首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phytase production by a thermophilic mould Sporotrichum thermophile Apinis was investigated in solid state fermentation (SSF) using sesame oil cake as the substrate. Scanning electron microscopy of the fermented sesame oil cake revealed a dense growth of the mould with abundant conidia. Glucose, ammonium sulphate and incubation period were identified as the most significant factors by Plackett-Burman design. The optimum values of the critical components determined by central composite design of response surface methodology for the maximum phytase production were glucose 3%, ammonium sulphate 0.5% and incubation period 120 h. An overall 2.6-fold improvement in phytase production was achieved due to optimization. Highest enzyme production (348.76 U/g DMR) was attained at a substrate bed depth of 1.5 cm in enamel coated metallic trays. The enzyme liberated inorganic phosphate from wheat flour and soymilk with concomitant dephytinization and liberation of soluble inorganic phosphate.  相似文献   

2.
The enzyme nitrate reductase could not be detected in leaf tissuesof cauliflower plants grown in sterile cultures with glutamicacid or ammonium sulphate if nitrate was absent. Excised leaftissues from these plants formed the enzyme for several hoursat a steady rate when infiltrated with nitrate. Plants starvedof nitrate for short periods lost enzyme activity which wasrestored in excised tissues upon infiltration with nitrate butnot with ammonium sulphate or nitrite. Molybdenum-deficientplants grown with nitrate also lacked enzyme activity whichwas restored in excised tissues after infiltration with molybdenum.Both nitrate and molybdenum were required to produce maximalrates of enzyme formation in excised tissues of plants grownwith ammonium sulphate and no molybdenum. Apparent Michaelisconstants for nitrate and molybdenum were found to be about10-5 and 10-7 respectively. The capacity of excised tissuesto respond to the inducer varied with their age and leaf positionon the plant and was exercised under conditions where growthwas unlikely. Increases in specific activities were similar.There was no evidence of a lag in response to nitrate or molybdenumwith tissues of plants grown with ammonium sulphate or glutamicacid in sterile cultures but lag periods were observed withtissues from plants deprived of nitrate. Cell-free preparationswere unable to respond to either factor. The results are interpretedas evidence for induced enzyme formation in vivo in responseto the substrate or the constituent metal.  相似文献   

3.
Anaerobically-digested sludge called fresh sludge (F), composted sludge (C) and thermally-drying sludge (T), all from the same batch, were applied to the surface of a calcareous Udic Calciustept with loamy texture. Dosage equivalent was 10 t ha(-1) of dry matter. The concentration of mineral nitrogen (ammonium and nitrate) in the soil was measured in order to estimate the effects of the post-treatments to which the different kinds of sewage sludge are subjected in relation to the availability of N in the surface layer of the soil. The most significant differences in NH(4)-N and NO(3)-N concentrations due to the transformation of the organic matter were observed during the first three weeks following soil amendment. Thermally-dried and composted sludge initially displayed higher concentrations of ammonium and nitrate in soil. Five months after the amendment, soil applied with fresh sludge showed the highest concentrations of NH(4)-N and NO(3)-N (6.1 and 36.6 mg kg(-1), respectively). It is clear that the processes of composting and thermal-drying influence the bioavailability of nitrogen from the different types of sewage sludge.  相似文献   

4.
In field experiments in Western Australia ammonium fertilisers significantly reduced the severity of root damage to wheat ( Triticum aestivum ) caused by Gaeumannomyces graminis var. tritici. A series of response lines depicting the effect of sources and rates of nitrogen on take-all are presented. In general, the higher the rate of ammonium nitrogen used, the greater the reduction in the severity of take-all. Ammonium sulphate and ammonium sulphate/mono-ammonium phosphate mixture were more effective in reducing disease than di-ammonium phosphate, urea or ammonium nitrate. Sodium nitrate did not reduce take-all.  相似文献   

5.
Rhizoctonia solani caused maximum mortality of mung bean seedlings at 20°C, and the disease incidence decreased with increase of temperature; 30° was optimum for mycelial growth of the fungusin vitro. The fungus grew best in nutrient broth of pH 5.5 but infected mung bean and pea seedlings more severely in neutral and alkaline river sand than in the sand adjusted to acidic reaction. The disease incidence was higher in adequately moist sandy loam and less in soil under moisture stress. Incidence of cowpea seedling rot was higher in heavy-textured loam and silt loam soils than in light-textured sandy- and loamy sand. Addition of montmorillonite and kaolinite in the sandy soil increased the disease incidence, but these clays reduced fungus growth in culture. More seedling rot occurred in the sandy soil fertilized with urea, potassium nitrate, monocalcium phosphate, or potassium dihydrogen phosphate while soil application of ammonium nitrate, potassium chloride, or potassium sulphate decreased the disease. In tests with combined soil application of N (as urea), P (as monocalcium phosphate) and K (as potassium chloride), disease incidence was more in all combinations having P. Among the six micronutrients tested, only boron reduced the disease incidence significantly both in presence and absence of NPK fertilizers. Farm-yard manure and biogas sludge aggravated seedling rot but their water extracts decreased it. Humic acid, extracted from farm-yard manure, increased the disease incidence but was inhibitory to fungus growth in culture. Green manure also resulted in more disease.  相似文献   

6.
Summary A study of the inorganic amendments (N, P and K) to soil, and their effect on the rhizosphere microflora, as well as their relation to the control of wilt of antirrhinum plants caused byVerticillium dahliae Kleb. was done. Ammonium sulphate was the only chemical found to be significantly inhibitory toV. dahliae in vitro. Soil amendments (NPK) affected the rhizosphere microorganisms of the antirrhinum plants. Higher concentration of the chemicals were phytotoxic. It was further observed that ammonium sulphate, and the combined chemicals (NPK 25%) in soil delayed the senescence in healthy plants, suggests that chemical fertilisers affected the host plants directly. Addition of ammonium sulphate (0.25%), calcium nitrate (0.25%, 0.5%) combined NPK (0.25%) to soil caused considerable reduction in disease severity. It is assumed that this reduction may be caused by the (1) fungitoxic nature of the chemicali.e. ammonium sulphate, (2) antagonistic environment for the pathogen in the rhizosphere was boostedi.e. where calcium nitrate was added as soil amendments and (3) reduction in disease severity in soil-amended with combined NPK, may be due to the fact that antagonistic actinomycete population was boosted in the rhizosphere.  相似文献   

7.
Response of conifer seedlings to nitrate and ammonium sources of nitrogen   总被引:3,自引:0,他引:3  
Summary Differences in growth responses of Douglas fir, western hemlock, Sitka spruce, and white spruce to nitrate and ammonium N sources were examined in sand culture and artificial soil culture. Effects of the two forms of N on growth, needle area, and N uptake of three Douglas fir halb-sib progenies were examined in a second sand culture. Response of Douglas fir to the two forms of N was followed over two years in nursery soil of different pH levels. In sand culture 1 mean seedling dry weight of all species, except hemlock, was greatest when ammonium N and nitrate N were provided in equal amounts. In all species, except Sitka spruce, ammonium alone resulted in greater growth than nitrate alone. Use of ammonium N resulted in greater growth of all species, than was obtained with nitrate N, at pH values in the region 5.4 and 7.5 in artificial soil culture. Only Douglas fir showed substantial differences due to N source below pH 5. Growth of all species was greater at pH 5.4 than at 7.5 in each N source treatment. Growth of Douglas fir seedlings was greatest with ammonium N and least with nitrate N in sand culture 2. Supply of nitrate and ammonium in equal proportions resulted in intermediate growth. Leaf area/plant weight ratio was unaffected by N source. Analysis of nutrient solutions showed appreciable nitrification of ammonium N during the 7 days between solution changes. In the three greenhouse experiments, with little exception, increase in proportion of ammonium in N supply resulted in increase of seedling tissue N concentration. This effect was more pronounced in roots than shoots. Total N uptake by ammonium fed seedlings was about double the N uptake of nitrate fed seedlings in sand culture 2. Nursery grown Douglas fir seedlings showed greater growth response to ammonium sulphate than to calcium nitrate, and this appeared due entirely to form of N supply in the first year. A similar response in the second year was partly due to greater soil acidification by ammonium sulphate. Compared with calcium nitrate, ammonium sulphate increased N concentration of one-year old shoots, but this difference was not detected by foliar analysis of two-year old seedlings.  相似文献   

8.
Lee  R. B. 《Annals of botany》1993,72(3):223-230
Rates of influx and net uptake of nitrate, phosphate and sulphatewere measured in intact barley plants, and concurrent effluxwas obtained by difference. Net uptake of these anions variedwidely depending on the nutrient status of the plants, and thedifferences in net uptake could be accounted for almost entirelyby changes in influx. Efflux played only a minor role in regulatingnet uptake of nitrate, phosphate or sulphate during recoveryfrom N-, P-, or S-deficiency. Nitrate influx and short-term ammonium absorption by N-deficientbarley plants were closely correlated, and varied in parallelwith rates of net uptake of nitrate or ammonium by similar plants.Again, it would seem that net uptake of ammonium is controlledpredominantly by changes in the rate of influx.Copyright 1993,1999 Academic Press Hordeum vulgare, barley, nutrient absorption, influx, nitrate, phosphate, sulphate, ammonium  相似文献   

9.
S. K. Hasija 《Mycopathologia》1966,28(1-2):102-106
Summary Nitrogen and sulphur requirements ofColletotrichum inamdarii Lal isolated from the leaves ofCarissa carandas L. have been studied. DL-serine, L-asparagine and L-phenylalanine have been found to be of good nitrogen source followed by potassium nitrate, calcium nitrate, magnesium nitrate, DL-alanine, ammonium nitrate, glutamic acid, ammonium sulphate, DL-valine, aspartic acid, ammonium chloride, ammonium hydrogencarbonate, L-histidine and potassium nitrite. There was no growth in the absence of nitrogen.Sporulation was excellent on calcium nitrate and sodium nitrate, Very good on DL-serine, potassium nitrate, and magnesium nitrate. Good on L-asparagine, L-phenylalanine and ammonium oxalate. Fair on DL-alanine, DL-leucine, ammonium sulphate, DL-valine, ammonium chloride and L-histidine whereas poor on glutamic acid, aspartic acid, ammonium tartarate and ammonium nitrate. Few spores were observed on ammonium hydrogencarbonate but potassium nitrite did not show any sporulation.Amongst the sulphur compounds sodium bisulphate gave the best growth and good sporulation, followed by sodium thiosulphate, magnesium sulphate, ammonium sulphate and potassium sulphate. Thiourea gave negligible growth whereas it failed to grow on zinc sulphate and potassium persulphate.  相似文献   

10.
Summary Lodgepole pine (Pinus contorta Dougl.), Engelmann spruce (Picea engelmanni Parry), and Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings were grown in open-ended tube cultures of sand and perlite, irrigated with nitrate, ammonium, and a 1∶1 mixture of ammonium and nitrate, combined factorially with pH values of 4.6, 5.3 and 6.0 giving a total of nine treatments. Douglas-fir showed intolerance to ammonium which was especially marked in root weight. Lodgepole pine and Engelmann spruce made poor growth with nitrate, but showed little difference between ammonium and mixed sources. Only Douglas-fir showed a significant response to pH treatments with pH 5.3 plants being largest. Contamination of the sand with carbonate-bicarbonate, apparently caused seedlings grown in ammonium solutions to be larger in sand than in perlite. Douglas-fir grown in perlite cultures showed a growth response like the first experiment and nitrate reductase activity in the order nitrate > nitrateammonium mixture > ammonium. Plastic bead cultures had poor growth response due to low retention of water by the substrate, but the nitrate reductase assays produced results like the perlite cultures. Lodgepole pine grown in water culture demonstrated the well known pH shift associated with different nitrogen forms, and when assayed for nitrate reductase these seedlings had larger relative activities than Douglas-fir, but the order of activity remained nitrate > mixed source > ammonium.  相似文献   

11.
E. Shedley  B. Dell  T. Grove 《Plant and Soil》1995,177(2):183-189
The relationship between shoot growth and foliar nitrogen (N) in E. globulus seedlings was studied in the glasshouse to determine standard values for N deficiency and toxicity diagnosis. Seedlings were grown for 9 weeks in yellow sand, at 10 rates of N, applied as ammonium sulphate, calcium nitrate or ammonium nitrate. Shoot dry weight (DW) increased linearly with N rate for all forms of N in the deficiency range. Seedlings continued to respond to higher rates of ammonium and ammonium nitrate than to nitrate. Maximum shoot DW for nitrate fed plants and ammonium nitrate fed plants were 51% and 84% respectively of ammonium fed plants. Total N concentration in the youngest fully expanded leaf (YFEL) ranged from 1.0% to 3.3% in deficient and adequate plants. The critical N concentration for deficiency diagnosis (corresponding to 90% maximum yield) in the YFEL, determined from these growth response curves averaged over all N forms, was 2.6% N. For ammonium nitrate fed plants, total N concentration in the YFEL for the severely deficient, deficient, adequate, and toxic ranges were <1.4%, 1.4–2.5%, 2.6–3.5%, > 4.3%. High total N concentrations were associated with growth depression and toxicity symptoms, which differed with N form. For nitrate fed plants, a total N concentration above 3.3% in the YFEL was associated with severe growth depression, and leaf tip necrosis. The adequate concentration range for ammonium nitrate was similar to values found on a field trial with 7 month old E. globulus trees grown on an exforest site.  相似文献   

12.
Although phosphate concentrations have been reduced, the rivers Meuse and Rhine are still polluted with sulphate, which most probably affects vegetation development in newly created riverine wetlands. The influence of flooding with river water rich in sulphate was tested on three soil types from floodplains of the river Meuse using flow-through and batch experiments. Soils were selected for contrasting concentrations of iron and organic matter and originated from a floating fen (iron-poor, organic), an alder carr (iron-rich, organic) and a clay pit (iron-rich, low in organic matter). Flooding induced mobilisation of phosphate. Sulphate only enhanced this effect in the alder carr soil, where sulphide and phosphate competed for binding to iron. Only in the floating fen soil did the addition of sulphate result in the formation of free sulphide, which reduced the growth of Glyceria maxima, serving as a phytometer. In addition, the floating soil started to sink, due to falling methane concentrations. In the different soil types methane production was hampered by the presence of more favourable electron acceptors such as sulphate in the water and Fe(III) in the soil. It was concluded that the effects of inundation with sulphate-polluted water strongly depend on the soil type: under iron-poor circumstances, free sulphide may accumulate, leading to phytotoxicity, while in soils rich in iron, sulphide toxicity is prevented, but phosphate availability may be increased. In addition, shortage of easily degradable organic matter can limit the formation of potential toxicants such as ammonium, iron and sulphide. Results are discussed in terms of their implications for nature management.  相似文献   

13.
The severe deficiency of iron or ferric chlorosis is a serious problem of most citrus trees established in calcareous soils, as a result of the low availability of iron in these soils and the poor uptake and limited transport of this nutrient in trees. The objective of this study was to evaluate the response of chlorotic Italian lemon trees (Citrus lemon) to the application of iron compounds to roots and stems. On comparing the effects of aqueous solutions of ferric citrate, ferrous sulphate and FeEDDHA chelate, applied to 20% of the roots grown in soil and sand, of trees that were planted in pots containing calcareous soil, it was observed that the chelate fully corrected ferric chlorosis, while citrate and sulphate did not solve the problem. EDDHA induced the root uptake of iron as well as the movement of the nutrient up to the leaves. With the use of injections of ferric solutions into the secondary stem of adult trees, ferric citrate corrected chlorosis but ferrous sulphate did not. The citrate ion expanded the mobility of iron within the plant, from the injection points up to the leaves, whereas the sulphate ion did not sufficiently improve the movement of iron towards the leaf mesophyll.  相似文献   

14.
Effects of applications of a mixture of ammonium sulphate and mono-ammonium phosphate and of ammonium nitrate on the incidence of take-all disease of wheat (caused by Gaeumannomyces graminis var. tritici) and on subsequent inoculum levels were studied in field and glasshouse experiments. In a field experiment in Western Australia, on a sandy soil at pH 5·4, nitrogen applications had no detectable effect on disease severity at anthesis, but ammonium sulphate treatment increased the number of propagules of the pathogen in the soil. In a pot experiment, in which seed was sown in the field experiment soils, disease was greater in soil from plots treated with ammonium sulphate and least in soil from the nil-nitrogen plots, reflecting the respective inoculum levels in the field plot. However, treatment of the soils of lower inoculum with ammonium sulphate and ammonium nitrate during this pot experiment decreased disease. A second pot experiment confirmed the effectiveness of ammonium sulphate and ammonium nitrate in reducing take-all at lower inoculum levels, and their ineffectiveness at higher inoculum levels.  相似文献   

15.
The present study aimed to experimentally quantify the influence of a reduction of surface sediment permeability on microbial characteristics and ecological processes (respiration and leaf litter decomposition) occurring in the hyporheic zone (i.e. the sedimentary interface between surface water and groundwater). The physical structure of the water–sediment interface was manipulated by adding a 2-cm layer of coarse sand (unclogged systems) or fine sand (clogged systems) at the sediment surface of slow filtration columns filled with a heterogeneous gravel/sand sedimentary matrix. The influence of clogging was quantified through measurements of hydraulic conductivity, water chemistry, microbial abundances and activities and associated processes (decomposition of alder leaf litter inserted at a depth of 9 cm in sediments, oxygen and nitrate consumption by microorganisms). Fine sand deposits drastically reduced hydraulic conductivity (by around 8-fold in comparison with unclogged systems topped by coarse sand) and associated water flow, leading to a sharp decrease in oxygen (reaching less than 1 mg L−1 at 3 cm depth) and nitrate concentrations with depth in sediments. The shift from aerobic to anaerobic conditions in clogged systems favoured the establishment of denitrifying bacteria living on sediments. Analyses performed on buried leaf litter showed a reduction by 30% of organic matter decomposition in clogged systems in comparison with unclogged systems. This reduction was linked to a negative influence of clogging on the activities and abundances of leaf-associated microorganisms. Finally, our study clearly demonstrated that microbial processes involved in organic matter decomposition were dependent on hydraulic conductivity and oxygen availability in the hyporheic zone.  相似文献   

16.
The uptake of nitrate, sulphate, phosphate, and potassium from a nutrient solution by young alder trees (Alnus glutinosa) was reduced during hypoxia. Such a decrease of ion uptake was not observed when the internal oxygen supply of the tree roots was improved by pressurized gas transport. These results demonstrate the beneficial effect of this gas transport phenomenon on the nutrition of trees growing on wet sites characterized by anaerobic soil.  相似文献   

17.
Zhu  Y-G  He  Y-Q  Smith  S E  Smith  F A 《Plant and Soil》2002,239(1):1-8
Two experiments were carried out in a growth chamber to investigate the phosphorus (P)-uptake efficiency of Fagopyrum esculentum Moench (buckwheat) and Triticum aestivum (spring wheat) from a Ca-bound form. The first experiment was based on a sand-culture system with either rock phosphate (RP) or CaHPO4 (CaHP) as the P source and nitrate or ammonium nitrate as nitrogen source. A highly calcareous soil was used in the second experiment. Buckwheat was shown to be highly efficient in taking up Ca-bound P compared to spring wheat. When plants were supplied with nitrate, the total P uptake by buckwheat from RP was nearly 10-fold higher than that of spring wheat (20.1 compared with 2.1 mg P pot–1). Changing nitrogen source from nitrate only to ammonium nitrate increased P uptake by spring wheat substantially, but not buckwheat. High P-uptake efficiency of buckwheat was also demonstrated using the field soil, but to a lesser extent, which may be related to the difference in Zn supply between sand culture and field soil. It is suggested that buckwheat may be included in intercropping or crop rotation systems to activate P sources in calcareous soils. The principal mechanism of P uptake efficiency of buckwheat may be its ability to acidify the rhizosphere; however, further study is needed to unravel the regulation of root excretion of H+ and its molecular basis in order to exploit buckwheat's genetic capability to utilise sparingly soluble P from soil.  相似文献   

18.
Summary Azotobacter chroococcum, an aerobic nitrogen-fixer, was counted during 1955–1958, and in 1962, in soil samples taken from nine plots from Broadbalk field at Rothamsted. In the fallow sections of the plots, and in sections carrying the fourth successive wheat crop, Azotobacter were few, especially in the plots given ammonium sulphate every year. Azotobacter numbers increased after fallowing. In cropped sections, Azotobacter were fewest in the plot with nitrogen only. With nitrogen and phosphate but no potash they were fewer than in the plots without nitrogen. The most Azotobacter were in the plots with nitrogen, phosphate and potash. These trends are correlated with yield, but Azotobacter were too few (ranging from <100 to a maximum of 9400 per gram soil) to fix enough nitrogen to affect crop growth.  相似文献   

19.
R. C. Jee  S. K. De 《Plant and Soil》1968,29(2):335-337
Summary Phosphate fixation by kaolinite, muscovite, phlogopite, biotite and vermiculite from aqueous systems in presence of different quantities of ammonium sulphate, ammonium nitrate and ammonium chloride, have been studied. It is observed that the ammonium salts induce graeter phosphate fixation in presence of kaolinite and partly in presence of phlogopite, biotite and vermiculite.  相似文献   

20.
One-year old nectarine trees [Prunus persica, Batsch var. nectarina (Ait.) Maxim.], cv Nectaross grafted on P.S.B2 peach seedlings [Prunus persica (L.) Batsch] were grown for five months in 4-litre pots filled with two alkaline soils, one of which was also calcareous. Soils were regularly subjected to fertigation with either ammonium sulphate or calcium nitrate providing a total of 550 mg N/tree. Trees were also grown in such soils receiving only deionized water, as controls. Rhizosphere pH, measured by the use of a microelectrode inserted in agar sheet containing a bromocresol purple as pH indicator and placed on selected roots, was decreased by about 2–3 units compared to the bulk soil pH in all treatments. This decrease was slightly less marked when plants were supplied with calcium nitrate rather than ammonium sulphate or control. Measurements conducted during the course of the experiment indicated that ammonium concentration was similar in the solution of soils receiving the two N fertilizers. During the experiment, soil solution nitrate-N averaged 115 mg L–1 in soil fertilized with calcium nitrate, 68 mg L–1 in those receiving ammonium sulphate and 1 mg L–1 in control soils. At the end of the experiment nitrate concentrations were similar in soils receiving the two N sources and bulk soil pH was decreased by about 0.4 units by ammonium sulphate fertigation: these evidences suggest a rapid soil nitriflcation activity of added ammonium. Symptoms of interveinal chlorosis in apical leaves appeared during the course of the experiment in trees planted in the alkaline-calcareous soil when calcium nitrate was added. The slightly higher rhizosphere pH for calcium nitrate-fed plants may have contributed to this. The findings suggest that using ammonium sulphate in a liquid form (e.g. by fertigation) in high-pH soils leads to their acidification and the micronutrient availability may be improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号