首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract. Patterns of associations between 36 bryophytes and their relationships with trends in α- and β-diversity were studied at five spatial scales (from 1 m2 to 1/256 m2) in a Norwegian boreal spruce forest. The range and dispersion of α-diversity values in the data were significantly higher than in comparable model data sets, indicating varation from favourable to unfavourable conditions for bryophytes at all scales, particularly with increasing cover of the upper layers. The number of positive associations was significantly higher than predicted from a random distribution, for all sample plot sizes except the smallest. For the most frequent species, this number decreased with decreasing sample plot size. The excess of positive associations was due to the presence of (1) α-diversity trends, as demonstrated by a stochastic simulation, and (2) β-diversity (variation along environmental gradients). A microscale coenocline from dominance of large forest floor mosses to small liverworts, is added to two broad-scale coenoclines demonstrated earlier. Facilitation - positive density-dependence caused by more favourable moisture conditions within dense stands - is discussed as a possible third cause of excess positive associations. The number of significant negative associations was generally low, and deviated neither from theoretical values assuming random distribution of species, nor from predicted values accounting for α-diversity trends. The low proportion of negative associations, even in the presence of β-diversity trends, suggests that interspecific competition is not important in this vegetation. Several alternatives to competition are discussed; (1) static mechanisms for avoidance of competition, (2) mobility, and (3) the importance of density-independent mortality, in particular due to fine-scale disturbance. Simulation studies for assessing the effects of α-diversity trends on species associations are emphasized.  相似文献   

2.
With the current loss of biodiversity and threats to freshwater ecosystems, it is crucial to identify hot-spots of biodiversity and on which spatial scale they can be resolved. Conservation and management of these important ecosystems needs insight into whether most of the regional biodiversity (i.e. γ-diversity) can be found locally (i.e. high α-diversity) or whether it is distributed across the region (i.e. high β-diversity). Biodiversity patterns of benthic macroinvertebrates and diatoms were studied in 30 headwater streams in five Swedish catchments by comparing the relative contribution of α- and β-diversity to γ-diversity between two levels of stream habitat hierarchy (catchment and region level). The relationship between species community structure and local environmental factors was also assessed. Our results show that both α- and β-diversity made a significant contribution to γ-diversity. β-diversity remained relatively constant between the two levels of habitat hierarchy even though local environmental control of the biota decreased from the catchment to the region level. To capture most of headwater γ-diversity, management should therefore target sites that are locally diverse, but at the same time select sites so that β-diversity is maximized. As environmental control of the biota peaked at the catchment level, the conservation of headwater stream diversity is likely to be most effective when management targets environmental conditions across multiple local sites within relatively small catchments.  相似文献   

3.
邹怡 《生物多样性》2021,29(6):790-61
度量样方间物种组成的差异, 即β多样性, 是生态学研究中的常用手段。在开展生态学研究的过程中, 不同样方获取的样本量通常不同。使用物种稀疏曲线可以计算不同样本量的α多样性, 但常用的β多样性指数的计算却没有考虑样本量的差异。本文主要介绍了从稀疏曲线演化而来的可以计算不同样本量的β多样性指数——预期共享物种数(expected species shared, ESS)及其标准化后的指数, 其中详细介绍了弦标准化的预期共享物种数(chord-normalized expected species shared, CNESS)。利用真实采集的数据集, 本文演示了在不同样本参数m下, CNESS经过主坐标分析(principal coordinates analysis, PCoA)的二维排序结果, 并比较了样本量变化后, CNESS与基于多度的Chao-Jaccard相异性指数之间的差异。模拟结果表明, CNESS指数与Chao-Jaccard指数的PCoA结果具有相关性, 该相关性不随m值的变化而变化。CNESS指数较Chao-Jaccard指数具有更多优势, 通过调节样本参数m, CNESS的结果可以分析优势种或者稀有种的物种组成差异, 同时CNESS指数对样本量不敏感。ESS系列相异指数是基于物种多度的计算, 适用于样本量不一致时的β多样性研究, 建议在开展昆虫等无脊椎动物的生态学研究中使用此指数。为了更加准确地获得样方之间的物种组成差异, 在数据分析的过程中应选取不同大小的m值计算CNESS。然而, 由于样本量小于特定m值的样方会在计算中被剔除, 因此, 在实际的取样工作中, 每个样方都应该尽量采集到足够多的个体, 才能保证在m值足够大的时候也不丢失样方信息。  相似文献   

4.
狼毒是青藏高原危害最严重的毒草种类之一,其快速蔓延对高寒草甸生态系统的影响日益严重。选取祁连山中段退化高寒草甸为研究区,综合采用高通量测序技术、地统计学和GIS空间分析方法,分析狼毒发生区土壤真菌多样性的空间变异特征,研究狼毒群落与土壤真菌多样性的空间相关性。结果表明: 与非发生区相比,狼毒发生区土壤真菌群落物种丰富度下降而优势度显著增加,α多样性降低;土壤真菌群落物种构成差异增强,β多样性明显升高。狼毒入侵对土壤真菌多样性的空间格局有一定扰动,发生区各多样性指数的斑块破碎化程度增加,土壤真菌群落物种构成的空间异质性明显增强,α和β多样性的空间稳定性降低。狼毒盖度与土壤真菌α和β多样性指数呈现显著正相关及显著负相关的区域交错镶嵌分布,空间相关性规律不明显,表明狼毒入侵草甸土壤真菌多样性的空间变异可能受地上植被和土壤环境的共同作用。  相似文献   

5.
Soil biodiversity has been recognized as a key feature of ecosystem functioning and stability. However, soil biodiversity is strongly impaired by agriculture and relatively little is known on how and at what spatial and temporal scales soil biodiversity is restored after the human disturbances have come to an end. Here, a multi-scale approach was used to compare diversity patterns of soil mites and nematodes at four stages (early, mid, late, reference site) along a secondary succession chronosequence from abandoned arable land to heath land. In each field four soil samples were taken during four successive seasons. We determined soil diversity within samples (α-diversity), between samples (β-diversity) and within field sites (γ-diversity). The patterns of α- and γ-diversity developed similarly along the chronosequence for oribatid mites, but not for nematodes. Nematode α-diversity was highest in mid- and late-successional sites, while γ-diversity was constant along the chronosequence. Oribatid mite β-diversity was initially high, but decreased thereafter, whereas nematode β-diversity increased when succession proceeded; indicating that patterns of within-site heterogeneity diverged for oribatid mites and nematodes. The spatio-temporal diversity patterns after land abandonment suggest that oribatid mite community development depends predominantly on colonization of new taxa, whereas nematode community development depends on shifts in dominance patterns. This would imply that at old fields diversity patterns of oribatid mites are mainly controlled by dispersal, whereas diversity patterns of nematodes are mainly controlled by changing abiotic or biotic soil conditions. Our study shows that the restoration of soil biodiversity along secondary successional gradients can be both scale- and phylum-dependent.  相似文献   

6.
古田山国家级自然保护区地处中亚热带, 地形复杂, 森林群落类型丰富。我们在保护区内10种主要森林群落类型中网格化布置并调查了79个20 m × 20 m样地, 分析了不同群落类型内及相互间的α (Shannon-Wiener指数)、β (Horn-Morisita相异性指数)多样性分布格局及其影响因素。结果表明: (1) α多样性主要受到群落类型、海拔和坡向的影响。α多样性在不同群落类型间差异显著, 并且随海拔升高、坡向从南到北, α多样性增大。(2) β多样性主要受到群落类型和海拔的影响, 受空间距离的影响不显著。不同群落类型间的β多样性显著大于同一群落类型内部, 并且随海拔升高β多样性增大。总体而言, 群落类型和海拔是古田山森林群落α和β多样性的主要影响因子, 表明生境过滤等机制对该区域的森林物种多样性格局起着主要作用。  相似文献   

7.
To test the hypotheses that fruit-feeding nymphalid butterflies are randomly distributed in space and time, a community of fruit-feeding nymphalid butterflies was sampled at monthly intervals for one year by trapping 6690 individuals of 130 species in the canopy and understory of four forest habitats: primary, higraded, secondary, and edge. The overall species abundance distribution was well described by a lognormal distribution. Total species diversity (γ-diversity) was partitioned into additive components within and among community subdivisions (α-diversity and β-diversity) in vertical, horizontal and temporal dimensions. Although community subdivisions showed high similarity (1 —β-diversity/γ-diversity), significant β-diversity existed in each dimension. Individual abundance and observed species richness was lower in the canopy than in the understory. However, rarefaction analysis and species accumulation curves revealed that canopy had higher species richness than understory. Observed species richness was roughly equal in all habitats, but individual abundance was much greater in edge, largely due to a single, specialist species. Rarefaction analysis and species accumulation curves showed that edge had significantly lower species richness than all other habitats. Samples from a single habitat, height and time contained only a small fraction of the total community species richness. This study demonstrates the feasibility, and necessity, of large-scale, long-term sampling in multiple dimensions for accurately measuring species richness and diversity in tropical forest communities. We discuss the importance of such studies in conservation biology.  相似文献   

8.
The turnover of community composition across space, β-diversity, is influenced by different assembly mechanisms, which place varying weight on local habitat factors, such as environmental conditions and species interactions, and regional factors such as dispersal and history. Several assembly mechanisms may function simultaneously; however, little is known about how their importance changes over time and why. Here, we implemented a field survey where we sampled a bacterial metacommunity consisting of 17 rock pools located at the Swedish Baltic Sea coast at 11 occasions during 1 year. We determined to which extent communities were structured by different assembly mechanisms using variation partitioning and studied changes in β-diversity across environmental gradients over time. β-Diversity was highest at times of high overall productivity and environmental heterogeneity in the metacommunity, at least partly due to species sorting, that is, selection of taxa by the prevailing environmental conditions. In contrast, dispersal-driven assembly mechanisms were primarily detected at times when β-diversity was relatively low. There were no indications for strong and persistent differences in community composition or β-diversity between permanent and temporary pools, indicating that the physical disturbance regime is of relatively minor importance. In summary, our study clearly suggests that there are temporal differences in the relative importance of different assembly mechanisms related to abiotic factors and shows that the temporal variability of those factors is important for a more complete understanding of bacterial metacommunity dynamics.  相似文献   

9.
Abstract. Patterns of diversity were analyzed in a boreal coniferous forest and its strata (tree, shrub, herb and bryophyte layers): number of species per community — α-diversity, total species richness — γ-diversity, mean similarity — β-diversity, and mosaic diversity, a measure of complexity. These four measures of diversity consistently decreased from lower to upper vegetation layers. To study the effect of juveniles of larger life forms on diversity of lower layers, they were removed from the data and the measures of diversity reanalyzed. Number of species per community and mosaic diversity decreased substantially, but β-diversity did not change. So, the effect of juveniles on γ-diversity is due to the greater number of species per community. Multiple regression models revealed that the relationships between α-diversity and the environmental variables were the same for the whole forest and for the herb layer. Elevation and soil pH were the major variables explaining α-diversity in the whole community. Climate was the only environmental gradient related to species richness in all individual strata. Tree and herb richness values were negatively related to soil drainage and acidity, respectively. Species richness of the plant community was affected by environmental variability mostly through the herb layer. Various explanations of the observed diversity patterns included: environmental constraints, resource competition, generation time, and colonization processes.  相似文献   

10.
Although biological invasion often alters ecosystem properties and community composition at different scales, considerable uncertainty still exists regarding the underlying mechanisms that regulate the spread of alien species into new habitats. An alien invasion is generally achieved through multiple processes from multiple sources; this type of invasion often prevents us from understanding of the dispersal mechanisms. Here, we aim to disentangle the processes of alien invasion by focusing on a single migration source. We surveyed the distribution of alien and native plant species in Shiretoko National Park, located in northern Japan. We measured the coverage of each species and the environmental and spatial factors in 362 quadrats established along roadsides. We found 101 native species and 35 alien species (γ-diversity) throughout the quadrats. The local species richness (α-diversity) was higher for the alien species (6.1 species) than for the native species (3.2 species). There was a significant negative correlation in α-diversity between native and alien species. Moreover, the α-diversity and distance from the nearest town (migration source) showed a negative relationship for alien assemblages while the native assemblages showed the opposite trend. These results suggest that the alien species are expanding their distribution outward from the town, resulting in a decrease in the α-diversity of native species in localities close to the migration source. Overall, our results emphasize that roadsides could unintentionally act as corridors for alien species, even in protected areas. Careful consideration is thus needed for utilizing these human-created habitats even though they were designed for conservation and management purposes.  相似文献   

11.
西双版纳热带山地常绿阔叶林蕨类植物多样性研究   总被引:1,自引:1,他引:0  
李保贵  朱华 《广西植物》2009,29(2):202-207
基于4个50m×50m(包含400个5m×5m)样方调查,统计了蕨类植物的α多样性指数、优势度指数、相似性指数及β多样性指数。结果表明:在调查的1hm2西双版纳热带山地常绿阔叶林里,蕨类植物的物种丰富度为32种;不同样地蕨类植物丰富度指数、多样性指数、优势度指数及均匀度指数的变化趋势一致;该森林群落蕨类植物的物种多样性虽然不高,但优势种群显著;通过3个无人为干扰与1个受人为干扰样地的对比分析研究看出,该类森林遭受一定程度的人为干扰后,蕨类植物物种丰富度、多样性、优势度及相似性等均显著下降,其中物种多样性的降低尤为显著,既使群落的外貌、结构等恢复至接近原始林状态,蕨类植物丰富度及多样性也难以恢复,故此,保护原始的森林植被是保护该森林蕨类植物多样性的有效措施之一。  相似文献   

12.
Two South African mountain fynbos sites, similar in drainage, elevation, slope angle, slope aspect and soil type but with differing fire histories, were studied to measure how the effect of high densities of overstorey proteas in one fire cycle affects the α-diversity levels of the plant community in the following fire-cycle, how their repeated absence due to several short fire-cycles affects their species richness and finally, at what spatial scale such patterns are most appropriately measured. High prefire canopy cover percentages and densities of overstorey proteas increase the postfire α-diversity of understorey species. In addition, the increase in species richness observed occurred for all higher plant life history types present. At sites where one or more short fire cycles resulted in the repeated absence of overstorey proteas, the number of plant species present in the understorey was lower than at a site where overstorey proteas persisted. These results are dependent on the spatial scale at which the α-diversity of understorey species is measured. At small quadrat sizes (< 5 m2), overstorey proteas decrease the number of understorey species present, while at larger quadrat sizes (100 m2) higher species richness is observed. The contradiction in conclusions when α-diversity is measured at different spatial scales can be attributed to the patchiness of fynbos communities. Overstorey proteas play an important role in maintaining the patchiness component of fynbos communities by diminishing the effect of understorey resprouting species, making available regeneration niches for the maintenance of plant species richness. Where small quadrats are used, the effect of patchiness on the dynamics of the mountain fynbos community is lost. Thus, it is the fire history prior to the last fire and how it affects overstorey proteas that is important in the determination of α-diversity levels in mountain fynbos plant communities.  相似文献   

13.
We examined temporal changes in macrofaunal α- and β-diversity over several spatial scales (within patches, among patches, across landscapes and across regions) in Long Island Sound on the northeast USA coast. Regional ε-diversity was estimated at 144 taxa, however γ-diversity fluctuated over time as did α- and β-diversity components. Based on additive partitioning, patch- and region-scale β-diversity components generally had the highest contributions to γ-diversity; lower percentages were found at within-patch and landscape scales. Multiplicative diversity partitioning indicated highest species turnover at within- and among patch scales. For all partition results, within-patch and patch-scale β-diversity increased sharply when hypoxia impacted benthic communities. Spatial variation in diversity components can be attributed to the collection of different patch types at varying spatial scales and their associated habitats across the benthic landscapes, as well as gradients in depth and other estuarine-scale characteristics. Temporal variation in diversity components across spatial scales may be related to seasonal changes in habitat heterogeneity, species population dynamics, and seasonal disturbances. Rare species were significant and temporally consistent components of macrofaunal diversity patterns over different spatial scales. Our findings agree with other marine and terrestrial studies that show diversity components vary significantly over different spatial scales and the importance of habitat/landscape heterogeneity in supporting diversity. However, our results indicate that the relative contributions of scale-specific β-diversity components can also change significantly over time. Thus, studies of diversity patterns across patches and landscapes based on data collected at one time, or assembled into a single data set from different times, may not capture the full suite of diversity patterns that occur over varying spatial scales and any time-specific determinants of those patterns. Many factors that shape and maintain sedimentary communities vary temporally, and appear to play an important role in determining and maintaining macrofaunal diversity over different spatial scales.  相似文献   

14.
Assessments of biodiversity are time-consuming and require a high level of expert knowledge. A reduced set of taxonomic ranks other than species has been proved to be useful for rapid and cost-effective assessment of biodiversity. However, few studies have examined how well this method performs for aquatic plant group that of enormous ecological importance. We studied the aquatic plant flora in the arid zone of China and examined whether the distribution of species α- and β-diversity could be predicted well from genus-, and family-levels. Analyses of 3 years field data showed that significant and positive relations exist between α-diversity of species and α-diversity of genera and family in both entire arid zone and five sub-zones. In contrast, β-diversity at species level is difficult to predict from β-diversity indexes at higher taxonomic level. The results indicate that higher-taxon α-diversity, especially at the generic level in our research, can be useful surrogates of species α-diversity for aquatic plants conservation.  相似文献   

15.
《农业工程》2022,42(1):110-120
Transportation infrastructure has bought many blessings for human civilization, although its negative influences, especially on a forested landscape should be heeded with prime concerns. In this study, we studied, how railway track perforating through Lawachara National Park affecting the nearby vegetation alpha (α) and beta (β) diversity and composition and soil properties, and whether the effects are active until a certain distance into the forest interior. Total 32 plots in 8 transect lines perpendicular to the railway are laid with 4 plots at 10 m, 40 m, 70 m and 100 m distances. Tree and tree regeneration α and β-diversity and composition, and soil organic matter and pH were assessed at each of these plots. Our results showed that, soil organic matter and pH, as well as α-diversity indices were significantly (P < .05) higher in plots near the railway track than forest interior parts in case of both tree and tree regenerations. But the β-diversity did not vary significantly (P > .05) with distances. High amount of organic matter in outermost plots was maybe due to the decomposition of litterfall and debris where increased pH value was due to presence of high amount of calcareous substances and plant residue. As the α-diversity of plant decreased with increasing distance from the railway track and in most cases the value decreased until 70 m distance, indicated that the influence of the railway tracks maybe prominent up to 70 m. So, to minimize this effect of vegetation structure proper steps such as careful planning in road building, afforestation using the native species and evaluation of the necessity of infrastructure and possible alternatives to it should be assessed.  相似文献   

16.
Vegetation surveys collect species-diversity information, a potentially valuable ecological indicator. However, the number of species recorded by vegetation surveys is influenced by several factors including inherent species-diversity, sampling method and sampling effort. The process of rarefaction is commonly used to control for variation in sampling effort. We aimed to use a combination of rarefaction and additive partitioning to control for sampling effort and extract vegetation α-, β- and γ-diversity respectively. The study focused on the Stony Plains region of the South Australian rangelands. Vegetation quadrat survey data were collected for land condition monitoring and species inventory by two government agencies. The analysis revealed a strong residual influence of sampling effort on β- and γ-diversity after rarefaction, a finding not previously reported in the literature. A method was developed to model then remove the residual influence of sampling effort on β- and γ-diversity. Thus the method outlined in this paper allows for the extraction from standard vegetation survey data of α-, β- and γ-diversity and the concurrent removal of sampling effort influence. This method is transferable to any other region for which there is vegetation survey data.  相似文献   

17.
Climate change is likely to impact multiple dimensions of biodiversity. Species range shifts are expected and may drive changes in the composition of species assemblages. In some regions, changes in climate may precipitate the loss of geographically restricted, niche specialists and facilitate their replacement by more widespread, niche generalists, leading to decreases in β-diversity and biotic homogenization. However, in other regions climate change may drive local extinctions and range contraction, leading to increases in β-diversity and biotic heterogenization. Regional topography should be a strong determinant of such changes as mountainous areas often are home to many geographically restricted species, whereas lowlands and plains are more often inhabited by widespread generalists. Climate warming, therefore, may simultaneously bring about opposite trends in β-diversity in mountainous highlands versus relatively flat lowlands. To test this hypothesis, we used species distribution modelling to map the present-day distributions of 2669 Neotropical anuran species, and then generated projections of their future distributions assuming future climate change scenarios. Using traditional metrics of β-diversity, we mapped shifts in biotic homogenization across the entire Neotropical region. We used generalized additive models to then evaluate how changes in β-diversity were associated with shifts in species richness, phylogenetic diversity and one measure of ecological generalism. Consistent with our hypothesis, we find increasing biotic homogenization in most highlands, associated with increased numbers of generalists and, to a lesser extent, losses of specialists, leading to an overall increase in alpha diversity, but lower mean phylogenetic diversity. In the lowlands, biotic heterogenization was more common, and primarily driven by local extinctions of generalists, leading to lower α-diversity, but higher mean phylogenetic diversity. Our results suggest that impacts of climate change on β-diversity are likely to vary regionally, but will generally lead to lower diversity, with increases in β-diversity offset by decreases in α-diversity.  相似文献   

18.
Current developments in urban ecology include very few studies focused on pond ecosystems, though ponds are recognized as biodiversity hotspots. Using Odonata as an indicator model, we explored changes in species composition in ponds localized along an urban gradient of a megacity (Paris, France). We then assessed the relative importance of local- and landscape-scale variables in shaping Odonata α-diversity patterns using a model-averaging approach. Analyses were performed for adult (A) and adult plus exuviae (AE) census data. At 26 ponds, we recorded 657 adults and 815 exuviae belonging to 17 Odonata species. The results showed that the Odonata species assemblage composition was not determined by pond localization along the urban gradient. Similarly, pond characteristics were found to be similar among urban, suburban and periurban ponds. The analyses of AE census data revealed that fine-scale urbanization (i.e., increased density of buildings surrounding ponds) negatively affects Odonata α-diversity. In contrast, pond localization along the urban gradient weakly explained the α-diversity patterns. Several local-scale variables, such as the coverage of submerged macrophytes, were found to be significant drivers of Odonata α-diversity. Together, these results show that the degree of urbanization around ponds must be considered instead of pond localization along the urban gradient when assessing the potential impacts of urbanization on Odonata species diversity. This work also indicates the importance of exuviae sampling in understanding the response of Odonata to urbanization.  相似文献   

19.
Intensification of land use by humans has led to a homogenization of landscapes and decreasing resilience of ecosystems globally due to a loss of biodiversity, including the majority of forests. Biodiversity–ecosystem functioning (BEF) research has provided compelling evidence for a positive effect of biodiversity on ecosystem functions and services at the local (α-diversity) scale, but we largely lack empirical evidence on how the loss of between-patch β-diversity affects biodiversity and multifunctionality at the landscape scale (γ-diversity). Here, we present a novel concept and experimental framework for elucidating BEF patterns at α-, β-, and γ-scales in real landscapes at a forest management-relevant scale. We examine this framework using 22 temperate broadleaf production forests, dominated by Fagus sylvatica. In 11 of these forests, we manipulated the structure between forest patches by increasing variation in canopy cover and deadwood. We hypothesized that an increase in landscape heterogeneity would enhance the β-diversity of different trophic levels, as well as the β-functionality of various ecosystem functions. We will develop a new statistical framework for BEF studies extending across scales and incorporating biodiversity measures from taxonomic to functional to phylogenetic diversity using Hill numbers. We will further expand the Hill number concept to multifunctionality allowing the decomposition of γ-multifunctionality into α- and β-components. Combining this analytic framework with our experimental data will allow us to test how an increase in between patch heterogeneity affects biodiversity and multifunctionality across spatial scales and trophic levels to help inform and improve forest resilience under climate change. Such an integrative concept for biodiversity and functionality, including spatial scales and multiple aspects of diversity and multifunctionality as well as physical and environmental structure in forests, will go far beyond the current widely applied approach in forestry to increase resilience of future forests through the manipulation of tree species composition.  相似文献   

20.
It has long been known that α- and β-diversity are driven by different ecological processes. Recently, several theoretical papers have suggested that β-diversity can be expressed in many different ways, and that these measures might have different meanings and behaviours. In terms of ecological understanding, it is important to test how these diversity measures behave in different settings, yet this has been rarely attempted. We investigated this question using forest openings in the Trasc?u Mountains, Romania, which contain species from grasslands of high nature value. The sampling was conducted in 40 openings, using edge-to-interior transects composed of 1-m2 plots (α-diversity), from which we calculated five β-diversity measures at transect level. As predictor variables, we used canopy openness (from hemispherical photos), tree litter cover, heat load index, altitude, and bedrock type for α-diversity, and the means and ranges of these for β-diversity. Generalized linear mixed models showed that α-diversity was mostly explained by the first two variables. Amongst the β-diversity measures, the classical additive and multiplicative measures differed, the latter being similar to the Sørensen-based multiple-site dissimilarity. None of the predictors explained the slope of distance decay or Simpson-based multiple-site dissimilarity, except when considering ecological subsets of the species. We discuss the possible ecological processes underlying the different results, and the implication of our findings for nature conservation in the region. In conclusion, we support the joint application of different measures of α- and β-diversity, as long as their particular properties are taken into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号