首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Persistent infections with mumps virus were established in several human lymphoid cells of T-cell origin (Molt-4, TALL-1, and CCRF-CEM) and human monocyte cells (U937 and THP-1). 2′,5′-Oligoadenylate synthetase (2–5AS) activity was demonstrated to be only slightly induced by interferon (IFN) or TPA (12-O-tetradecanoyl-phorbol-13-acetate) treatment in these cells. Treatment of the persistently infected cells with IFN or TPA did not stimulate an increase in the amount of synthetase mRNA. Induction of cell differentiation and augmentation of IFN production by TPA were demonstrated in U937 cells persistently infected with mumps virus (U937-MP). Similar results for IFN production were obtained from differentiated U937 cells. It is suggested that cell differentiation of U937 cells might be associated with the development of IFN inducibility.  相似文献   

2.
The variant cell line U937V was originally identified by a higher sensitivity to the cytocidal action of tumor necrosis factor alpha (TNFα) than that of its reference cell line, U937. We noticed that a typical morphological feature of dying U937V cells was the lack of cellular disintegration, which contrasts to the formation of apoptotic bodies seen with dying U937 cells. We found that both TNFα, which induces the extrinsic apoptotic pathway, and etoposide (VP-16), which induces the intrinsic apoptotic pathway, stimulated U937V cell death without cell disintegration. In spite of the distinct morphological differences between the U937 and U937V cells, the basic molecular events of apoptosis, such as internucleosomal DNA degradation, phosphatidylserine exposure on the outer leaflet of the plasma membrane, caspase activation and cytochrome c release, were evident in both cell types when stimulated with both types of apoptosis inducer. In the U937V cells, we noted an accelerated release of cytochrome c, an accelerated decrease in mitochondrial membrane potential, and a more pronounced generation of reactive oxygen species compared to the reference cells. We propose that the U937 and U937V cell lines could serve as excellent comparison models for studies on the mechanisms regulating the processes of cellular disintegration during apoptosis, such as blebbing (zeiosis) and apoptotic body formation.  相似文献   

3.
The human undifferentiated histiocytic cell-line U937 can be induced to differentiate by incubation with 12-0-tetradecanoylphorbol-13-acetate (TPA) into macrophage-like cells. Dexamethasone reduced the prostaglandin production in TPA-differentiated U937 cells dose dependently, whereas undifferentiated U937 cells were dexamethasone insensitive. Concomitantly phospholipase A2, the enzyme liberating the prostaglandin precursor arachidonic acid, was inhibited by dexamethasone in TPA-differentiated but not in undifferentiated U937 cells. The activity of lysophosphatide acyltransferase, the key enzyme of fatty acid reacylation into phospholipids, remained unchanged both in undifferentiated and TPA-differentiated U937 cells. The data suggest that responsiveness to glucocorticoid-dependent regulation of prostanoid synthesis is acquired by cells of the monocyte-macrophage lineage late in differentiation.  相似文献   

4.
Anthrax lethal toxin (LT) is comprised of protective antigen and lethal factor. Lethal factor enters mammalian cells in a protective antigen-dependent process and cleaves mitogen-activated protein kinase kinases. Although LT has no observable effect on many cell types, it causes necrosis in macrophages derived from certain mouse strains and apoptosis in activated mouse macrophages. In this study, we observed that LT treatment of three different human monocytic cell lines U-937, HL-60 and THP-1 did not induce cell death. Cells did become susceptible to the toxin, however, after differentiation into a macrophage-like state. Treatment with LT resulted in decreased phosphorylation of p38, ERK1/2 and JNK in both undifferentiated and differentiated HL-60 cells, suggesting that the change in susceptibility does not result from differences in toxin delivery or substrate cleavage. Death of differentiated HL-60 cells was accompanied by chromosome condensation and DNA fragmentation, but was not inhibited by the pan-caspase inhibitor Z-VAD-FMK. In addition, we observed that the macrophage differentiation process could be inhibited by LT. Our results indicate that LT-mediated death of mouse and human macrophages may occur through distinct processes and that the differentiation state of human cells can determine susceptibility or resistance to LT.  相似文献   

5.
To determine whether rabies viruses replicate in macrophage or macrophage-like cells, several human and murine macrophage-like cell lines, as well as primary cultures of murine bone marrow macrophages, were incubated with the Evelyn-Rokitnicki-Abelseth (ERA) virus and several different street rabies viruses (SRV). ERA rabies virus replicated well in human monocytic U937 and THP-1 cells and murine macrophage IC-21 cells, as well as primary cultures of murine macrophages. Minimal replication was detected in murine monocytic WEHI-3BD- and PU5-1R cells, and ERA virus did not replicate in murine monocytic P388D1 or J774A.1 cells. A tissue culture-adapted SRV of bat origin also replicated in IC-21 and U937 cells. Non-tissue culture-adapted SRV isolated from different animal species, particularly bats, replicated minimally in U937, THP-1, IC-21 cells and primary murine bone marrow macrophages. To determine whether rabies virus replication is dependent upon the state of differentiation of the macrophage-like cell, human promyelocytic HL-60 cells were differentiated with 12-O-tetradecanoylphorbol-13-acetate (TPA). ERA rabies virus replicated in the differentiated HL-60 cells but not in undifferentiated HL-60 cells. Persistent infections were established in macrophage-like U937 cells with ERA rabies virus and SRV, and infectious SRV was isolated from adherent bone marrow cells of mice that had been infected 96 days previously. Virus harvested from persistently infected U937 cells and the adherent bone marrow cells had specifically adapted to each cell. This specificity was shown by the inability of the viruses to infect macrophages other than U937 cells and primary bone marrow macrophages, respectively. Virus titers of the persistently infected U937 cells fluctuated with extended cell passage. After 30 passages, virus released from the cells had lost virulence as shown by its inability to kill intracranially inoculated mice. However, the avirulent virus released from the persistently infected cells was more efficient in infecting and replicating in naive U937 cells than the virus which was used to establish the persistent infection. These results suggest that macrophages may serve as reservoirs of infection in vivo, sequestering virus which may subsequently be activated from its persistent state, resulting in clinical infection and death.  相似文献   

6.
L Chen  D Novick  M Rubinstein  M Revel 《FEBS letters》1988,239(2):299-304
Human IFN-beta 2 cytokine produced in E. coli was purified to homogeneity by immunoaffinity and ion-exchange chromatography. The cytokine inhibits the growth of myeloleukemic M1 cells and induces their morphological and functional differentiation into macrophages. Differentiation was also observed in the histiocytic lymphoma U937 cells. The effect on U937 was synergized by IFN-gamma and under these conditions IFN-beta 2 produced the induction of (2'-5') oligo(A) synthetase typical to IFN action and to differentiation.  相似文献   

7.
Significant morphological and functional changes were observed when human monoblastoid U937 tumor cells growing in suspension were induced by the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) for 72 h to differentiate along the monocyte/macrophage pathway. These include adherence of the cells to each other and to the substratum, alterations in cell-surface antigen expression and cessation of autonomous proliferation. In this study, we show by both, hybridization analysis of RNA and immunoblotting that an enhanced expression of the intermediate filament (IF) subunit proteins vimentin, lamin A and lamin C accompanied the TPA-induced differentiation process. After long-term culture of differentiated U937 cells in the absence of TPA (more than 28 days), however, the adherent cells retracted their pseudopodia, detached and started again to proliferate. This "retrodifferentiation" process, not previously described was paralleled by a rapid down-regulation of both, IF mRNA and protein synthesis back to the level of undifferentiated U937 control cells. These data suggest a functional relationship between the expression of vimentin and lamins A and C and the differentiation process taking place in these cells.  相似文献   

8.
9.
Apoptosis and DNA fragmentation precede TNF-induced cytolysis in U937 cells.   总被引:10,自引:0,他引:10  
The hypothesis that activation of apoptosis and DNA fragmentation is involved in TNF-mediated cytolysis of U937 tumor cells was investigated. Morphological, biochemical, and kinetic criteria established that TNF activates apoptosis as opposed to necrosis. Within 2-3 h of exposure to TNF, U937 underwent the morphological alterations characteristic of apoptosis. This was accompanied by cleavage of DNA into multiples of nucleosome size fragments. Both of these events occurred 1-2 h prior to cell death as defined by trypan blue exclusion or 51Cr release. DNA fragmentation was not a non-specific result of cell death since U937 cells lysed under hypotonic conditions did not release DNA fragments. The percentage of cells undergoing apoptosis depended on the concentration of TNF and was augmented by the addition of cycloheximide. A TNF-resistant variant derived from U937 did not undergo apoptosis in response to TNF, even in the presence of cycloheximide. Furthermore, TNF could still activate NFkB in this variant, suggesting that this pathway is not involved in TNF-mediated cytotoxicity. Two agents known to inhibit TNF-mediated cytotoxicity, ZnSO4 and 3-aminobenzamide, were shown to inhibit TNF-induced apoptosis. Taken altogether, these data support the hypothesis that activation of apoptosis is at least one essential step in the TNF lytic pathway in the U937 model system.  相似文献   

10.
Leukotriene C4 (LTC4) synthase was highly expressed in the human U937 monoblast leukemia cell line when differentiated into monocyte/macrophage-like cells by growth in the presence of dimethyl sulfoxide. The specific activity of LTC4 synthase in differentiated cells (399.0 +/- 84.1 pmol of LTC4 formed.min-1.mg-1) was markedly higher (10-fold; p less than 0.001) than in undifferentiated U937 cells (39.9 +/- 16.7 pmol of LTC4 formed.min-1.mg-1) or freshly isolated blood monocytes (21.5 +/- 4.8 pmol of LTC4 formed.min-1.mg-1). The increase in LTC4 synthase activity following dimethyl sulfoxide-induced differentiation was substantially higher than the increase observed for other proteins involved in leukotriene biosynthesis. LTC4 synthase activity was unaffected in U937 cells differentiated by growth in the presence of phorbol 12-myristate 13-acetate. The HL-60 myeloblast leukemia cell line expressed higher LTC4 synthase levels when differentiated into either neutrophil-like or macrophage-like cells by growth in the presence of dimethyl sulfoxide or phorbol 12-myristate 13-acetate (respectively), but reached a specific activity comparable only to undifferentiated U937 cells. Human LTC4 synthase was found to be a unique membrane-bound enzymatic activity completely distinct from alpha, mu, pi, theta, and microsomal glutathione S-transferases, as determined by differential detergent solubilization, chromatographic separation, substrate specificity, and Western blot analysis. An 18-kDa polypeptide was specifically labeled in membranes from dimethyl sulfoxide-differentiated U937 cells using azido 125I-LTC4, a photoaffinity probe based on the product of the LTC4 synthase-catalyzed reaction. Photolabeling of the 18-kDa polypeptide was specifically competed for by LTC4 (greater than 50% at 0.1 microM) but not by 100,000-fold higher concentrations of reduced glutathione (10 mM). Elevation of both the level of the specifically photolabeled 18-kDa polypeptide and of LTC4 synthase specific activity occurred concomitantly with dimethyl sulfoxide differentiation of U937 cells. We conclude that differentiation of U937 cells into monocyte/macrophage-like cells by growth in the presence of dimethyl sulfoxide results in high levels of expression of LTC4 synthase activity. Human LTC4 synthase is a unique enzyme with a high degree of specificity for LTA4 and may therefore be dedicated exclusively to the formation of LTC4 in vivo. An 18-kDa membrane polypeptide, specifically labeled by a photoaffinity derivative of LTC4, is a candidate for being either LTC4 synthase or a subunit thereof.  相似文献   

11.
Yang ES  Park JW 《Biochimie》2006,88(7):869-878
Nitric oxide (NO), a radical species produced by many types of cells, is known to play a critical role in many regulatory processes, yet it may also participate in collateral reactions at higher concentrations, leading to cellular oxidative damage. The protective role of antioxidant enzymes against NO-induced oxidative damage in U937 cells was investigated in control and cells pre-treated with diethyldithiocarbamic acid, aminotriazole, and oxlalomalate, specific inhibitors of superoxide dismutase, catalase, and NADP(+)-dependent isocitrate dehydrogenase, respectively. Upon exposure to 1 mM S-nitroso-N-acetylpenicillamine (SNAP), the nitric oxide donor, to U937 cells, the viability was lower and the protein oxidation, lipid peroxidation and oxidative DNA damage reflected by an increase in 8-hydroxy-2'-deoxyguanosine, were higher in inhibitor-treated cells as compared to control cells. We also observed the significant increase in the endogenous production of reactive oxygen species, as measured by the oxidation of 2'7'-dichlorodihydrofluorescin as well as the significant decrease in the intracellular GSH level in inhibitor-treated U937 cells upon exposure to NO. Upon exposure to 0.2 mM SNAP, which induced apoptotic cell death, a clear inverse relationship was observed between the control and inhibitor-treated U937 cells in their susceptibility to apoptosis. These results suggest that antioxidant enzymes play an important role in cellular defense against NO-induced cell death including necrosis and apoptosis.  相似文献   

12.
In this work, the production of tumor necrosis factor alpha (TNF alpha) during interaction of human phagocytes with the intracellular parasite Leishmania major was further investigated. The human monocytic cell line U937, differentiated with a combination of 1 alpha, 25 dihydroxyvitamin D3 (VD) and retinoic acid (RA), or with granulocyte macrophage colony stimulating factor (GM-CSF) was used. Differentiated U937 cells were infected with Leishmania major promastigotes, and TNF alpha was assayed in cell culture supernatants. It was found that the cytokine was produced only by U937 cells differentiated with VD/RA and further incubated with GM-CSF and LPS or interferon gamma (IFN gamma). L. major induced TNF alpha production only in the presence of GM-CSF. No direct relationship was found, however, between production of TNF alpha and resistance of differentiated U937 cells to infection with L. major.  相似文献   

13.
Apoptosis is an important process in normal animal development as well as in diseases, and inhibitor of apoptosis protein (IAP) is one of the important factors that regulate apoptotic cell death. We found that lipopolysaccharide (LPS) enhances the expression of mRNA and protein of cellular IAP-2 (cIAP2) in human monoblastic U937 cells differentiated by phorbol ester pretreatment. cIAP2 mRNA was not detected in undifferentiated U937 cells. mRNAs of cIAP1 and X-chromosome-linked IAP (XIAP) were expressed constitutively and not affected by LPS in both undifferentiated and differentiated cells. LPS stimulated the expression of cIAP2 mRNA and protein in time- and concentration-dependent manners. LPS enhanced the expression of cIAP2 mRNA and protein in human monocyte-derived macrophages, which was associated with the inhibition of the caspase-3 activation, i.e., decrease in active p17 fragment of caspase-3 with simultaneous accumulation of precursor p20 fragment. We conclude that LPS may inhibit apoptosis of macrophages, at least in part, through the induction of cIAP2.  相似文献   

14.
Differentiation-dependent sensitivity to apoptogenic factors in PC12 cells   总被引:3,自引:0,他引:3  
We have investigated the role of the mitochondrial pathway during cell death following serum and nerve growth factor (NGF)/dibutyryl cyclic AMP (Bt(2)cAMP) withdrawal in undifferentiated or NGF/Bt(2)cAMP-differentiated PC12 cells, respectively. Holocytochrome c, Smac/DIABLO, and Omi/HtrA2 are released rapidly following trophic factor deprivation in PC12 cells. Bcl-2 and Akt inhibited this release. The protection, however, persisted longer in differentiated PC12 cells. In differentiated, but not undifferentiated cells, Bcl-2 and Akt also inhibited apoptosis downstream of holocytochrome c release. Thus, undifferentiated PC12 cells showed marked sensitivity to induction of apoptosis by microinjected cytochrome c even in the presence of NGF, Bcl-2, or Akt. In contrast, in differentiated cells these factors suppressed cell death. Consistent with these observations, in vitro processing of procaspase 9 in response to cytochrome c was observed in extracts from undifferentiated but not differentiated cells expressing Akt or Bcl-2. Endogenous caspase 9 was cleaved during cell death, whereas dominant negative caspase 9 inhibited cell death. The results from determining the role of inhibitors of apoptosis (IAPs) suggest that acquisition of inhibition by IAPs is part of the differentiation program. Ubiquitin-DeltaN-AVPI Smac/DIABLO induced cell death in differentiated cells only. c-IAP-2 is unregulated in differentiated cells, whereas X-linked IAP levels decreased in these cells coincident with cell death. Moreover, expressing X-linked IAP rendered undifferentiated cells resistant to microinjected cytochrome c. Overall, the inhibitory regulation, of cell death at the level of release of mitochondrial apoptogenic factors and at post-mitochondrial activation of caspase 9 observed in differentiated PC12 cells, is reduced or absent in the undifferentiated counterparts.  相似文献   

15.
Mechanism of human monocyte activation via the 40-kDa Fc receptor for IgG   总被引:5,自引:0,他引:5  
It is shown that a mAb specific for the human 40-kDa FcR (FcRII) leads to activation of human monocytic cells but that extensive cross-linking of the receptor is required. Calcium mobilization can be induced in immature monocytic cells (undifferentiated U937 cells) and peripheral blood monocytes with an intact IgG1 anti-FcRII antibody (CIKM5) but not by F(ab')2 fragments of this antibody. The intact antibody can bind in a tripartite manner by its two F(ab') sites and its Fc-binding site whereas the F(ab')2 fragments of this antibody can only bind in a divalent fashion. A rise in intracellular free calcium ion concentration occurs when F(ab')2 fragments are cross-linked with F(ab')2 anti-mouse Ig indicating that more extensive cross-linking of FcRII is required rather than an obligatory requirement for an Fc-FcRII interaction. Calcium mobilization in response to intact or cross-linked F(ab')2 fragments of CIKM5 is associated with superoxide production only in IFN-gamma-primed peripheral blood monocytes and IFN-gamma differentiated U937 cells indicating that the activation signal produced via FcRII is inadequate to fully stimulate non-"primed" cells. A second mAb reactive with FcRII (2E1) does not cause calcium mobilization in monocytes or U937 cells, and partially blocks the effects of CIKM5. 2E1 also blocks CIKM5 superoxide production in IFN-gamma-primed monocytes and differentiated U937 cells. This may be explained in part by the fact that 2E1 is an IgG2a antibody and can only participate in bipartite binding with FcRII. When 2E1 is cross-linked with F(ab')2 anti-mouse Ig there is a small calcium response. This does not cause superoxide generation in IFN-primed monocytes but does do so in IFN-gamma differentiated U937 cells. FcRII is also expressed on granulocytes and some B cells but the effects of cross-linking the receptor on these cells differ from those seen in monocytes.  相似文献   

16.
E Solito  G Raugei  M Melli  L Parente 《FEBS letters》1991,291(2):238-244
The effect of dexamethasone on mRNA and protein synthesis of lipocortins (LCT) 1, 2 and 5 has been investigated in U-937 cells. A constitutive expression of both mRNAs and proteins was detected in undifferentiated U-937 cells. This constitutive level was increased time- and dose-dependently by incubation with phorbol myristate acetate (PMA). In U-937 cells differentiated by 24 h incubation with 6 ng/ml PMA, dexamethasone (DEX) (1 microM for 16 h) caused an increased synthesis of the mRNA level of LCT-1 and 2, but not of LCT-5, over the level induced by PMA. DEX had no effect in undifferentiated cells. Moreover, DEX stimulated the extracellular release of LCT-1 and 5, but not of LCT-2, and inhibited the release of PGE2 and TXB2 only in the differentiated U-937 cells. These results suggest that the responsiveness of these cells to glucocorticoids is dependent on the phase of cell differentiation. The selective release of lipocortins by differentiated U-937 cells may explain, at least in part, the inhibition by DEX of the prostanoid release.  相似文献   

17.
U937 cells were differentiated into macrophages after being treated with 12-o-tetradecanoyl-phorbol-13-acetate (TPA) for the first two days and dedifferentiated with daily medium renewal for 10 days. Cell proliferation slowed down and the number of cells reached the maximum level on day 2. By day 4, all of the cells had spread and attached firmly to the culture dish, and more than 90% of the cells expressed the Fc-receptor and produced superoxide anion. From there on, the number of adherent, living cells decreased gradually to about half the initial count. Most of the cells eliminated from the culture by cell death were in the S phase at the time of TPA treatment. After day 8, the number of cells expressing macrophage-specific phenotypes gradually decreased, cell adhesion was weakened, and at the same time, DNA synthesis was initiated anew. The cells became round and began to proliferate as floating cells on days 9 to 10, and thereafter they became sensitive to the second round of TPA treatment. On the basis of all the results taken together, it is suggested that fully differentiated U937 cells were dedifferentiated after being cultured with frequent medium renewal.  相似文献   

18.
19.
The development of cytochrome b558 (Cyt b) as determined spectrophotometrically, was investigated in human polymorphonuclear neutrophils (PMN), monocytes (MN) and during differentiation of HL-60 and U 937 cells induced by retinoic acid (RA) alone or in combination with IFN gamma. O2- release in response to a panel of stimulating agents, ie latex particles, opsonised zymosan, PMA, Con A and fMLP, was monitored by lucigenin-amplified chemiluminescence (CL). In parallel the expression of myeloperoxidase (MPO) was investigated and its catalytic activity on H2O2 related to luminol-amplified CL responses. In mature PMN and MN phagocytes, regardless of the stimulating agent, the O2- production is closely related to Cyt b but not to MPO specific contents. In differentiated HL-60 and U 937 cells, the oxidative metabolism increases in parallel with Cyt b specific contents, both being enhanced by the addition of IFN gamma to the RA treatment. However, marked differences in the O2- production intensities are observed depending on the stimulating agent tested and the state of differentiation considered. The PMA-stimulated O2- production is rather low ie 100 and 20 times less in granulocytic HL-60 and monocyto-macrophagic U 937 cells than in PMN and MN respectively. Latex, zymosan and Con A stimulated responses are close to those of MN, in monocyte-macrophagic U 937 cells. In conclusion, these data show that during differentiation; 1), Cyt b plays a critical role in O2- production; 2), the pathways leading to NADPH oxidase activation are diversely modulated following phagocyte differentiation with IFN gamma and/or with RA.  相似文献   

20.
The enteropathogen Shigella flexneri invades epithelial cells, leading to inflammation and tissue destruction. We report that Shigella infection of epithelial cells induces an early genotoxic stress, but the resulting p53 response and cell death are impaired due to the bacterium's ability to promote p53 degradation, mainly through calpain protease activation. Calpain activation is promoted by the Shigella virulence effector VirA and dependent on calcium flux and the depletion of the endogenous calpain inhibitor calpastatin. Further, although VirA-induced calpain activity is critical for regulating cytoskeletal events driving bacterial uptake, calpain activation ultimately leads to necrotic cell death, thereby restricting Shigella intracellular growth. Therefore, calpains work at multiple steps in regulating Shigella pathogenesis by disrupting the p53-dependent DNA repair response early during infection and regulating both formation and ultimate death of the Shigella epithelial replicative niche.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号