首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fucoidan inhibits complement by mechanisms that so far remain to be unraveled, and the objective of this work was to delineate the mode of inhibition by this sulfated polysaccharide. For that purpose, low molecular weight fractions of algal (Ascophyllum nodosum) fucoidan containing the disaccharide unit [-->3)-alpha-L-Fuc(2SO3(-))-(1-->4)-alpha-L-Fuc(2,3diSO3(-))-(1-->](n) have been studied. Gel co-affinity electrophoresis and a new affinity capillary electrophoresis (ACE) method have been implemented to characterize fucoidan-complement protein complexes. Fucoidan binds C1q, likely to its collagen-like region through interactions involving lysine residues, and then prevents the association of the C1r(2)-C1s(2) subunit, required to form the fully active C1. In addition to C1q, fucoidan forms a complex with the protein C4 as observed by ACE. The fucoidan inhibits the first steps of the classical pathway activation that is of relevance in view of the proinflammatory effects of the subsequent products of the cascade. This study shows that a high level of inhibitory activity can be achieved with low molecular weight carbohydrate molecules and that the potential applicability of fucoidan oligosaccharides for therapeutic complement inhibition is worthy of consideration.  相似文献   

2.
A fucoidan fraction consisting of L-fucose, sulfate, and acetate in a molar proportion of 1:1.21:0.08 was isolated from the brown seaweed Fucus distichus collected from the Barents Sea. The 13C NMR spectrum of the fraction was typical of regular polysaccharides containing disaccharide repeating units. According to 1D and 2D 1H and 13C NMR spectra, the fucoidan molecules are built up of alternating 3-linked alpha-L-fucopyranose 2,4-disulfate and 4-linked alpha-L-fucopyranose 2-sulfate residues: -->3)-alpha-L-Fucp-(2,4-di-SO3-)-(1-->4)-alpha-L-Fucp-(2SO3-)-(1-->. The regular structure may be only slightly masked by random acetylation and undersulfation of several disaccharide repeating units.  相似文献   

3.
A fucoidan fraction from Ascophyllum nodosum.   总被引:2,自引:0,他引:2  
A fucoidan fraction was purified from the brown alga Ascophyllum nodosum. The polysaccharide contained L-fucose and sulfate as the only constituents. Combination of methylation analysis, Smith degradation, FTIR and NMR spectroscopy on the native and the de-sulfated polymers demonstrated that the fucoidan consisted of a highly branched core region with primarily alpha-(1-->3)-linked fucosyl residues and a few alpha-(1-->4) linkages. Branch points were at position 2 of the -->3-linked internal residues. The side chains consisted of single and multi-unit fucosyl residues. The combined analytical data suggested also a complex sulfation pattern with substitution principally at position 2 and/or position 4. Such diversity in the structural features of this fucoidan may be of importance for its various biological properties.  相似文献   

4.
Structure of a fucoidan from the brown seaweed Fucus evanescens C.Ag   总被引:6,自引:0,他引:6  
A fucoidan consisting of L-fucose, sulfate and acetate in a molar proportion of 1:1.23:0.36 was isolated from the Pacific brown seaweed Fucus evanescens. The structures of its desulfated and de-O-acetylated derivatives were investigated by 1D and 2D (1)H and (13)C NMR spectroscopy, and the data obtained were confirmed by methylation analysis of the native and desulfated polysaccharides. The fucoidan was shown to contain a linear backbone of alternating 3- and 4-linked alpha-L-fucopyranose 2-sulfate residues: -->3)-alpha-L-Fucp(2SO(3)(-))-(1-->4)-alpha-L-Fucp(2SO(3)(-))-(1-->. Additional sulfate occupies position 4 in a part of 3-linked fucose residues, whereas a part of the remaining hydroxyl groups is randomly acetylated.  相似文献   

5.
The composition, molecular weight (MW), anticoagulant activity and nuclear magnetic resonance spectra of various low-molecular-weight fucans (LMWFs) obtained by partial hydrolysis or radical depolymerization of a crude fucoidan extracted from the brown seaweed Ascophyllum nodosum are compared. Fucose units were found mainly sulfated at O-2, to a lesser extent at O-3, and only slightly at O-4, contrary to previously published results for fucoidans from other brown seaweeds, and fucose 2, 3-O-disulfate residues were observed for the first time. As the sulfation pattern excluded an alpha-(1-->2)-linked fucose backbone and a high proportion of alpha-(1-->4) linkages was found, it would appear that the concept of fucoidan structure needs to be revised. Anticoagulant activity is apparently related not only to MW and sulfation content, as previously determined, but also (and more precisely) to 2-O-sulfation and 2,3-O-disulfation levels.  相似文献   

6.
The polysaccharide composition of a fucoidan preparation isolated from the brown alga Saccharina latissima (formerly Laminaria saccharina) was reinvestigated. The preparation was fractionated by anion-exchange chromatography, and the fractions obtained were analyzed by chemical methods combined with NMR spectroscopy. Several 2D procedures, including HSQC, HMQC-TOCSY, and HMQC-NOESY, were used to obtain reliable structural information from the complex spectra, and the signal assignments were additionally confirmed by comparison with the literature spectra of the related polysaccharides and synthetic oligosaccharides. In accordance with the previous data, the main polysaccharide component was shown to be a fucan sulfate containing a backbone of 3-linked α-l-fucopyranose residues sulfated at C-4 and/or at C-2 and branched at C-2 by single sulfated α-l-fucopyranose residues. In addition, three other types of sulfated polysaccharide molecules were detected in the total fucoidan preparation: (i) a fucogalactan having a backbone of 6-linked β-d-galactopyranose residues branched mainly at C-4 and containing both terminal galactose and fucose residues; (ii) a fucoglucuronomannan having a backbone of alternating 4-linked β-d-glucopyranosyluronic acid and 2-linked α-d-mannopyranose residues with α-l-fucopyranose residues as single branches at C-3 of α-d-Manp; and (iii) a fucoglucuronan having a backbone of 3-linked β-d-glucopyranosyluronic acid residues with α-l-fucopyranose residues as single branches at C-4. Hence, even a single algal species may contain, at least in minor amounts, several sulfated polysaccharides differing in molecular structure. Partial resolution of these polysaccharides has been accomplished, but unambiguous evidence on their presence as separate entities was not obtained.  相似文献   

7.
A study of fucoidan from the brown seaweed Chorda filum.   总被引:9,自引:0,他引:9  
Fucoidan fractions from the brown seaweed Chorda filum were studied using solvolytic desulfation. Methylation analysis and NMR spectroscopy were applied for native and desulfated polysaccharides. Homofucan sulfate from C. filum was shown to contain poly-alpha-(1-->3)-fucopyranoside backbone with a high degree of branching, mainly of alpha-(1-->2)-linked single units. Some fucopyranose residues are sulfated at O-4 (mainly) and O-2 positions. Some alpha-(1-->3)-linked fucose residues were shown by NMR to be 2-O-acetylated. The 1H and 13C NMR spectra of desulfated, deacetylated fucan were completely assigned. The spectral data obtained correspond to a quasiregular polysaccharide structure with a branched hexasaccharide repeating unit. Other fucoidan fractions from C. filum have more complex carbohydrate composition and give rather complex methylation patterns. [formula: see text]  相似文献   

8.
Structure of a fucoidan from the brown seaweed Fucus serratus L   总被引:1,自引:0,他引:1  
A fucoidan consisting of L-fucose, sulfate and acetate in a molar proportion of 1:1:0.1 and small amounts of xylose and galactose were isolated from the brown seaweed Fucus serratus L. The fucoidan structure was investigated by 1D and 2D 1H and 13C NMR spectroscopy of its desulfated and de-O-acetylated derivatives as well as by methylation analysis of the native and desulfated polysaccharides. A branched structure was suggested for the fucoidan with a backbone of alternating 3- and 4-linked alpha-L-fucopyranose residues, -->3)-alpha-L-Fucp-(1-->4)-alpha-L-Fucp-(1-->, about half of the 3-linked residues being substituted at C-4 by trifucoside units alpha-L-Fucp-(1-->4)-alpha-L-Fucp-(1-->3)-alpha-L-Fucp-(1-->. Minor chains built up of 4-linked alpha-fucopyranose and beta-xylose residues were also detected, but their location, as well as the position of galactose residues, remained unknown. Sulfate groups were shown to occupy mainly C-2 and sometimes C-4, although 3,4-diglycosylated and some terminal fucose residues may be nonsulfated. Acetate was found to occupy C-4 of 3-linked Fuc and C-3 of 4-linked Fuc in a ratio of about 7:3.  相似文献   

9.
The study of the structural bases of the biological properties of algal fucoidan (Ascophyllum nodosum) led us to look for enzymes able to modify this sulfated polysaccharide. In this context, we found a sulfoesterase activity in the digestive glands of the common marine mollusk Pecten maximus, which is active on fucoidan. This sulfoesterase activity was shown by capillary electrophoresis and 13C-1H NMR (500 MHz) analysis of the enzymatic hydrolysis of the fucoidan, of fucoidan oligosaccharides and of sulfated fucose isomers. We report the exhaustive list of all proton and carbon chemical shifts for each of the three isomers of sulfated-l-fucose (including of their alpha/beta anomers), i.e. the 2-O-, 3-O- and 4-O-sulfated fucose, which have been useful reference values for the assignments of NMR spectra of fucoidan oligosaccharides upon enzymatic desulfation. Our results demonstrated a high regioselectivity for this sulfoesterase, which hydrolyzes only the sulfate group at the 2-O position of the fucopyranoside. Therefore, this sulfoesterase is a helpful tool in the structure-activity study of the fucoidan, as the literature data suggest that the 2-O-sulfation level play a central role in the biological properties of the polysaccharide.  相似文献   

10.
Blades of Lessonia vadosa (Phaeophyta) were extracted with 2% CaCl(2) solution, affording in 4.4% yield a polysaccharide which contained fucose and sulfate groups in the molar ratio 1.0:1.12. The high negative optical activity value ([alpha](D)(22)=-134.0 degrees ), FT-IR and NMR analysis suggest the presence of a fucoidan. (13)C NMR spectrum of the polysaccharide obtained by solvolytic desulfation of native fucoidan indicated the major presence of 1-->3 linked alpha-l-fucan. Depolymerization of the native fucoidan with H(2)O(2) in the presence of copper(II) acetate gave in 54.8% yield a fraction with 33.7% of sulfate content. The native fucoidan (MW 320,000) showed good anticoagulant activity whereas the radical depolymerized fraction (MW 32,000) presented a weak anticoagulant activity. These polysaccharides showed significant activation of phenylalanine-ammonia lyase (PAL), lipooxygenase (LOX) and glutathione-S-transferase (GST) defence enzyme activities in tobacco plants.  相似文献   

11.
Traumatic brain injury (TBI) is a leading cause of death and long-term disability. Fucoidan, a sulfated polysaccharide extracted from brown algae, possesses potent anti-oxidative and anti-inflammatory effects. Considering TBI happens frequently in adults, especially in aged individuals, we herein sought to define the protective effects of low-molecular-weight fucoidan (LMWF) in the aged mice. 16- to 18-month-old mice administered with LMWF (1–50 mg/kg) or vehicle were subjected to TBI using a controlled cortical impact (CCI) model. LMWF at the doses of 10 and 50 mg/kg significantly reduced both cortical and hippocampal lesion volume. This protection was associated with reduced neuronal apoptosis, as evidenced by TUNEL staining. Importantly, LMWF was effective even when administered up to 4 h after TBI. Treatment with LMWF improved long-term neurobehavioral outcomes, including sensorimotor function, and hippocampus-associated spatial learning and memory. In addition, LMWF significantly suppressed protein carbonyl, lipid peroxidation, reactive oxygen species (ROS) generation, as well as mitochondrial dysfunction, which was evidenced by mitochondrial cytochrome c release and collapse of mitochondrial membrane potential (MMP). To evaluate the underlying molecular mechanisms, the expression of sirtuin 3 (Sirt3) was detected by RT-PCR and Western blot. The results showed that TBI significantly increased the expression of Sirt3, which was further elevated by LMWF treatment. Knockdown of Sirt3 using intracerebroventricular injection of small interfering RNA (siRNA) partially prevented the therapeutic effects of LMWF. Collectively, these findings demonstrated that LMWF exerts neuroprotection against TBI in the aged brain, which may be associated with the attenuation of mitochondrial dysfunction through Sirt3 activation.  相似文献   

12.
Algal fucoidan is an alpha-L-fucose-based polysaccharide endowed with important biological properties for which the structure has not yet been fully elucidated. In an attempt to implement new enzymatic tools for structural study of this polysaccharide, we have found a fucosidase activity in the digestive glands of the common marine mollusk Pecten maximus, which is active on a fucoidan extracted from the brown algae Ascophyllum nodosum. We now report the purification and characterization of this alpha-L-fucosidase (EC 3.2.1.51). The enzyme was purified by three chromatographic steps, including an essential affinity chromatography based on the glycosidase inhibitor analog 6-amino-deoxymannojirimycin as the ligand. The purified alpha-L-fucosidase is a tetrameric glycoprotein of 200 kDa that hydrolyzes the synthetic substrate p-nitrophenyl alpha-L-fucopyranoside with a K(m) value of 650 microM. This enzyme has high catalytic activity (85 micromol x min(-1) x mg(-1)) compared with the other known fucosidases and also possesses an unusual thermal stability. The purified alpha-L-fucosidase is a retaining glycosidase. The activity of the purified fucosidase was determined on two structurally different fucoidans of the brown algae A. nodosum and Fucus vesiculosus to delineate glycosidic bond specificity. This report is to our knowledge the first demonstration of a fucosidase that can efficiently release alpha-L-fucose from fucoidan.  相似文献   

13.
The egg jelly coats of sea urchins contain sulfated fucans which bind to a sperm surface receptor glycoprotein to initiate the signal transduction events resulting in the sperm acrosome reaction. The acrosome reaction is an ion channel regulated exocytosis which is an obligatory event for sperm binding to, and fusion with, the egg. Approximately 90% of individual females of the sea urchin Strongylocentrotus purpuratus spawned eggs having only one of two possible sulfated fucan electrophoretic isotypes, a slow migrating (sulfated fucan I), or a fast migrating (sulfated fucan II) isotype. The remaining 10% of females spawned eggs having both sulfated fucan isotypes. The two sulfated fucan isotypes were purified from egg jelly coats and their structures determined by NMR spectroscopy and methylation analysis. Both sulfated fucans are linear polysaccharides composed of 1-->3-linked alpha-L-fucopyranosyl units. Sulfated fucan I is entirely sulfated at the O -2 position but with a heterogeneous sulfation pattern at O -4 position. Sulfated fucan II is composed of a regular repeating sequence of 3 residues, as follows: [3-alpha-L-Fuc p - 2,4(OSO3)-1-->3-alpha-L-Fuc p -4(OSO3)-1-->3-alpha-L-Fuc p -4(OSO3)- 1]n. Both purified sulfated fucans have approximately equal potency in inducing the sperm acrosome reaction. The significance of two structurally different sulfated fucans in the egg jelly coat of this species could relate to the finding that the sperm receptor protein which binds sulfated fucan contains two carbohydrate recognition modules of the C-type lectin variety which differ by 50% in their primary structure.   相似文献   

14.
Algal fucoidan is a complex sulfated polysaccharide whose structural characterization requires powerful spectroscopic methodologies. While most of the structural investigations reported so far have been performed using NMR as the main spectroscopic method, we report herein data obtained by negative electrospray ionization mass spectrometry. MS analysis has been carried out on oligosaccharides obtained by partial hydrolysis of fucoidan from the brown algae Ascophyllum nodosum. Oligosaccharide mixtures were fractionated by size exclusion chromatography, which allowed the analysis of oligomers ranging from monosaccharide to pentasaccharide. Monosaccharides were detected as monosulfated as well as disulfated forms. Besides, part of the oligosaccharides exhibited a high content of sulfate, evidencing that fucoidan contains disulfated fucosyl units. Fragmentation experiments yielded characteristic fragment ions indicating that the fucose units are mainly 2-O-sulfated. This study demonstrates that highly sulfated oligosaccharides from fucoidan can be analyzed by ESIMS which gives additional information about the structure of this highly complex polysaccharide.  相似文献   

15.
Therapeutic induction of angiogenesis is a potential treatment for chronic ischemia. Heparan sulfate proteoglycans are known to play an important role by their interactions with proangiogenic growth factors such as vascular endothelial growth factor (VEGF). Low molecular weight fucoidan (LMWF), a sulfated polysaccharide from brown seaweeds that mimic some biological activities of heparin, has been shown recently to promote revascularization in rat critical hindlimb ischemia. In this report, we first used cultured human endothelial cells (ECs) to investigate the possible ability of LMWF to enhance the actions of VEGF(165). Data showed that LMWF greatly enhances EC tube formation in growth factor reduced matrigel. LMWF is a strong enhancer of VEGF(165)-induced EC chemotaxis, but not proliferation. In addition, LMWF has no effect on VEGF(121)-induced EC migration, a VEGF isoform that does not bind to heparan sulfate proteoglycans. Then, with binding studies using (125)I-VEGF(165), we observed that LMWF enhances the binding of VEGF(165) to recombinant VEGFR-2 and Neuropilin-1 (NRP1), but not to VEGFR-1. Surface plasmon resonance analysis showed that LMWF binds with high affinity to VEGF(165) (1.2 nm) and its receptors (5-20 nm), but not to VEGF(121). Pre-injection of LMWF on immobilized receptors shows that VEGF(165) has the highest affinity for VEGFR-2 and NRP1, as compared with VEGFR-1. Overall, the effects of LMWF were much more pronounced than those of LMW heparin. These findings suggested an efficient mechanism of action of LMWF by promoting VEGF(165) binding to VEGFR-2 and NRP1 on ECs that could help in stimulating therapeutic revascularization.  相似文献   

16.
A fucoidanase preparation from the marine mollusk Littorina kurila cleaved some glycosidic bonds in fucoidan from the brown alga Fucus distichus, but neither fucose nor lower oligosaccharides were produced. The main product isolated from the incubation mixture was a polysaccharide built up of disaccharide repeating units -->3)-alpha-L-Fucp-(2,4-di-SO3(-))-(1-->4)-alpha-L-Fucp-(2SO3(-))-(1-->, the structure coinciding with the idealized formula proposed for the initial substance. A polymer fraction with the same carbohydrate chain but sulfated only at positions 2 and nonstoichiometrically acetylated at positions 3 and 4 of fucose residues was isolated as a minor component. It is suggested that the native polysaccharide should contain small amounts of non-sulfated and non-acetylated fucose residues, and only their glycosidic bonds are cleaved by the enzyme. The enzymatic hydrolysis showed that irregular regions of the native polysaccharide containing acetylated and partially sulfated repeating units were assembled in blocks.  相似文献   

17.
Bacteroides vulgatus has been shown to be involved in the aggravation of colitis. Previously, we separated two potent virulence factors, capsular polysaccharide (CPS) and lipopolysaccharide (LPS), from a clinical isolate of B. vulgatus and characterized the structure of CPS. In this study, we elucidated the structures of O-antigen polysaccharide (OPS) and lipid A in the LPS. LPS was subjected to weak acid hydrolysis to produce the lipid A fraction and polysaccharide fraction. Lipid A was isolated by preparative TLC, and its structure determined by MS and NMR to be similar to that of Bacteroides fragilis except for the number of fatty acids. The polysaccharide fraction was subjected to gel-filtration chromatography to give an OPS-rich fraction. The structure of OPS was determined by chemical analysis and NMR spectroscopy to be a polysaccharide composed of the following repeating unit: [-->4)alpha-L-Rhap(1-->3)beta-D-Manp(1-->].  相似文献   

18.
The structure of the O-antigenic part of the lipopolysaccharide (LPS) obtained from the verotoxin-producing Escherichia coli O171 has been determined. (1)H and (13)C NMR spectroscopy techniques in combination with component analysis were used to elucidate the O-antigen structure of O-deacylated LPS. Subsequent NMR analysis of the native LPS revealed acetylation at O-7/O-9 of the sialic acid residue. The sequence of sugars was determined by inter-residue correlations in (1)H,(1)H-NOESY and (1)H,(13)C-heteronuclear multiple-bond correlation spectra. The O-antigen is composed of pentasaccharide repeating units with one equivalent of O-acetyl groups distributed over two positions: -->4)-alpha-Neu5Ac7,9Ac-(2-->6)-beta-D-Galp-(1-->6)-beta-DGlcp-->(1-->3)-beta-D-Galp-(1-->3)-beta-D-GalpNAc-(1--> Based on biosynthetic considerations, this should also be the biological repeating unit.  相似文献   

19.
Alkali extraction and methylation analyses in the 1970s revealed that the cell walls of the yeast Schizosaccharomyces pombe contain a (1-->3)-alpha-d-glucan, a (1-->3)-beta-d-glucan, a (1-->6)-beta-d-glucan, and a alpha-galactomannan. To refine the structures of these polysaccharides, cell-wall glucans of S. pombe were extracted, fractionated, and analyzed by NMR spectroscopy. S. pombe cells were treated with 3% NaOH, and alkali-soluble and insoluble fractions were prepared. The alkali-insoluble fraction was treated with 0.5M acetic acid or Zymolyase 100T to yield an alkali-insoluble, acetic acid-insoluble fraction, an alkali-insoluble, Zymolyase-insoluble fraction, and an alkali-insoluble, Zymolyase-soluble fraction. (13)C NMR and 2D-NMR spectra disclosed that the cell wall of S. pombe is composed of three types of glucans, specifically, a (1-->3)-alpha-d-glucan, a (1-->3)-beta-d-glucan, which may either be linear or slightly branched, and a highly branched (1-->6)-beta-d-glucan, in addition to alpha-galactomannan. The highly branched (1-->6)-beta-d-glucan was identified by selective periodate degradation of side-chain glucose as a highly (1-->3)-beta-branched (1-->6)-beta-d-glucan with more branches than that of Saccharomyces cerevisiae. Flexibility of these polysaccharides in the cell wall was analyzed by (13)C NMR spectra in D(2)O. The data collectively indicate that (1-->3)-alpha- and (1-->3)-beta-d-glucans are rigid and contribute to the cell shape, while the highly branched (1-->6)-beta-d-glucan and alpha-galactomannan are flexible.  相似文献   

20.
A new steroidal saponin was isolated from the leaves of Agave attenuata Salm-Dyck. Its structure was established as (3beta,5beta,22alpha,25S)-26-(beta-D-glucopyranosyloxy)-22-methoxyfurostan-3-yl O-beta-D-glucopyranosyl-(1-->2)-beta-D-glucopyranosyl-(1-->2)-O-[beta-D-glucopyranosyl-(1-->3)]-beta-D-glucopyranosyl-(1-->4)-beta-D-galactopyranoside. The structural identification was performed using detailed analyses of 1H and 13C NMR spectra including 2D NMR spectroscopic techniques (COSY, HETCOR and COLOC) and chemical conversions. The haemolytic potential of the steroidal saponin was evaluated and the anti-inflammatory activity was performed using the capillary permeability assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号