numbers of antigen-specific CD8(+) T cells declined 25-fold in vehicle-treated mice compared to a 3.5-fold decrease in MnTBAP-treated mice. Differences in contraction appeared to be due to greater proliferation in drug-treated mice. By day 38, the numbers of antigen-specific CD8(+) memory T cells were equivalent for the two groups. The administration of MnTBAP during secondary viral infection had no effect on the expansion of antigen-specific CD8(+) secondary effector T cells. These data suggest that ROI production is critical for the massive expansion and contraction of antigen-specific CD8(+) T cells during primary, but not secondary, viral infection.  相似文献   

8.
The impact of prophylactic vaccination against acute and chronic infection in a Th-deficient host has not been adequately addressed because of difficulties in generating protective immunity in the absence of CD4(+) T cell help. In this study, we demonstrated that a broad CD8(+) T cell immune response could be elicited in MHC class II-deficient mice by vaccination with adenovirus encoding lymphocytic choriomeningitis virus (LCMV) glycoprotein tethered to MHC class II-associated invariant chain. Moreover, the response induced conferred significant cytolytic CD8(+) T cell-mediated protection against challenge with a high dose of the invasive clone 13 strain of LCMV. In contrast, vaccination with adenovirus encoding unlinked LCMV glycoprotein induced weak virus control in the absence of CD4(+) T cells, and mice may die of increased immunopathology associated with incomplete protection. Acute mortality was not observed in any vaccinated mice following infection with the less-invasive Traub strain. However, LCMV Traub infection caused accelerated late mortality in unvaccinated MHC class II-deficient mice; in this case, we observed a strong trend toward delayed mortality in vaccinated mice, irrespective of the nature of the vaccine. These results indicated that optimized vaccination may lead to efficient protection against acute viral infection, even in Th-deficient individuals, but that the duration of such immunity is limited. Nevertheless, for select immunodeficiencies in which CD4(+) T cell deficiency is incomplete or transient, these results are very encouraging.  相似文献   

9.
Conventional MHC class Ia-restricted CD8(+) T cells play a dominant role in the host response to virus infections, but recent studies indicate that T cells with specificity for nonclassical MHC class Ib molecules may also participate in host defense. To investigate the potential role of class Ib molecules in anti-viral immune responses, K(b-/-)D(b-/-)CIITA(-/-) mice lacking expression of MHC class Ia and class II molecules were infected with lymphocytic choriomeningitis virus (LCMV). These animals have a large class Ib-selected CD8(+) T cell population and they were observed to mediate partial (but incomplete) virus clearance during acute LCMV infection as compared with K(b-/-)D(b-/-)β(2)-microglobulin(-/-) mice that lack expression of both MHC class Ia and class Ib molecules. Infection was associated with expansion of splenic CD8(+) T cells and induction of granzyme B and IFN-γ effector molecules in CD8(+) T cells. Partial virus clearance was dependent on CD8(+) cells. In vitro T cell restimulation assays demonstrated induction of a population of β(2)-microglobulin-dependent, MHC class Ib-restricted CD8(+) T cells with specificity for viral Ags and yet to be defined nonclassical MHC molecules. MHC class Ib-restricted CD8(+) T cell responses were also observed after infection of K(b-/-)D(b-/-)mice despite the low number of CD8(+) T cells in these animals. Long-term infection studies demonstrated chronic infection and gradual depletion of CD8(+) T cells in K(b-/-)D(b-/-)CIITA(-/-) mice, demonstrating that class Ia molecules are required for viral clearance. These findings demonstrate that class Ib-restricted CD8(+) T cells have the potential to participate in the host immune response to LCMV.  相似文献   

10.
Previous studies have shown that vaccine-primed CD4(+) T cells can mediate accelerated clearance of respiratory virus infection. However, the relative contributions of Ab and CD8(+) T cells, and the mechanism of viral clearance, are poorly understood. Here we show that control of a Sendai virus infection by primed CD4(+) T cells is mediated through the production of IFN-gamma and does not depend on Ab. This effect is critically dependent on CD8(+) cells for the expansion of CD4(+) T cells in the lymph nodes and the recruitment of memory CD4(+) T cells to the lungs. Passive transfer of a CD8(+) T cell supernatant into CD8(+) T cell-depleted, hemagglutinin-neuraminidase (HN)(421-436)-immune muMT mice substantially restored the virus-specific memory CD4(+) response and enhanced viral control in the lung. Together, the data demonstrate for the first time that in vivo primed CD4(+) T cells have the capacity to control a respiratory virus infection in the lung by an Ab-independent mechanism, provided that CD8(+) T cell "help" in the form of soluble factor(s) is available during the virus infection. These studies highlight the importance of synergistic interactions between CD4(+) and CD8(+) T cell subsets in the generation of optimal antiviral immunity.  相似文献   

11.
Viral infections in human infants frequently follow a protracted course, with higher viral loads and delayed viral clearance compared to viral infections in older children. To identify the mechanisms responsible for this protracted pattern of infection, we developed an infant infection murine model using the well-characterized lymphocytic choriomeningitis virus (LCMV) WE strain in 2-week-old BALB/c mice. In contrast to adult mice, in which viral clearance occurred as expected 8 days after infection, LCMV titers persisted for several weeks after infection of infant mice. LCMV-specific effector CD8(+) T cells were elicited in infant mice and fully functional on day 7 but rapidly waned and could not be recovered from day 12 onwards. We show here that this results from the failure of LCMV-specific CD8(+) T cells to expand and the absence of protective LCMV-specific memory CD8(+) T cells. Under these early life conditions, viral control and clearance are eventually achieved only through LCMV-specific B cells that contribute to protect infant mice from early death or chronic infection.  相似文献   

12.
CD8(+) T cells are critical for the clearance of acute polyomavirus infection and the prevention of polyomavirus-induced tumors, but the antigen-presenting cell(s) involved in generating polyomavirus-specific CD8(+) T cells have not been defined. We investigated whether dendritic cells and macrophages are permissive for polyomavirus infection and examined their potential for inducing antiviral CD8(+) T cells. Although dendritic cells and macrophages both supported productive polyomavirus infection, dendritic cells were markedly more efficient at presenting the immunodominant viral epitope to CD8(+) T cells. Additionally, infected dendritic cells, but not infected macrophages, primed anti-polyomavirus CD8(+) T cells in vivo. Treatment with Flt3 ligand, a hematopoietic growth factor that dramatically expands the number of dendritic cells, markedly enhanced the magnitude of virus-specific CD8(+) T-cell responses during acute infection and the pool of memory anti-polyomavirus CD8(+) T cells. These findings suggest that virus-infected dendritic cells induce polyomavirus-specific CD8(+) T cells in vivo and raise the potential for their use as cellular adjuvants to promote CD8(+) T cell surveillance against polyomavirus-induced tumors.  相似文献   

13.
In vivo priming of CD8(+) T lymphocytes against exogenously processed model Ags requires CD4(+) T cell help, specifically interactions between CD40 ligand (CD40L) expressed by activated CD4(+) T cells and CD40, which is present on professional APC such as dendritic cells (DCs). To address this issue in the context of bacterial infection, we examined CD40L-CD40 interactions in CD8(+) T cell priming against an exogenously processed, nonsecreted bacterial Ag. CD40L interactions were blocked by in vivo treatment with anti-CD40L mAb MR-1, which inhibited germinal center formation and CD8(+) T cell cross-priming against an exogenous model Ag, OVA. In contrast, MR-1 treatment did not interfere with CD8(+) T cell priming against a nonsecreted or secreted recombinant Ag expressed by Listeria monocytogenes. Memory and secondary responses of CD8(+) T cells against nonsecreted and secreted bacterial Ags were also largely unimpaired by transient MR-1 treatment. When MR-1-treated mice were concurrently immunized with L. monocytogenes and OVA-loaded splenocytes, cross-priming of OVA-specific naive CD8(+) T cells occurred. No significant decline in cross-priming against OVA was measured when either TNF or IFN-gamma was neutralized in L. monocytogenes-infected animals, demonstrating that multiple signals exist to overcome CD40L blockade of CD8(+) T cell cross-priming during bacterial infection. These data support a model in which DCs can be stimulated in vivo through signals other than CD40, becoming APC that can effectively stimulate CD8(+) T cell responses against exogenous Ags during infection.  相似文献   

14.
Although many studies have investigated the requirement for CD4(+) T cell help for CD8(+) T cell responses to acute viral infections that are fully resolved, less is known about the role of CD4(+) T cells in maintaining ongoing CD8(+) T cell responses to persistently infecting viruses. Using mouse polyoma virus (PyV), we asked whether CD4(+) T cell help is required to maintain antiviral CD8(+) T cell and humoral responses during acute and persistent phases of infection. Though fully intact during acute infection, the PyV-specific CD8(+) T cell response declined numerically during persistent infection in MHC class II-deficient mice, leaving a small antiviral CD8(+) T cell population that was maintained long term. These unhelped PyV-specific CD8(+) T cells were functionally unimpaired; they retained the potential for robust expansion and cytokine production in response to Ag rechallenge. In addition, although a strong antiviral IgG response was initially elicited by MHC class II-deficient mice, these Ab titers fell, and long-lived PyV-specific Ab-secreting cells were not detected in the bone marrow. Finally, using a minimally myeloablative mixed bone marrow chimerism approach, we demonstrate that recruitment and/or maintenance of new virus-specific CD8(+) T cells during persistent infection is impaired in the absence of MHC class II-restricted T cells. In summary, these studies show that CD4(+) T cells differentially affect CD8(+) T cell responses over the course of a persistent virus infection.  相似文献   

15.
CD8(+) CTL are the main effector cells responsible for resolving viral infections. However, the CTL response to respiratory syncytial virus (RSV) infection in mice facilitates viral clearance at the expense of significant immunopathology. Previous reports have shown a strong correlation between the mechanism of CTL activity and the severity of RSV-induced illness. Furthermore, experiments in perforin knockout mice revealed that antiviral cytokine production temporally correlated with RSV-induced illness. In the current study, we show that TNF-alpha is the dominant mediator of RSV-associated illness, and it is also important for clearance of virus-infected cells during the early stages of infection. We also demonstrate that IFN-gamma plays a protective role in conjunction with perforin/granzyme-mediated killing. Preliminary experiments in gld mice that express nonfunctional Fas ligand (FasL) revealed that RSV-induced illness is significantly reduced in the absence of FasL-mediated killing. Antiviral cytokine production was not elevated in the absence of FasL, suggesting a possible link between FasL and antiviral cytokine activity. This work shows that multiple phenotypic subsets of CD8(+) CTLs respond to RSV infection, each with varying capacities for clearance of virus-infected cells and the induction of illness. In addition, the revelation that TNF-alpha is the principal mediator of RSV-induced illness means that administration of TNF receptor antagonists, in combination with antiviral therapy, may be an effective method to treat RSV infections.  相似文献   

16.
Profound lymphopenia has been observed during many acute viral infections, and our laboratory has previously documented a type I IFN-dependent loss of CD8 T cells immediately preceding the development of the antiviral T cell response. Most memory (CD44(high)) and some naive (CD44(low)) CD8 T cells are susceptible to IFN-induced attrition, and we show in this study that the IFN-induced attrition of CD8(+)CD44(high) T cells is associated with elevated activation of caspase-3 and caspase-8. We questioned whether TCR engagement by Ag would render CD8 T cells resistant to attrition. We tested whether a high concentration of Ag (GP33 peptide) would protect lymphocytic choriomeningitis (LCMV)-specific naive CD8 T cells (TCR transgenic P14 cells specific for the GP33 epitope of LCMV) and memory CD8 T cells (GP33-specific LCMV-immune cells) from depletion. Both naive P14 and memory GP33-specific donor CD8 T cells decreased substantially 16 h after inoculation with the Toll receptor agonist and IFN inducer, poly(I:C), regardless of whether a high concentration of GP33 peptide was administered to host mice beforehand. Moreover, donor naive P14 and LCMV-specific memory cells were depleted from day 2 LCMV-infected hosts by 16 h posttransfer. These results indicate that Ag engagement does not protect CD8 T cells from the IFN-induced T cell attrition associated with viral infections. In addition, computer models indicated that early depletion of memory T cells may allow for the generation for a more diverse T cell response to infection by reducing the immunodomination caused by cross-reactive T cells.  相似文献   

17.
CD8(+) T-cell responses control lymphocytic choriomeningitis virus (LCMV) infection in H-2(b) mice. Although antigen-specific responses against LCMV infection are well studied, we found that a significant fraction of the CD8(+) CD44(hi) T-cell response to LCMV in H-2(b) mice was not accounted for by known epitopes. We screened peptides predicted to bind major histocompatibility complex class I and overlapping 15-mer peptides spanning the complete LCMV proteome for gamma interferon (IFN-gamma) induction from CD8(+) T cells derived from LCMV-infected H-2(b) mice. We identified 19 novel epitopes. Together with the 9 previously known, these epitopes account for the total CD8(+) CD44(hi) response. Thus, bystander T-cell activation does not contribute appreciably to the CD8(+) CD44(hi) pool. Strikingly, 15 of the 19 new epitopes were derived from the viral L polymerase, which, until now, was not recognized as a target of the cellular response induced by LCMV infection. The L epitopes induced significant levels of in vivo cytotoxicity and conferred protection against LCMV challenge. Interestingly, protection from viral challenge was best correlated with the cytolytic potential of CD8(+) T cells, whereas IFN-gamma production and peptide avidity appear to play a lesser role. Taken together, these findings illustrate that the LCMV-specific CD8(+) T-cell response is more complex than previously appreciated.  相似文献   

18.
The development of human T-lymphotropic virus type 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is closely associated with the activation of T cells which are HTLV-1 specific but may cross-react with neural antigens (Ags). Immature dendritic cells (DCs), differentiated from normal donor monocytes by using recombinant granulocyte-macrophage colony-stimulating factor and recombinant interleukin-4, were pulsed with HTLV-1 in vitro. The pulsed DCs contained HTLV-1 proviral DNA and expressed HTLV-1 Gag Ag on their surface 6 days after infection. The DCs matured by lipopolysaccharides stimulated autologous CD4(+) T cells and CD8(+) T cells in a viral dose-dependent manner. However, the proliferation level of CD4(+) T cells was five- to sixfold higher than that of CD8(+) T cells. In contrast to virus-infected DCs, DCs pulsed with heat-inactivated virions activated only CD4(+) T cells. To clarify the role of DCs in HAM/TSP development, monocytes from patients were cultured for 4 days in the presence of the cytokines. The expression of CD86 Ag on DCs was higher and that of CD1a Ag was more down-regulated than in DCs generated from normal monocytes. DCs from two of five patients expressed HTLV-1 Gag Ag. Furthermore, both CD4(+) and CD8(+) T cells from the patients were greatly stimulated by contact with autologous DCs pulsed with inactivated viral Ag as well as HTLV-1-infected DCs. These results suggest that DCs are susceptible to HTLV-1 infection and that their cognate interaction with T cells may contribute to the development of HAM/TSP.  相似文献   

19.
The outcome of viral infections is dependent on the amount of tissue destruction caused either by direct lysis of infected cells and/or by immunopathology resulting from the immune response to the virus. We investigated whether induction of tolerance to only one viral protein could reduce immunopathology caused by nonlytic lymphocytic choriomeningitis virus (LCMV) in perforin-deficient hosts. Earlier studies had shown that LCMV infection results in aplastic anemia and death in most of these mice and that this is associated with bone marrow infiltration by antiviral cytotoxic T lymphocytes (CTL) that secrete inflammatory cytokines. We report here that perforin-deficient mice exhibit severe immunopathology in multiple organs that is characterized by infiltration of anti-LCMV CTL that secrete large amounts of gamma interferon (IFN-gamma) and tumor necrosis factor alpha (TNF-alpha). Importantly, this immunopathology is significantly reduced and long-term survival of LCMV infection is increased in perforin-deficient mice expressing LCMV nucleoprotein (NP) in the thymus (and therefore deleting most of their LCMV-NP CTL) compared to the situation in thymus nonexpressors. This is due to the selective reduction of NP-specific CTL responses and their inflammatory-cytokine (IFN-gamma and TNF-alpha) secretion and to a lack of pathogenetically relevant compensatory responses to other viral proteins. Thus, "selective reduction" of the antiviral immune response to only one viral protein can significantly reduce inflammatory immunopathology and might be a therapeutic possibility for certain nonlytic infections.  相似文献   

20.
Influenza pneumonia results in considerable lung injury, a significant component of which is mediated by CD8+ T cell Ag recognition in the distal airways and alveoli. TNF-alpha produced by Ag-specific CD8+ T cells appears primarily responsible for this immunopathology, and we have examined the negative regulation of CD8+ TNF production by CD94/NKG2A engagement with its receptor, Qa-1b. TNF production by antiviral CD8+ T cells was significantly enhanced by NKG2A blockade in vitro, and mice deficient in the NKG2A ligand, Qa-1b, manifested significantly greater pulmonary pathology upon CD8+ T cell-mediated clearance in influenza pneumonia. Furthermore, blockade of NKG2A ligation resulted in the enhancement of lung injury induced by CD8+ effector cell recognition of alveolar Ag in vivo in the absence of infectious virus. These data demonstrate that CD94/NKG2A transduces a biologically important signal in vivo to activated CD8+ T cells that limits immunopathology in severe influenza infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号