首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A method utilizing sequential enzymatic incubation in collagenase (1 mg/ml) and trypsin (2.5 mg/ml) has been developed for the dissociation of the seminiferous epithelium. A significant advantage of this method is that, following collagenase incubation and washings in an enriched Krebs-Ringer bicarbonate buffer solution, isolated seminiferous tubules are obtained which are free of interstitial cells. The “purified” seminiferous epithelium is then dissociated with trypsin. A further advantage of this dissociation technique has been a reduction in the number of symplasts (multinucleate cells) which form by the opening up of the intercellular bridges that occur between synchronously differentiating clusters of germ cells. Both the elimination of the interstitial cells and the reduction in the number of symplasts have made possible the recovery of more highly enriched germ cell fractions. The homogeneity of the cell fractions was determined by light and electron microscopy. Integrity of the isolated cells was verified by Trypan blue exclusion and measurement of oxygen consumption.  相似文献   

2.
Gelsolin, an actin-binding and severing protein present in many mammalian cells, was characterized in human testis. Although abundant in testicular extracts, gelsolin was not detected in purified spermatogenic cells by immunoblot analysis. Immunofluorescence studies of testis sections showed that gelsolin has two main localizations: peritubular cells and the seminiferous epithelium. In peritubular cells, gelsolin was present together with α-SM actin, in agreement with the myoid cell characteristics of these cells. In a large proportion of the tubules, gelsolin was found mainly, together with actin, in the apical part of the seminiferous epithelium. This localization of gelsolin also was observed in seminiferous tubules with a partial or complete absence of germinal cells, which evokes a presence of gelsolin at the apex of Sertoli cells. However, in normal testis, a complex pattern of gelsolin labeling was also present, mostly in the apical third of the epithelium, around cells or groups of cells, mainly spermatids, and, less frequently, in various other localizations from the apical to the basal part of the seminiferous epithelium. Taken together, these observations suggest that gelsolin may play different functions in the seminiferous epithelium: (1) regulation of the dynamic alterations of the actin cytoskeleton in the apical cytoplasm of Sertoli cells, and (2) modification of actin filaments assemblies in specific structures at germ cell-Sertoli cell contacts. Thereby, the actin-modulating properties of gelsolin are probably involved in reorganization of the seminiferous epithelium related to germ cell differentiation. Mol. Reprod. Dev. 48:63–70, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

3.
In mammalian testis, spermatogenesis takes place in the seminiferous epithelium of the seminiferous tubule, which is composed of a series of cellular events. These include: (i) spermatogonial stem cell (SSC) renewal via mitosis and differentiation of SSC to spermatogenia, (ii) meiosis, (iii) spermiogenesis, and (iv) spermiation. Throughout these events, developing germ cells remain adhered to the Sertoli cell in the seminiferous epithelium amidst extensive cellular, biochemical, molecular and morphological changes to obtain structural support and nourishment. These events are coordinated via signal transduction at the cell-cell interface through cell junctions, illustrating the significance of cell junctions and adhesion in spermatogenesis. Additionally, developing germ cells migrate progressively across the seminiferous epithelium from the stem cell niche, which is located in the basal compartment near the basement membrane of the tunica propria adjacent to the interstitium. Recent studies have shown that some apparently unrelated proteins, such as polarity proteins and actin regulatory proteins, are in fact working in concert and synergistically to coordinate the continuous cyclic changes of adhesion at the Sertoli-Sertoli and Sertoli-germ cell interface in the seminiferous epithelium during the epithelial cycle of spermatogenesis, such that developing germ cells remain attached to the Sertoli cell in the epithelium while they alter in cell shape and migrate across the epithelium. In this review, we highlight the physiological significance of endocytic vesicle-mediated protein trafficking events under the influence of polarity and actin regulatory proteins in conferring cyclic events of cell adhesion and de-adhesion. Furthermore, these recent findings have unraveled some unexpected molecules to be targeted for male contraceptive development, which are also targets of toxicant-induced male reproductive dysfunction.  相似文献   

4.
The cellular composition of the testicular capsule, seminiferous peritubular tissue, the epithelia as well as periductal muscle cell layers of the excurrent ducts was studied, in sexually mature and active Masked Weaver (Ploceus velatus) birds of the passerine family, Ploceidae. Ultrastructure of the contractile cells in the testicular capsule, peritubular and periductal tissues showed that these cells were smooth muscles of typical morphological characteristics. Variability in the immunohistochemical co-expression of microfilaments and intermediate filaments in the different tissues was evident. Actin and desmin proteins were co-expressed immunohistochemically in the testicular capsule and seminiferous peritubular smooth muscle layer. Actin was singly and very weakly expressed in the rete testis epithelium while cytokeratins and desmin were co-expressed in the epithelium of the excurrent ducts. The periductal muscle layer of all ducts of the epididymis, the ductus deferens as well as the seminal glomus, strongly co-expressed actin and desmin. Vimentin was absent in all cells and tissue types studied. There is clear evidence that the tissues of the male gonad and its excurrent ducts in the Masked Weaver, as has been reported for members of the Galloanserae and Ratitae, contain well-formed contractile tissues whose function would include the transportation of luminal through-flow from the testis into, and through, its excurrent ducts. The microtubule helix in the head and of the mid-piece, of elongating spermatids, as well as of the mature spermatozoa in the various excurrent ducts, including some spermatozoa in the seminal glomus, also co-expressed these three proteins.  相似文献   

5.
The effect of vitamin A deficiency and vitamin A replacement on spermatogenesis was studied in mice. Breeding pairs of Cpb-N mice were given a vitamin A-deficient diet for at least 4 wk. The born male mice received the same diet and developed signs of vitamin A deficiency at the age of 14-16 wk. At that time, only Sertoli cells and A spermatogonia were present in the seminiferous epithelium. These spermatogonia were topographically arranged as single and paired cells and as clones of 4, 8 and more cells. A few mitoses of single, paired, and clones of 4 A spermatogonia were found, which were randomly distributed over the seminiferous epithelium. When vitamin A-deficient mice were treated with retinol-acetate combined with a normal vitamin A-containing diet, spermatogenesis restarted again synchronously. Only a few successive stages of the cycle of the seminiferous epithelium were present up to at least 43 days after vitamin A replacement. After 20 days, 98.3% of the seminiferous tubules were synchronized, showing pachytene spermatocytes as the most advanced cell type, mostly being in epithelium stages IX-XII. After 35 and 43 days, spermatogenesis was complete in 99.6% of the tubular cross sections, and most tubular cross sections were in stages IV-VII of the cycle of the seminiferous epithelium. The degree of synchronization was comparable or even higher than found in rats. The rate of development of the spermatogenic cells between 8 and 43 days after vitamin A replacement seemed to be similar to that in normal mice. Assuming that the rate of development of the spermatogenic cells is also normal during the first 8 days after vitamin A replacement, it can be deduced that the preleptotene spermatocytes, present after 8 days, were A spermatogonia in the beginning of stage VIII at the moment of vitamin A replacement. These results indicate that the mouse can be used as a model to study epithelial stage-dependent processes in the testis.  相似文献   

6.
Segments and subsegments are the smallest unit of synchrony thus far described within longitudinal sections of seminiferous tubules. It is known that cells in a clone joined by intercellular bridges are at the same phase of development and are also thought to be units of synchrony. This study was designed to determine if it is possible that the synchrony seen in cells joined by intercellular bridges is the same as that cataloged along the long axis of the seminiferous tubule. In the present study, the maximum number of rat spermatids joined by intercellular bridges (a clone) was obtained. It was hypothesized that if the clone size were larger than the smallest known units of synchrony (segments or subsegments) in the long axis of the seminiferous tubule, then intercellular bridges would most likely govern the synchronous development of segments or subsegments (or finer subdivisions thereof). If the clone size is smaller than the number of cells present in a segment or subsegment, then other factors must govern synchrony in the longitudinal aspect of the tubule. In the determination of spermatid clone size, rat testes were injected with cytochalasin D which opens intercellular bridges of a spermatid clone to produce large symplasts. The number of nuclei in the symplasts was determined from serially sectioned tissue, by drawing nuclei with a camera-lucida, and by counting nuclei. After extensive examination of tubules, the number of spermatids found in the suspected five largest clones observed was determined to be 650, 607, 338, 240, and 177.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Tungsten is a widely used inhibitor of nitrate reductase, applied to diminish the nitric oxide levels in plants. It was recently shown that tungsten also has heavy metal attributes. Since information about the toxic effects of tungsten on actin is limited, and considering that actin microfilaments are involved in the entry of tungsten inside plant cells, the effects of tungsten on them were studied in Zea mays seedlings. Treatments with sodium tungstate for 3, 6, 12 or 24 h were performed on intact seedlings and seedlings with truncated roots. Afterwards, actin microfilaments in meristematic root and leaf tissues were stained with fluorescent phalloidin, and the specimens were examined by confocal laser scanning microscopy. While the actin microfilament network was well organized in untreated seedlings, in tungstate-treated ones it was disrupted in a time-dependent manner. In protodermal root cells, the effects of tungsten were stronger as cortical microfilaments were almost completely depolymerized and the intracellular ones appeared highly bundled. Fluorescence intensity measurements confirmed the above results. In the meristematic leaf tissue of intact seedlings, no depolymerization of actin microfilaments was noticed. However, when root tips were severed prior to tungstate application, both cortical and endoplasmic actin networks of leaf cells were disrupted and bundled after 24 h of treatment. The differential response of root and leaf tissues to tungsten toxicity may be due to differential penetration and absorption, while the effects on actin microfilaments could not be attributed to the nitric oxide depletion by tungsten.  相似文献   

8.
Carbendazim (MBC), a widely used fungicide, is toxic to male reproductive mechanisms. Various cellular targets in the testis for MBC action are being understood only recently and still more targets have been conceived. The present study was aimed at finding such newer targets. Male rats were administered through oral route a single dose of carbendazim (400 mg/kg) and the testis was studied adopting routine histological technique. It has been observed that pachytene spermatocytes could also be targets for MBC action in the testis. The study also reports selective loss of step 14 spermatids, asynchrony of the stages in the spermatogenic cycle and development of Sertoli cell fibrosis of the seminiferous tubules of carbendazim-treated rats. From the different kinds of responses seen in the seminiferous tubules in the same testis to MBC, particularly in the Sertoli cell, MBC action in the testis appears dependent on the stage in the spermatogenic cycle at first exposure.  相似文献   

9.
Throughout spermatogenesis, leptotene spermatocytes must traverse the blood-testis barrier (BTB) at stages VIII-XI to gain entry into the adluminal compartment for continued development. However, the mechanism underlying BTB restructuring remains somewhat elusive. In this study, interleukin 1 alpha (IL1A) was administered intratesticularly to adult rats in order to assess its effects on spermatogenesis. IL1A was shown to perturb Sertoli-germ cell adhesion, resulting in germ cell loss from approximately 50% of seminiferous tubules by 15 days posttreatment. Equally important, the functional integrity of the BTB was compromised when inulin-fluorescein isothiocyanate was detected in the adluminal compartment of the seminiferous epithelium following its administration via the jugular vein. Interestingly, IL1A did not affect the steady-state levels of proteins that confer BTB function, namely OCLN, CLDN1, F11R, TJP1, and CDH2. Instead, the localizations of OCLN, F11R, and TJP1 in the seminiferous epithelium were altered; these proteins appeared to move away from sites of cell-cell contact. Moreover, IL1A was shown to perturb the orderly arrangement of filamentous actin at the BTB and apical ectoplasmic specialization with distinct areas illustrating loss of actin filaments. Taken collectively, these results suggest that IL1A-induced BTB disruption is not mediated via the reduction of target protein levels. Instead, IL1A's primary cellular target appears to be the Sertoli cell actin cytoskeleton. It is possible that localized production of IL1A by Sertoli and/or germ cells in vivo results in BTB restructuring, and this may facilitate the movement of leptotene spermatocytes across the BTB.  相似文献   

10.
Doses of 1 Gy or more of X-irradiation killed all B spermatogonia present in the testis, and during the first 3 weeks after irradiation, virtually no new B spermatogonia were formed. The number of Apale spermatogonia decreased during the first cycle of the seminiferous epithelium while the number of Adark spermatogonia only began to decrease during the second cycle after irradiation. In this study, the duration of the cycle of the seminiferous epithelium in the rhesus monkey was estimated to be 10.5 days (SE = 0.2 days). This was determined following the depletion of germinal cells in the seminiferous epithelium during the first 3 weeks after irradiation. The duration of each of the 12 stages of the cycle was also determined. Our observations of the progress of germinal cell depletion revealed that after a dose of X-irradiation sufficient to kill all B spermatogonia, all spermatocytes disappeared from the testis within about 17 days, and all spermatids within about 31 days.  相似文献   

11.
During spermatogenesis, the blood-testis barrier (BTB) segregates the adluminal (apical) and basal compartments in the seminiferous epithelium, thereby creating a privileged adluminal environment that allows post-meiotic spermatid development to proceed without interference of the host immune system. A key feature of the BTB is its continuous remodeling within the Sertoli cells, the major somatic component of the seminiferous epithelium. This remodeling is necessary to allow the transport of germ cells towards the seminiferous tubule interior, while maintaining intact barrier properties. Here we demonstrate that the actin nucleation promoting factor Neuronal Wiskott-Aldrich Syndrome Protein (N-WASP) provides an essential function necessary for BTB restructuring, and for maintaining spermatogenesis. Our data suggests that the N-WASP-Arp2/3 actin polymerization machinery generates branched-actin arrays at an advanced stage of BTB remodeling. These arrays are proposed to mediate the restructuring process through endocytic recycling of BTB components. Disruption of N-WASP in Sertoli cells results in major structural abnormalities to the BTB, including mis-localization of critical junctional and cytoskeletal elements, and leads to disruption of barrier function. These impairments result in a complete arrest of spermatogenesis, underscoring the critical involvement of the somatic compartment of the seminiferous tubules in germ cell maturation.  相似文献   

12.
The movement of developing germ cells across the seminiferous epithelium during spermatogenesis involves extensive adherens junction (AJ) restructuring between Sertoli cells, as well as between Sertoli and germ cells. In this report, we show that the intricate interactions between Cdc42 (a Rho family protein of Mr approximately 23 kDa originally identified in membranes of human platelets and placenta, and is the homolog of CDC42Sc, which is known to regulate of bud-site assembly in Saccharomyces cerevisiae) and its effector, IQ motif containing GTPase activating protein (IQGAP1, Mr approximately 189 kDa, it is also an actin-binding protein known to interact with Cdc42 and Rac1 GTPases), regulate Sertoli-germ cell, but not Sertoli-Sertoli cell, AJ dynamics. Using testis lysates for immunoprecipitation (IP), IQGAP1 was shown to associate with E-cadherin, N-cadherin, and beta-catenin (but not beta1-integrin and nectin-2), as well as with actin and vimentin (but not alpha-tubulin). Moreover, IQGAP1 was found to localize to the periphery of both Sertoli and germ cells in the seminiferous epithelium, at sites of cell-cell contacts. Using fluorescent microscopy with dual fluorescent probes, IQGAP1 was found to co-localize, at least in part, with N-cadherin in the seminiferous epithelium consistent with their localization at the basal and apical ES. Using Sertoli-germ cell cocultures, it was demonstrated that AJ assembly associated with a transient induction of Cdc42 and IQGAP1, which was not found when Sertoli cells were cultured alone. Lastly, a shift in the interactions of Cdc42, IQGAP1, beta-catenin, and N-cadherin was detected in Sertoli-germ cell cocultures using an Ca2+-induced AJ disruption model, which was used to examine AJ disassembly and its reassembly. In the presence of Ca2+, IQGAP1 bound preferentially to Cdc42 rather than to beta-catenin. However, when Ca2+ was depleted from cocultures using EGTA, a Ca2+ chelating agent, IQGAP1 lost its affinity for Cdc42 and became tightly associated with beta-catenin, destabilizing cadherin-mediated AJs between Sertoli and germ cells. Yet this shift of protein-protein interaction was not detected in Sertoli cells cultured alone. These results illustrate that the interactions among IQGAP1, Cdc42, and beta-catenin are crucial to the regulation of Sertoli-germ cell, but not Sertoli-Sertoli cell, AJ dynamics in the seminiferous epithelium.  相似文献   

13.
Because of the interest in the peat extract as a potential therapeutic agent, its effect on the seminiferous epithelium cells was studied. Adult male mice were intraperitoneally injected with peat extract during 34 days. At intervals equal to the duration of the cycle of the seminiferous epithelium (every 8.5 days), gametogenic cells were quantitatively analysed. It was revealed that the peat extract causes a decrease in the production of the A1 spermatogonia, and as a result a decrease in the intensity of spermatogenesis. Besides, in some individuals disturbances of meiosis took place, leading to an increased degeneration of pachytene spermatocytes and formation of diploid spermatids.  相似文献   

14.
Structural changes of the cytoskeleton of the frog urinary bladder granular cells were examined during low and high water permeability of the epithelium. A tight connection of the microfilaments and microtubules with vacuolar membranes and a great increase in the number of microtubules during a stimulated water flow was shown using different electron microscopic methods. Two populations of microtubules were discovered, respectively, with different diameter and different rate of stability. It is suggested that the thicker microtubules while interacting with actin microfilaments through associated electron dense globules may fulfil the transport function in the cell.  相似文献   

15.
Maize root tip cells were examined for the distribution of actin microfilaments in various cell types and to determine the effects of microfilament disrupters. Fluorescence microscopy on fixed, stabilized, squashed cells using the F-actin specific probe, rhodamine-labelled phalloidin, allowed for a three-dimensional visualization of actin microfilaments. Microfilaments were observed as long, meandering structures in root cap cells and meristematic cells, while those in immature vascular parenchyma were abundant in the thin band of cytoplasm and were long and less curved. By modifying standard electron microscopic fixation procedures, microfilaments in plant cells could be easily detected in all cell types. Treatment with cytochalasin B, cytochalasin D and lead acetate, compounds that interfere with microfilament related processes, re-organized the microfilaments into abnormal crossed and highly condensed masses. All the treatments affected not only the microfilaments but also the accumulation of secretory vesicles. The vivid demonstration of the effects of all of these microfilament disrupters on the number and size of Golgi vesicles indicates that these vesicles may depend on microfilaments for intracellular movement.  相似文献   

16.
Summary Maize root tip cells were examined for the distribution of actin microfilaments in various cell types and to determine the effects of microfilament disrupters. Fluorescence microscopy on fixed, stabilized, squashed cells using the F-actin specific probe, rhodamine-labelled phalloidin, allowed for a three-dimensional visualization of actin microfilaments. Microfilaments were observed as long, meandering structures in root cap cells and meristematic cells, while those in immature vascular parenchyma were abundant in the thin band of cytoplasm and were long and less curved. By modifying standard electron microscopic fixation procedures, microfilaments in plant cells could be easily detected in all cell types. Treatment with cytochalasin B, cytochalasin D and lead acetate, compounds that interfere with microfilament related processes, re-organized the microfilaments into abnormal crossed and highly condensed masses. All the treatments affected not only the microfilaments but also the accumulation of secretory vesicles. The vivid demonstration of the effects of all of these microfilament disrupters on the number and size of Golgi vesicles indicates that these vesicles may depend on microfilaments for intracellular movement.  相似文献   

17.
The in vivo site of influenza virus infection is a polarized epithelium, and it is well established that the virus preferentially enters from the apical surface of polarized epithelial cells; however, many of the molecular events involved during the endocytosis of the virus into polarized epithelia remain unclear. Here we examined the role of actin microfilaments and the myosin VI motor protein during influenza entry into a panel of polarized and non-polarized cells. By treatment of cells with cytochalasin D and jasplakinolide, we show that influenza virus entry into all the polarized epithelial cells tested requires actin dynamics, with a specific role for the actin cytoskeleton in the process of virus internalization from the plasma membrane. In contrast, influenza could still could efficiently enter and infect all non-polarized cells tested after disruption or stabilization of the actin cytoskeleton. To examine the role of the actin motor protein, myosin VI, we expressed a dominant-negative construct in both polarized and non-polarized cells. Influenza virus infectivity in myosin VI tail mutant-transfected cells was significantly decreased in polarized epithelial cells, but not in non-polarized cells. As a whole, our data suggest indispensable roles of a dynamic actin cytoskeleton for influenza virus entry into polarized epithelial cells, a feature not shared with non-polarized cells.  相似文献   

18.
Sertoli cell plays a key role in spermatogenesis. Many studies refer that this cell is not harmed by the majority of anticancer treatments known to cause damage to the testis. However, in the previous study we observed that etoposide, an efficient chemotherapeutic drug, provokes an increase in numerical density of the Sertoli cells. This phenomenon suggests that this cell was harmed by etoposide. Thus, we decided to investigate a possible direct action of etoposide on Sertoli cells analyzing the function of this cell and relating it with the integrity and damage of the seminiferous epithelium. Prepubertal albino rats received 5 mg/kg of etoposide for eight consecutive days and were sacrificed in different ages. The control groups received 0.9% saline solution. The testes were fixed in Bouin’s liquid for transferrin immunolabeling and testicular labeled tissue volume density measurement. Except for the younger rats, all the etoposide-treated rats showed diminution of transferrin immunolabeling in the seminiferous epithelium, and consequently, of total labeled testicular tissue volume density. We concluded that the diminution of transferrin labeling in the seminiferous epithelium was not associated with germ cell absence such as commonly reported. The results suggest etoposide impairs Sertoli cell function.  相似文献   

19.
The aim of the present study is to provide a morphological explanation of carbendazim (CBZ)-induced sloughing of germ cells that occurs in a stage-specific manner. Therefore, very early alterations in the seminiferous tubule epithelium were examined histologically in the rat testis after oral administration of CBZ (400mg/kg). Gaps between the elongated and round spermatids, the first indication of germ cell sloughing (pre-sloughing), were observed in stage late VI-early VII seminiferous tubules at 90-min post-treatment. Tubulin immunoreaction in the Sertoli cells was reduced in intensity in tubules with pre-sloughing. However, electron microscopy demonstrated that there were some intact microtubules in these cells. At 120 min, sloughing was seen in stage late VI-early VII and XIII-XIV. Tubulin immunoreaction in the Sertoli cells was greatly decreased in intensity in tubules where cell sloughing was observed. Electron microscopy showed that there were few microtubules in the body region of these cells. Stages II-V and mid-VII-VIII were exempt from the sloughing effect at 180 min. These changes in microtubules were not observed in Sertoli cells that did not exhibit sloughing characteristics, regardless of the post-treatment intervals. The present results suggest that stage specificity of sloughing is due to the stage-specific susceptibility of Sertoli cell microtubules to CBZ.  相似文献   

20.
Caldesmon (CaD), a component of microfilaments in all cells and thin filaments in smooth muscle cells, is known to bind to actin, tropomyosin, calmodulin, and myosin and to inhibit actin-activated ATP hydrolysis by smooth muscle myosin. Thus, it is believed to regulate smooth muscle contraction, cell motility and the cytoskeletal structure. Using bladder smooth muscle cell cultures and RNA interference (RNAi) technique, we show that the organization of actin into microfilaments in the cytoskeleton is diminished by siRNA-mediated CaD silencing. CaD silencing significantly decreased the amount of polymerized actin (F-actin), but the expression of actin was not altered. Additionally, we find that CaD is associated with 10 nm intermediate-sized filaments (IF) and in vitro binding assay reveals that it binds to vimentin and desmin proteins. Assembly of vimentin and desmin into IF is also affected by CaD silencing, although their expression is not significantly altered when CaD is silenced. Electronmicroscopic analyses of the siRNA-treated cells showed the presence of myosin filaments and a few surrounding actin filaments, but the distribution of microfilament bundles was sparse. Interestingly, the decrease in CaD expression had no effect on tubulin expression and distribution of microtubules in these cells. These results demonstrate that CaD is necessary for the maintenance of actin microfilaments and intermediate-sized filaments in the cytoskeletal structure. This finding raises the possibility that the cytoskeletal structure in smooth muscle is affected when CaD expression is altered, as in smooth muscle de-differentiation and hypertrophy seen in certain pathological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号