首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thyroxine-binding globulin (TBG) is the major thyroid-hormone transport protein in the plasma of most vertebrate species. A recombinant phage (lambda cTBG8) containing a cDNA insert of human TBG recently has been described. With the cDNA insert from lambda cTBG8 used as a radiolabeled probe, DNA from a series of somatic-cell hybrids containing deletions of the X chromosome was analyzed by means of blot hybridization. The results indicated that the TBG gene is located in the midportion of the long arm of the X chromosome between bands Xq11 and Xq23. The gene then was mapped to band region Xq21-22 by means of in situ hybridization to metaphase chromosomes. Sequences on the X chromosome that are homologous to the cDNA probe are contained within a single EcoRI restriction fragment of 12.5 kb in human DNA. On the basis of the intensity of the hybridization signal on Southern blots, it was determined that the human TBG cDNA probe used in the present study shares significant homology with hamster and mouse sequences. A single EcoRI restriction fragment was recognized in both hamster (8.0-kb) and mouse (5.1-kb) DNA.  相似文献   

2.
The field of genomics applies the dissection of genetic differences toward an understanding of the biology of complex traits. Quantitative trait loci (QTL) for testis size, plasma FSH in boars, and body composition (backfat) have been identified near the centromere on the X chromosome in a Meishan-White Composite resource population. Since thyroid function affects Sertoli cell development and adult testis size in rodents, and thyroxine-binding globulin (TBG) maps to this region on the porcine X chromosome, TBG was a positional candidate gene for testis size. We discovered a polymorphism in exon 2 of the porcine TBG gene that results in an amino acid change of the consensus histidine to an asparagine. This single nucleotide polymorphism (SNP) resides in the ligand-binding domain of the mature polypeptide, and the Meishan allele is the conserved allele found in human, bovine, sheep, and rodent TBG. Binding studies indicate altered binding characteristics of the allelic variants of TBG with the asparagine (White Composite) isoform having significantly greater affinity for thyroxine than the histidine (Meishan) isoform. Alternate alleles in boars from the resource population are also significantly associated with testis weight. Therefore, this polymorphism in TBG is a candidate for the causative variation affecting testis size in boars.  相似文献   

3.
High-resolution cytogenetic analysis of a large number of women with premature ovarian failure (POF) identified six patients carrying different Xq chromosome rearrangements. The patients (one familial and five sporadic cases) were negative for Turner's stigmata and experienced a variable onset of menopause. Microsatellite analysis and fluorescent in situ hybridization (FISH) were used to define the origin and precise extension of the Xq anomalies. All of the patients had a Xq chromosome deletion as the common chromosomal abnormality, which was the only event in three cases and was associated with partial Xp or 9p trisomies in the remaining three. Two of the Xq chromosome deletions were terminal with breakpoints at Xq26.2 and Xq21.2, and one interstitial with breakpoints at Xq23 and Xq28. In all three cases, the del(X)s retained Xp and Xq specific telomeric sequences. One patient carries a psu dic(X) with the deletion at Xq22.2 or Xq22.3; the other two [carrying (X;X) and (X;9) unbalanced translocations, respectively] showed terminal deletions with the breakpoint at Xq22 within the DIAPH2 gene. Furthermore, the rearranged X chromosomes were almost totally inactivated, and the extent of the Xq deletions did not correlate with the timing of POF. In agreement with previous results, these findings suggest that the deletion of a restricted Xq region may be responsible for the POF phenotype. Our analysis indicates that this region extends from approximately Xq26.2 (between markers DXS8074 and HIGMI) to Xq28 (between markers DXS 1113 and ALD) and covers approximately 22 Mb of DNA. These data may provide a starting point for the identification of the gene(s) responsible for ovarian development and folliculogenesis.  相似文献   

4.
Summary We have used a cDNA clone for human phosphoglycerate kinase (PGK) to examine the chromosomal localization of three members of the human PGK gene family. Using somatic cell hybrids segregating portions of several X-autosome translocations as well as a clone panel of hybrids segregating radiation-induced fragments of the human X chromosome, we assign a PGK pseudogene to the region Xq11–Xq13, proximal to the functional X-linked PGK gene located in Xq13. In addition, using a panel of 24 somatic cell hybrids, we assign an autosomal PGK-related DNA sequence to human chromosome 19.  相似文献   

5.
6.
The proteolipid protein gene (PLP) is normally present at chromosome Xq22. Mutations and duplications of this gene are associated with Pelizaeus-Merzbacher disease (PMD). Here we describe two new families in which males affected with PMD were found to have a copy of PLP on the short arm of the X chromosome, in addition to a normal copy on Xq22. In the first family, the extra copy was first detected by the presence of heterozygosity of the AhaII dimorphism within the PLP gene. The results of FISH analysis showed an additional copy of PLP in Xp22.1, although no chromosomal rearrangements could be detected by standard karyotype analysis. Another three affected males from the family had similar findings. In a second unrelated family with signs of PMD, cytogenetic analysis showed a pericentric inversion of the X chromosome. In the inv(X) carried by several affected family members, FISH showed PLP signals at Xp11.4 and Xq22. A third family has previously been reported, in which affected members had an extra copy of the PLP gene detected at Xq26 in a chromosome with an otherwise normal banding pattern. The identification of three separate families in which PLP is duplicated at a noncontiguous site suggests that such duplications could be a relatively common but previously undetected cause of genetic disorders.  相似文献   

7.
A genetically determined, polymorphic electrophoretic variant of thyroxin-binding alpha-globulin (TBG) is found in sera from populations of African and Oceania origin, although not in Caucasians nor Orientals. The TBG polymorphism is inherited in X-linked fashion, based on data from American blacks, and thus provides an X-chromosome marker with a relatively high gene frequency in this ethnic group (frequency of the slow allele, TBGs, is 11%). This slow variant should prove valuable in expanding the map of the X chromosome and in linkage studies. An additional family exhibiting X-linked TBG deficiency is also described.  相似文献   

8.
X-linked liver glycogenosis (XLG) is a glycogen storage disorder resulting from deficient activity of phosphorylase kinase (PHK). PHK consists of four different subunits: alpha, beta, gamma, and delta. Several genes encoding PHK subunits have been cloned and localized, but only the muscle alpha-subunit (PHKA) gene has been assigned to the X chromosome, in the region Xq12----q13. However, we have previously excluded the muscle PHKA gene as a candidate gene for the XLG mutation, as linkage analysis indicated that the mutation responsible for XLG is located in Xp22 and not in Xq12----q13. We report here the chromosomal localization by in situ hybridization of a liver PHKA gene to the distal region of chromosome Xp. Strong hybridization signals were observed on the distal part of the short arm of a chromosome identified as the X chromosome by cohybridization with an X chromosome-specific centromeric probe. The localization of this gene in the same chromosomal region as the disease gene responsible for XLG suggests that the liver PHKA gene is a highly likely candidate gene for the XLG mutation.  相似文献   

9.
We report here the identification of a human genomic sequence from the q27.2 region of the X chromosome which shows a high homology to the L-MYC proto-oncogene. This sequence is not the MYCL2 homology, previously mapped to the long arm of the X chromosome at q22-qter by Morton et al., as we located the MYCL2-processed gene in Xq22-23, using a panel containing a combination of hybrid DNA carrying different portions of the human X chromosome. Based on computer analysis, the MYC-like sequence (MYCL3) is 98.2% identical to a portion of exon 3 of the MYCL1 gene and maps to the Xq27.2 region, between the DXS312 and DXS292 loci.  相似文献   

10.
We investigated a family with a duplication, dup(X)q26-q27, that was present in two brothers, their mother, and their maternal grandmother. The brothers carrying the duplication displayed spina bifida and panhypopituitarism, whereas a third healthy brother inherited the normal X chromosome. Preferential inactivation of the X chromosome containing the duplication was evident in healthy carrier females. We determined the boundaries of the Xq26-q27 duplication. Via interphase FISH analysis we narrowed down each of the two breakpoint regions to approximately 300-kb intervals. The proximal breakpoint is located in Xq26.1 between DXS1114 and HPRT and is contained in YAC yWXD599, while the distal breakpoint is located in Xq27.3 between DXS369 and DXS1200 and contained in YAC yWXD758. The duplication comprises about 13 Mb. Evidence from the literature points to a predisposing gene for spina bifida in Xq27. We hypothesize that the spina bifida in the two brothers may be due to interruption of a critical gene in the Xq27 breakpoint region. Several candidate genes were mapped to the Xq27 critical region but none was shown to be disrupted by the duplication event. Recently, M. Lagerstr?m-Fermér et al. (1997, Am. J. Hum. Genet. 60, 910-916) reported on a family with X-linked recessive panhypopituitarism associated with a duplication in Xq26; however, no details were reported on the extent of the duplication. Our study corroborates their hypothesis that X-linked recessive panhypopituitarism is likely to be caused by a gene encoding a dosage-sensitive protein involved in pituitary development. We place the putative gene between DXS1114 and DXS1200, corresponding to the interval defined by the duplication in the present family.  相似文献   

11.
Chromosomal rearrangements in Xq are frequently associated to premature ovarian failure (POF) and have contributed to define a POF “critical region” from Xq13.3 to Xq26. Search for X-linked genes responsible for the phenotype has been elusive as most rearrangements did not interrupt genes and many were mapped to gene deserts. We now report that ovary-expressed genes flanked autosomal breakpoints in four POF cases analyzed whose X chromosome breakpoints interrupted a gene poor region in Xq21, where no ovary-expressed candidate genes could be found. We also show that the global down regulation in the oocyte and up regulation in the ovary of X-linked genes compared to the autosomes is mainly due to genes in the POF “critical region”. We thus propose that POF, in X;autosome balanced translocations, may not only be caused by haploinsufficiency, but also by a oocyte-specific position effect on autosomal genes, dependent on dosage compensation mechanisms operating on the active X chromosome in mammals.  相似文献   

12.
Two kinds of TBG polymorphism are described in human, one found in deglycosylated TBG from individual blood donors, the other is a genetically determined polymorphism. TBG from plasma samples from a patient with toxic goiter, not autoimmune, (p)TBG, from the patient's mother (m)TBG and from individual donors (n)TBG, were labeled with [125I]T4 or [125I]T3 and submitted to isoelectric focusing (IEF), followed by autoradiography. Three faint [125I]T4 radiolabeled bands were detectable in (p)TBG while four strong [125I]T4 radiolabeled bands were detectable in (m)TBG and (n)TBG), respectively. IEF of the [125I]T3 incubated serum samples resulted in no detectable isoelectric radiolabeled band for (p)TBG while a normal pattern was found in (m)TBG and in (n)TBG, respectively. These data suggest a new intraindividual not linked to sexual chromosome X polymorphism characterized by a loss in hormone binding.  相似文献   

13.
Simpson-Golabi-Behmel syndrome (SGBS) is an X-linked overgrowth syndrome with associated visceral and skeletal abnormalities. Alterations in the glypican-3 gene (GPC3), which is located on Xq26, have been implicated in the etiology of relatively milder cases of this disorder. Not all individuals with SGBS have demonstrated disruptions of the GPC3 locus, which raises the possibility that other loci on the X chromosome could be responsible for some cases of this syndrome. We have previously described a large family with a severe form of SGBS that is characterized by multiple anomalies, hydrops fetalis, and death within the first 8 wk of life. Using 25 simple tandem-repeat polymorphism markers spanning the X chromosome, we have localized the gene for this disorder to an approximately 6-Mb region of Xp22, with a maximum LOD score of 3.31 and with LOD scores <-2.0 for all of Xq. These results demonstrate that neither the GPC3 gene nor other genes on Xq26 are responsible for all cases of SGBS and that a second SGBS locus resides on Xp22.  相似文献   

14.
为确定一个X染色体显性遗传先天性眼球震颤家系的致病基因与X染色体的连锁关系, 选用X染色体上的DXS1214、DXS1068、DXS993、DXS8035、DXS1047、DXS8033、DXS1192和DXS1232共8个微卫星DNA标记对该家系进行基因扫描与基因分型,并利用LINKAGE等软件包对基因分型结果进行分析,探讨该家系致病基因与X染色体的连锁关系。 两点连锁分析时X染色体短臂4个基因座最大LOD值均小于-1,不支持与该家系致病基因连锁; X染色体长臂4个基因座中最大LOD值达到2,提示存在较大的连锁可能性。该家系的致病基因可初步定位于X染色体长臂,且提示Xq26-Xq28区间附近可能是先天性眼球震颤一个共同的致病基因座,但区间范围仍较大,仍须进一步选择合适的微卫星标记进行精确的定位以缩小候选基因的筛查范围。Abstract: To investigate the relationship between X chromosome and obligatory gene of a pedigree with congenital nystagmus,we used the following markers: DXS1214、DXS1068、DXS993、DXS8035、DXS1047、DXS8033、DXS1192 and DXS1232.Genome screening and genotyping were conducted in this pedigree of congenital nystagmus, and linkage analysis by LINKAGE package was used to determine the potential location. The linkage was not found on the Xp ( All LOD score <-1) but on Xq (the maximum LOD score=2). The related gene of this pedigree was located on the long arm of X chromosome. We demonstrate that Xq26-Xq28 is a common locus for CMN. It bring us closer to the identification of a gene responsible for X-linked CMN.  相似文献   

15.
X chromosome imprinting in fragile×syndrome   总被引:3,自引:3,他引:0  
  相似文献   

16.
Women with balanced translocations between the long arm of the X chromosome (Xq) and an autosome frequently suffer premature ovarian failure (POF). Two "critical regions" for POF which extend from Xq13-->q22 and from Xq22-->q26 have been identified using cytogenetics. To gain insight into the mechanism(s) responsible for ovarian failure in women with X;autosome translocations, we have molecularly characterized the translocation breakpoints of nine X chromosomes. We mapped the breakpoints using somatic cell hybrids retaining the derivative autosome and densely spaced markers from the X-chromosome physical map. One of the POF-associated breakpoints in a critical region (Xq25) mapped to a sequenced PAC clone. The translocation disrupts XPNPEP2, which encodes an Xaa-Pro aminopeptidase that hydrolyzes N-terminal Xaa-Pro bonds. XPNPEP2 mRNA was detected in fibroblasts that carry the translocation, suggesting that this gene at least partially escapes X inactivation. Although the physiologic substrates for the enzyme are not known, XPNPEP2 is a candidate gene for POF. Our breakpoint mapping data will help to identify additional candidate POF genes and to delineate the Xq POF critical region(s).  相似文献   

17.
Summary The oto-palado-digital syndrome (OPD) is a rare X-linked disease with diagnostic skeletal features, conduction deafness, cleft palate and mild mental retardation. Differences in clinical presentation between families have led investigators to classify OPD into two subtypes: type I and type II. A linkage study performed in one family segregating for OPD I has recently suggested linkage to three marker loci: DXS15, DXS52 at Xq28, and DXS86 at Xq26. We have investigated an additional OPD I family for linkage by using distal chromosome Xq DNA probes. The linkage data and the analysis of recombination events that have occurred in this family excluded, definitively, the Xq26 region for OPD I, and provide further support for mapping the mutant gene close to the cluster of tightly linked markers DXS15, DXS52 and DXS305 at Xq28.  相似文献   

18.
Various polymorphic markers with a random distribution along the X chromosome were used in a linkage analysis performed on a family with apparently Xlinked recessive inheritance of neural tube defects (NTD). The lod score values were used to generate an exclusion map of the X chromosome; this showed that the responsible gene was probably not located in the middle part of Xp or in the distal region of Xq. A further refining of these results was achieved by haplotype analysis, which indicated that the gene for X-linked NTD was located either within Xp21.1-pter, distal from the DMD locus, or in the region Xq12–q24 between DXS106 and DXS424. Multipoint linkage analysis revealed that the likelihood for gene location is highest for the region on Xp. The region Xq26–q28, which has syntenic homology with the segment of the murine X chromosome carrying the locus for bent tail (Bn), a mouse model for X-linked NTD, is excluded as the location for the gene underlying X-linked NTD in the present family. Thus, the human homologue of the Bn gene and the present defective gene are not identical, suggesting that more than one gene on the X chromosome plays a role in the development of the neural tube.  相似文献   

19.
Menkes syndrome is a rare X-linked recessive disorder characterized by an inability to metabolize copper. A female patient with both this disease and an X; autosome translocation with karyotype 46,X,t(X;2)(q13;q32.2) has previously been described. The translocation breakpoint in Xq13 coincides with a previous assignment of the Menkes gene at Xq13 by linkage data in humans and by analogy to the mottled mutations which are models for Menkes disease in the mouse. Therefore, this translocation probably interrupts the gene for Menkes syndrome in band Xq13. We describe here experiments to precisely map the translocation breakpoint within this chromosomal band. We have established a lymphoblastoid cell line from this patient and have used it to isolate the der(2) translocation chromosome (2pter----2q32::Xq13----Xqter) in human/hamster somatic cell hybrids. Southern blot analyses using a number of probes specific for chromosomes X and 2 have been studied to define precisely the location of the translocation breakpoint. Our results show that the breakpoint in this patient--and, therefore, likely the Menkes gene--maps to a small subregion of band Xq13.2-q13.3 proximal to the PGK1 locus and distal to all other Xq13 loci tested.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号