首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The (Ca2(+)-Mg2(+)-ATPase purified from skeletal muscle sarcoplasmic reticulum binds two Ca2+ ions per ATPase molecule. On reconstitution into bilayers of dioleoylphosphatidylcholine [C18:1)PC) or dinervonylphosphatidylcholine [C24:1)PC) the stoichiometry of binding remains unchanged, but when the ATPase is reconstituted into bilayers of dimyristoleoylphosphatidylcholine [C14:1)PC) the stoichiometry changes to one Ca2+ ion per ATPase molecule. Nevertheless, the level of phosphorylation is the same for the ATPase reconstituted with (C18:1)PC or (C14:1)PC. The effect of (C14:1)PC on the stoichiometry of Ca2+ binding is prevented by androstenol at a 1:1 molar ratio with the phospholipid.  相似文献   

2.
Mechanism of inhibition of the (Ca2(+)-Mg2+)-ATPase by nonylphenol   总被引:3,自引:0,他引:3  
The effects of nonylphenol and 3,5-dibutyl-4-hydroxytoluene (BHT) on the activity of the (Ca2(+)-Mg2+)-ATPase of skeletal muscle sarcoplasmic reticulum have been studied. At high concentrations, both inhibit the ATPase activity of the ATPase either in native lipid or in bilayers of dioleoylphosphatidylcholine but, at low concentrations, an increase in ATPase activity is observed, particularly for the ATPase reconstituted into dimyristoleoylphosphatidylcholine. Neither nonylphenol nor BHT binds at the lipid-protein interface of the ATPase. Nonylphenol decreases the effective equilibrium constant for phosphorylation of the ATPase by Pi probably through an increase in the effective rate of dephosphorylation of the phosphorylated ATPase. It also decreases the effective rate of the E2-Ca2E1 transition and increases the effective equilibrium constant E2/E1 for the ATPase. Inhibition of ATPase activity follows from the slowing of the E2-E1 transition despite increases in effective rates for dephosphorylation and for the transport step, Ca2E1P-E2P. Since nonylphenol has been shown to affect equilibrium constants for various steps in the reaction pathway of the ATPase, inhibition of activity of the ATPase cannot follow from effects on the fluidity (viscosity) of the membrane, since fluidity alone cannot affect equilibrium properties of the system.  相似文献   

3.
Cholesterol hemisuccinate has been shown to equilibrate readily with liposomes and with the (Ca2+-Mg2+)-ATPase from sarcoplasmic reticulum and has been used to modify the sterol content of these membranes. Cholesterol hemisuccinate incorporates into dioleoylphosphatidylcholine (DOPC) up to a molar ratio of 3:1 sterol to DOPC. Effects on lipid order as detected by electron spin resonance and fluorescence polarization are comparable to those of cholesterol. Binding constants have been determined, and the uncharged form of the sterol binds more strongly than the anionic form. Binding to DOPC and to the lipid component of the ATPase system is comparable. From use of the fluorescence quenching properties of 1,2-bis(9,10- dibromooleoyl )phosphatidylcholine and dibromocholesterol hemisuccinate, two classes of binding sites on the ATPase have been deduced. At the lipid/protein interface, the binding constant for cholesterol hemisuccinate is considerably less than that for DOPC. At the second set of sites ( nonannular sites), binding occurs with Kd = 0.55 in molar ratio units. The effect of cholesterol hemisuccinate on the activity of the ATPase depends on the phospholipid present in the system: ATPase reconstituted with DOPC is inhibited whereas ATPase reconstituted with dimyristoleoylphosphatidylcholine is activated. We conclude that changes in membrane fluidity are not important in determining ATPase activity in these systems.  相似文献   

4.
5.
6.
Epitopes for a number of monoclonal antibodies (mAbs) binding (Ca(2+)-Mg2+)-ATPase purified from skeletal muscle sarcoplasmic reticulum have been defined by studying binding to fusion proteins generated from cDNA fragment libraries. Comparison of these results with those of previous studies of binding of mAbs to proteolytic fragments of the ATPase have allowed the definition of the epitopes to within approx. 100 residues and for one (mAb 1/2H7) to within 45 residues. The experiments suggest considerable exposure of the nucleotide binding domain of the ATPase on the top surface of the protein. Those mAbs that were found to inhibit steady-state ATPase activity were found to bind to epitopes in the nucleotide binding domain of the ATPase.  相似文献   

7.
R J Froud  J M East  O T Jones  A G Lee 《Biochemistry》1986,25(23):7544-7552
The ATPase activity of the (Ca2+-Mg2+)-ATPase reconstituted into bilayers of phosphatidylcholines depends on the fatty acyl chain length of the phospholipids. It is shown that the fluorescence response to Ca2+ of the ATPase modified with fluorescein isothiocyanate is also dependent on phospholipid structure and is interpreted in terms of a change in the equilibrium between two forms of the ATPase, E1 and E2. A kinetic scheme for the ATPase is presented in which ATPase activity is markedly dependent on the rate of the transition between two phosphorylated forms of the ATPase, E1'PCa2 and E2'PCa2, and it is postulated that changing the phospholipid structure changes this rate. The rate of dephosphorylation of the ATPase and the ATP dependence of the E1'PCa2-E2'PCa2 transition are also lipid dependent. Binding of oleyl alcohol causes large, lipid-dependent changes in ATPase activity, and these are interpreted in terms of changes in the rates of these same steps. Oleylamine, which has been shown to bind more strongly at annular sites than at nonannular sites, inhibits ATPase activity irrespective of lipid structure, whereas fatty acids, which bind less strongly at annular sites, only inhibit at high concentrations. Methyl oleate, which binds more strongly at nonannular sites than at annular sites, causes marked stimulation for the ATPase reconstituted with short-chain lipids.  相似文献   

8.
The calcium dependency of the Ca2+-pump ATPase of rat cardiac sarcolemma was investigated in the presence and absence of EGTA and EDTA in combination with two free Mg2+-ion concentrations. The results showed: that Mg2+-ions are not essential for the turnover of the Ca2+-pump ATPase; that the Ca2+-affinity is regulated by the concentration of the calcium-chelator complex present in the medium; that (Ca2+-Mg2+)-ATPase and Ca2+-ATPase are probably expressions of the same Ca2+-pump ATPase in the plasma membrane of the cell.  相似文献   

9.
Purification of (Ca2+-Mg2+)-ATPase from rat liver plasma membranes   总被引:1,自引:0,他引:1  
The Ca2+-stimulated, Mg2+-dependent ATPase from rat liver plasma membranes was solubilized using the detergent polyoxyethylene 9 lauryl ether and purified by column chromatography using Polybuffer Exchanger 94, concanavalin A-Sepharose 4B, and Sephadex G-200. The molecular weight of the enzyme, estimated by gel filtration in the presence of the detergent on a Sephadex G-200 column, was 200,000 +/- 15,000. The enzyme was purified at least 300-fold from rat liver plasma membranes and had a specific activity of 19.7 mumol/mg/min. Polyacrylamide gel electrophoresis under nondenaturing conditions of the purified enzyme indicated that the enzymatic activity correlated with the major protein band. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis, one major band in the molecular weight range of 70,000 +/- 5,000 was seen. The isoelectric point of the purified enzyme was 6.9 +/- 0.2 as determined by analytical isoelectric focusing. The enzyme was activated by Ca2+ with an apparent half-saturation constant of 87 +/- 2 nM for Ca2+. Calmodulin and trifluoperazine at the concentration of 1 microgram/ml and 100 microM, respectively, had no effect on the enzymatic activity.  相似文献   

10.
An antipeptide antibody was produced against a peptide corresponding to residues 877-888 of fast twitch rabbit sarcoplasmic reticulum ATPase. This antipeptide antibody bound strongly to the ATPase in sarcoplasmic reticulum vesicles only after the vesicles had been solubilized with the detergent C12E8 indicating that its epitope was located in the lumen of the sarcoplasmic reticulum. Digestion of sarcoplasmic reticulum or purified (Ca2(+)-MG2+)-ATPase by proteinase K for up to 1 h resulted in a stable ATPase fragment of 30 kDa containing the epitope for the above antibody and the epitope for an antibody directed against the C terminus. Further proteolysis revealed smaller fragments (Mr 19,000 and 13,000) containing both epitopes. By contrast, small fragments of the ATPase (less than 29 kDa) containing the N-terminal epitope were not observed even after short exposures to proteinase K. These data support the view that the (Ca2(+)-MG2+)-ATPase has 10 transmembranous helices.  相似文献   

11.
12.
Calcium influx is required for the mammalian sperm acrosome reaction (AR), an exocytotic event occurring in the sperm head prior to fertilization. We show here that thapsigargin, a highly specific inhibitor of the microsomal Ca(2+)-Mg(2+)-ATPase (Ca(2+) pump), can initiate acrosomal exocytosis in capacitated bovine and ram spermatozoa. Initiation of acrosomal exocytosis by thapsigargin requires an influx of Ca(2+), since incubation of cells in the absence of added Ca(2+) or in the presence of the calcium channel blocker, La(3+), completely inhibited thapsigargin-induced acrosomal exocytosis. ATP-Dependent calcium accumulation into nonmitochondrial stores was detected in permeabilized sperm in the presence of ATP and mitochondrial uncoupler. This activity was inhibited by thapsigargin. Thapsigargin elevated the intracellular Ca(2+) concentration ([Ca(2+)](i)), and this increase was inhibited when extracellular Ca(2+) was chelated by EGTA, indicating that this rise in Ca(2+) is derived from the external medium. This rise of [Ca(2+)](i) took place first in the head and later in the midpiece of the spermatozoon. However, immunostaining using a polyclonal antibody directed against the purified inositol 1,4,5-tris-phosphate receptor (IP(3)-R) identified specific staining in the acrosome region, in the postacrosome, and along the tail, but not in the midpiece region. No staining in the acrosome region was observed in sperm without acrosome, indicating that the acrosome cap was stained in intact sperm. The presence of IP(3)-R in the anterior acrosomal region as well as the induction, by thapsigargin, of intracellular Ca(2+) elevation in the acrosomal region and acrosomal exocytosis, implicates the acrosome as a potential cellular Ca(2+) store. We suggest here that the cytosolic Ca(2+) is actively transported into the acrosome by an ATP-dependent, thapsigargin-sensitive Ca(2+) pump and that the accumulated Ca(2+) is released from the acrosome via an IP(3)-gated calcium channel. The ability of thapsigargin to increase [Ca(2+)](i) could be due to depletion of Ca(2+) in the acrosome, resulting in the opening of a capacitative calcium entry channel in the plasma membrane. The effect of thapsigargin on elevated [Ca(2+)](i) in capacitated cells was 2-fold higher than that in noncapacitated sperm, suggesting that the intracellular Ca pump is active during capacitation and that this pump may have a role in regulating [Ca(2+)](i) during capacitation and the AR.  相似文献   

13.
A (Ca(2+)-Mg2+)-ATPase associated with rat liver lysosomal membranes was purified about 300-fold over the lysosomal membranes with a 7% recovery as determined from the pattern on polyacrylamide gel electrophoresis in the presence of SDS. The purification procedure included: preparation of lysosomal membranes, solubilization of the membrane with Triton X-100, WGA-Sepharose 6B, Con A-Sepharose, hydroxylapatite chromatography, and preparative polyacrylamide gel electrophoresis. The molecular mass, estimated by gel filtration with Sephacryl S-300 HR, was approximately 340 kDa, and SDS-polyacrylamide gel electrophoresis showed the enzyme to be composed of four identical subunits with an apparent molecular mass of 85 kDa. The isoelectric point of the purified enzyme was 3.6. The enzyme had a pH optimum of 4.5, a Km value for ATP of 0.17 mM and a Vmax of 71.4 mumol/min/mg protein at 37 degrees C. This enzyme hydrolyzed nucleotide triphosphates and ADP but did not act on p-nitrophenyl phosphate and AMP. The effects of Ca2+ and Mg2+ on the ATPase were not additive, thereby indicating that both Ca2+ and Mg(2+)-ATPase activities are manifested by the same enzyme. The (Ca(2+)-Mg2+)-ATPase differed from H(+)-ATPase in lysosomal membranes, since the enzyme was not inhibited by N-ethylmaleimide but was inhibited by vanadate. The effects of some other metal ions and compounds on this enzyme were also investigated. The N-terminal 18 residues of (Ca(2+)-Mg2+)-ATPase were determined.  相似文献   

14.
15.
The effect of anti-ATPase antibodies with epitopes near Asp-351 (PR-8), Lys-515 (PR-11) and the ATP binding domain (D12) of the Ca(2+)-ATPase of sarcoplasmic reticulum (EC 3.6.1.38) was analyzed. The PR-8 and D12 antibodies reacted freely with the Ca(2+)-ATPase in the native membrane, indicating that their epitopes are exposed on the cytoplasmic surface. Both PR-8 and D12 interfered with the crystallization of the Ca(2+)-ATPase, suggesting that their binding sites are at interfaces between ATPase molecules. PR-11 had no effect on ATPase-ATPase interactions or on the ATPase activity of sarcoplasmic reticulum. The epitope of PR-11 is suggested to be the VIDRC sequence at residues 520-525, while that of D12 at residues 670-720 of the Ca(2+)-ATPase. The use of predictive algorithms of antigenicity for identification of potential antigenic determinants in the Ca(2+)-ATPase is analyzed.  相似文献   

16.
A M Mata  A G Lee  J M East 《FEBS letters》1989,253(1-2):273-275
Antibodies raised against fluorescein were unable to bind to the fluorophore when bound at the nucleotide-binding site of native (Ca2+-Mg2+)-ATPase, as judged by fluorescence quenching assays or competitive ELISAs, but were able to bind when the ATPase was denatured. Indirect ELISAs, in which native and denatured FITC-ATPase were used to coat ELISA plates, were unable to detect the difference in accessibility of the fluorescein bound to the native and denatured ATPase. These results indicate that the nucleotide-binding site is relatively inaccessible in the native structure, even though fluorescence energy transfer studies [(1987) Biochim. Biophys. Acta 897, 207-216] indicate that this site must be close to the surface of the ATPase. In addition the results suggest that the indirect ELISA method may be of limited value in probing the accessibility of epitopes using antibodies.  相似文献   

17.
We have previously shown that liver plasma membrane (Ca2+-Mg2+)-ATPase activity is inhibited by glucagon. To investigate the possible involvement of a GTP-binding (G) protein in this regulation, we have examined the effects of pertussis toxin and cholera toxin on inhibition of (Ca2+-Mg2+)-ATPase by glucagon. Treatment of liver plasma membranes with pertussis toxin did not affect the sensitivity of (Ca2+-Mg2+)-ATPase to the hormone. In contrast, treatment of plasma membranes or prior injection of animals with cholera toxin prevented inhibition of the (Ca2+-Mg2+)-ATPase by glucagon. Even though adenylate cyclase activity was increased by cholera toxin treatment, addition of cyclic AMP did not mimic the effect of cholera toxin in blocking glucagon-mediated inhibition of (Ca2+-Mg2+)-ATPase activity. These data suggest that a cholera toxin-sensitive protein, perhaps Gs or a Gs-like protein, is involved in the regulation of liver (Ca2+-Mg2+)-ATPase activity. The results emphasize the possible role of Gs-like proteins in regulation of enzymes other than adenylate cyclase and suggest that the study of (Ca2+-Mg2+)-ATPase may provide a useful enzymatic system to examine such regulation.  相似文献   

18.
O T Jones  A G Lee 《Biochemistry》1985,24(9):2195-2202
The intensities of fluorescence emission for pyrene and a number of its derivatives increase on binding to lipid bilayers and to the (Ca2+-Mg2+)-ATPase purified from rabbit muscle sarcoplasmic reticulum. The effect is particularly marked for the less water-soluble derivatives. Changes in intensity for monomer and excimer emission as a function of lipid concentration can be fitted to a simple model to obtain binding parameters. The number of binding sites per lipid is 0.2-0.4. For the ATPase system, at least two classes of sites are necessary to fit the data, one corresponding to the lipid component and one to sites on the ATPase. Excimer emission from the postulated sites on the ATPase is less marked than that from lipid. Pyrene-dodecanoic acid and pyreneundecyltrimethylammonium bromide, which bind to a large number of sites on the ATPase, cause marked inhibition of ATPase activity at high concentration. Pyrene and a number of water-soluble derivatives cause stimulation of the ATPase reconstituted with dimyristoleoylphosphatidylcholine and little inhibition and bind to a small number of sites on the ATPase. It is concluded that excimer emission from pyrene derivatives in systems containing proteins cannot be used to obtain reliable information about rates of diffusion in the lipid component of the membrane.  相似文献   

19.
The (Ca2+-Mg2+)-ATPase from human erythrocyte membranes has been solubilized in Triton X-100 and purified on a calmodulin affinity chromatography column in the presence of phosphatidylserine, to limit the inactivation of the enzyme. The enzyme was purified at least 150 times when compared with the original ghosts and showed a specific activity of 3.8 mumol.mg-1.min-1. In sodium dodecyl sulfate-polyacrylamide gels, a single major band was visible at a position corresponding to a molecular weight of about 125,000; a minor band (11% of the total protein) was present at a position corresponding to Mr = 205,000. Upon incubation of the purified preparation with [32P]ATP, both bands were phosphorylated in proportion to their mass, suggesting that both were active forms of purified ATPase.  相似文献   

20.
BK channels modulate neurotransmitter release due to their activation by voltage and Ca(2+). Intracellular Mg(2+) also modulates BK channels in multiple ways with opposite effects on channel function. Previous single-channel studies have shown that Mg(2+) blocks the pore of BK channels in a voltage-dependent manner. We have confirmed this result by studying macroscopic currents of the mslo1 channel. We find that Mg(2+) activates mslo1 BK channels independently of Ca(2+) and voltage by preferentially binding to their open conformation. The mslo3 channel, which lacks Ca(2+) binding sites in the tail, is not activated by Mg(2+). However, coexpression of the mslo1 core and mslo3 tail produces channels with Mg(2+) sensitivity similar to mslo1 channels, indicating that Mg(2+) sites differ from Ca(2+) sites. We discovered that Mg(2+) also binds to Ca(2+) sites and competitively inhibits Ca(2+)-dependent activation. Quantitative computation of these effects reveals that the overall effect of Mg(2+) under physiological conditions is to enhance BK channel function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号