首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A protocol was developed for high frequency somatic embryogenesis and plant regeneration from cotyledon and hypocotyl explants of Eruca sativa. Explants grown on Murashige and Skoog (MS) medium supplemented with 4.52 μM 2,4-D formed embryogenic callus after 4 wk of culture. Secondary somatic embryos were also produced from primary somatic embryos on MS medium containing 0.56 μM 2,4-D. Somatic embryos developed into mature embryos on MS medium in the presence of 45 gl−1 polyethylene glycol. After desiccation, somatic embryos developed into plantlets by culturing the mature somatic embryos on 1/2 x MS medium containing 0.24 μM indole-3-butyric acid.  相似文献   

2.
This study was designed to evaluate the effect of phytohormones on plant regeneration from epicotyl and hypocotyl explants of two groundnut (Arachis hypogaea) cultivars. Explants cultured on media with auxins and in combination with cytokinin produced high frequency of callus. After four weeks, callus from these cultures was transferred to medium with cytokinin and reduced auxin, shoot buds regenerated from the cultures. A high rate of shoot bud regeneration was observed on medium supplemented with 2.0 mg/L BAP and 0.5 mg/L NAA. Among the different auxins tested, NAA was found to be most effective, producing the highest frequency of shoot buds per responding cultures. Of the two explants tested, epicotyl was found to be best for high frequency shoot bud regeneration. Multiple shoots arose on MS medium supplemented with BAP or kinetin (1.0–5.0 mg/L) plus IBA (1.0 mg/L), with maximum production occurring at 5.0 mg/L. The elongated shoots developed rootsin vitro upon transfer to MS medium supplemented with NAA or IBA (0.5–2.0 mg/L) and kinetin (0.5 mg/L) for 15 days.In vitro produced plantlets, were transferred to soil and placed in a glasshouse developed successfully, matured, and set seeds.  相似文献   

3.
Somatic embryogenesis and whole plant regeneration were achieved in callus cultures derived from hypocotyl, cotyledon and leaf explants excised from seedlings of Gymnema sylvestre. Embryogenic callus was induced on Murashige and Skoog (MS) medium containing 2,4-D (0.5–5.0 M) +BA (0.5–2.0 M) and 2% (w/v) sucrose in 6–8 weeks of culture. Globular/heart stage embryos developed on induction medium. These embryos produced torpedo and cotyledon stage embryos upon sub-culturing on embryo maturation medium EM8 (medium containing MS salts, B5 vitamins, 0.5 M BA and 2% sucrose). Embryo germination and plantlet formation was achieved by sub-culturing mature embryos on fresh EM8 medium. The plantlets were acclimatized in the greenhouse.  相似文献   

4.
Several plant growth regulators BA, TDZ, 2,4- and Kn were tested alone or in combination for their capacity to induce indirect somatic embryogenesis from leaf and internode explants of Paulownia elongata. Calli were produced when leaf explants were cultured on Murashige and Skoog (MS) medium containing 3 % sucrose, 0.4 % phytagel, 4 mg l-1 TDZ and 0.1 mg l-1 Kn after 3 weeks and the initiation rate was 54.1%. After subculturing on the same medium, embryos at various developmental stages (globular, heart and torpedo shaped) were transferred for maturation onto MS medium supplemented with 3 % sucrose, 0.4 % phytagel, 0.1 mg l-1 TDZ, 1 mg l-1 Kn and 2 mM glutamine. An average of 50.7 somatic embryos were obtained from 100 mg of embryogenic callus after 4 weeks at high frequency (64.7 %). Afterward, mature somatic embryos were isolated and cultured on hormone-free MS medium for germination (80 %) and development into plantlets. Plantlets were transferred to pots with a mixture of peat and perlite in a 3:1 ratio and showed a survival rate of 70–80 %. Plantlets regenerated by this procedure were morphologically identical to the donor material and developed normally in the greenhouse.  相似文献   

5.
In vitro somatic embryogenesis and subsequent plant regeneration was achieved in callus cultures derived from immature zygotic embryos of Acacia arabica on semi-solid Murashige and Skoog (MS) basal salts and vitamins supplemented with 8.88 MBA, 6.78 M2,4-D and 30 g l–1 (w/v) sucrose. Somatic embryos proliferated rapidly by secondary somatic embryogenesis after transfer to MS medium supplemented with 6.66 M BA, 6.78 M 2,4-D. The maximum number of somatic embryos per callus was 72.6 after 8 weeks of culture on medium containing 6.66 M BA and 6.78 M 2,4-D. The isolated somatic embryos germinated on half-strength basal MS salts and vitamins supplemented with 0.04 M BA, 0.94 M ABA and 2% (w/v) sucrose. The embryo-derived plantlets were acclimatized in the greenhouse and subsequently showed normal growth.  相似文献   

6.
An efficient protocol of direct somatic embryogenesis (without involving intermediate callus) has been developed from stem segments and shoot tips of Capsicum annuum L. Explants were cultured on Murashige and Skoog (MS) medium supplemented with thidiazuron (TDZ). Among the various concentration of TDZ tested, 0.5 μM was proved to be best for induction of somatic embryos. Induction, maturation and germination were achieved on the same medium. The shoots developed from somatic embryos were transferred for rooting to MS medium supplemented with indole-3-butyric acid (IBA). All the regenerated plants with 85 % survival rate were normal with respect to morphology and growth characteristics.  相似文献   

7.
 The effects of 11 different auxins and one cytokinin-like compound were tested at four concentrations for their ability to induce primary and repetitive somatic embryos from mature, dry peanut (Arachis hypogaea L.) epicotyls of genotype AT120. Treatment with picloram and centrophenoxine at 83.0 and 124.4 μm resulted in the greatest number of embryos per explant and the highest percentage of explants responding. In a follow-up experiment, picloram, centrophenoxine, and dicamba were tested at 83.0 and 124.4 μm on four peanut genotypes (AT120, 59-4144, GK7, and VC1). Picloram and centrophenoxine induced similar numbers of globular-stage and total embryos from each genotype, while dicamba was less effective. Similar results were observed with percentage of responding axes. Genotypes AT120 and VC1 yielded more clusters of repetitive embryos than GK7 and 59-4144. After 5 months, embryos derived from repetitive embryogenic cultures were converted into mature plants. Received: 8 February 1999 / Revision received: 9 June 1999 / Accepted: 30 June 1999  相似文献   

8.
Improvement in somatic embryogenesis has been achieved in several cotton lines (Gossypium hirsutumL.) from the Georgia and Pee Dee germplasm with culture media containing various Putrescine concentrations. The best results were obtained with the -naphthalene acetic acid (NAA)-based treatments, S15 g.05 NAA and EMMS2, as compared to the 2,4-dichlorophenoxyacetic acid (2,4-D)-based culture medium, EMMS4. Inclusion of 0.5 mg l–1 Putrescine improved somatic embryo (SE) induction for most treatments and lines tested. An 8-and 2-fold improvement was achieved in SE production on the EMMS2-0.5 Putrescine treatment as compared to EMMS2 alone for cotton lines PD 97019 and GA 98033, respectively. A significant increase in SE number (53-fold) was obtained with the addition of 0.5 mg l–1Putrescine to EMMS2 for PD 97021, which was essentially recalcitrant without Putrescine treatment. Conversion of SEs into plants was both genotype- and culture medium-dependent.  相似文献   

9.
Optimized somatic embryogenesis in Pinus strobus L.   总被引:5,自引:0,他引:5  
Summary Somatic embryogenesis (SE) initiation in Pinus strobus was optimized by the manipulation of plant growth regulator (PGR) concentrations in the culture medium. Modified Litvay medium (MLV) of Litvay et al. (1985) supplemented with lower than routinely used PGR concentration increased initiation of established embryogenic cultures from approximately 20 to 53%. The original developmental stage of zygotic embryos had a pronounced effect on the SE response. The optimum stage was the pre- to shortly post-cleavage stage. A substantial genetic influence on initiation of SE was indicated by a significant variance component due to families. Genotype X collection date and genotype X media interactions had large effects on initiation of SE. The PGR levels in the culture medium prior to maturation had a significant effect on subsequent production of mature somatic embryos. Embryogenic tissue initiated and proliferated on medium with a low level of PGR consistently produced a high number of somatic embryos, indicating that optimized initiation protocol also enhanced somatic embryo production. Somatic embryos of 93 embryogenic lines (representing five families) that were initiated on media with different PGR concentrations were converted to plants at an overall frequency of 76%, and grown in the greenhouse. With these improved protocols, application of P. strobus SE in commercial clonal forestry is feasible as an alternative to traditional breeding and reforestation.  相似文献   

10.
Somatic embryos were obtained from immature zygotic embryos of Cedrela fissilis Well. (Meliaceae), after a culture period of 12 months, with regular subcultures every 6–8 weeks. Callus was developed on explants in 2 months on Murashige and Skoog (MS) medium containing 2,4 dichlorophenoxyacetic acid (2,4-D) or picloram (PIC). When the calli were transferred to fresh medium, embryogenic tissue appeared on MS + 45 μM 2,4-D, or 22.5 μM 2,4-D + 0.4 μM 6-benzyladenine (BA), or 20.7 μM PIC after 6 months. Sub-culture of embryogenic tissue in MS medium supplemented with 4.5 μM 2,4-D resulted in the differentiation into somatic embryos after further 4 months. Repeated secondary somatic embryogenesis was achieved by regular subculture on this medium. Maturation and conversion of somatic embryos into plantlets was achieved on MS medium without plant growth regulators and the conversion frequency was approximately 12.5 %. The plantlets were successfully acclimatized in pots with soil. Histological studies showed that somatic embryos had no detectable connection with the mother explants and that somatic embryos in advanced stages were bipolar with shoot and root apical meristems, they contained vascular system and showed typical characteristics of a somatic dicotyledonous embryo.  相似文献   

11.
 An efficient plant regeneration procedure has been established from hypocotyl explants of the common ice plant, Mesembryanthemum crystallinum L, a halophytic leaf succulent that exhibits a stress-induced switch from C3 photosynthesis to crassulacean acid metabolism (CAM). Somatic embryos were initiated and developed up to globular and heart stages in Murashige and Skoog (MS) media supplemented with 3% sucrose, 0.6% bacto-agar, 80 mM NaCl, 5 μM 2,4-D and 1 μM kinetin. High frequency regeneration occurred when somatic embryos were germinated on media that lacked 2,4-D. High cytokinin treatment suppressed normal growth of embryos and favored abnormal embryo proliferation. Without growth regulators, regenerated plants rooted on MS medium with 100% efficiency. Mature, regenerated plants were fertile and morphologically identical to seed-derived plants. Received: 29 April 1999 / Revision received: 2 July 1999 · Accepted: 12 July 1999  相似文献   

12.
 Stem segments of seedlings from two Alstroemeria breeding lines, cultured on media supplemented with 4 mg/l 2,4-dichlorophenoxyacetic acid and 0.5–1.0 mg/l 6-benzylaminopurine (BA), initiated soft callus, which became compact after subculture on a medium with only 0.5 mg/l BA. Friable embryogenic calli were initiated from compact callus on a medium supplemented with 10 mg/l picloram. Proembryos developed from friable embryogenic calli via embryos into plants after subculture on medium supplemented with 0.1 mg/l BA. The proembryos formed friable embryogenic calli again after culture on medium supplemented with 10 mg/l picloram. The total time needed to regenerate a complete plantlet from friable callus was approximately 6 months. This system for the production of embryogenic material is considered to have valuable applications for genetic transformation in Alstroemeria. Received: 22 April 1999 / Revision received: 16 July 1999 · Accepted: 20 July 1999  相似文献   

13.
Summary Embryogenic callus was induced from primary leaves of Vigna unguiculata (L.) Walp. in MS medium (Murashige and Skoog, 1962) containing 2,4-dichlorophenoxyacetic acid (2,4-D). Greenish-white, friable embryogenic calluses were used to establish suspension cultures. A shaking speed of 90 rpm and 0.4 ml packed cell volume per 25 ml medium were found to be optimal for maintaining suspension cultures. Globular, heart-shaped and torpedo-shaped embryos were developed in suspension culture containing 4.52 μM 2,4-D. Maturation of cotyledonary-stage somatic embryos was achieved on 0.05 μM 2,4-D, 5 μM abscisic acid and 3% mannitol. Twenty-two percent of the embryos were converted into plants and survived; survival in the field was 8–10%.  相似文献   

14.
以Sb33高粱非胚性、胚性愈伤组织和体胚为材料,用传统石蜡切片法对各组织材料进行组织化学染色,对高粱胚性与非胚性愈伤组织以及体胚进行组织细胞学观察。结果表明:高粱非胚性愈伤组织无淀粉粒积累,高粱胚性愈伤组织淀粉粒积累较多,而与胚性愈伤组织相比,高粱体胚淀粉粒积累更多,这说明淀粉粒的积累与高粱体细胞的胚胎发生密切相关。此外,高粱可通过鱼雷胚基部产生球形胚的方式实现体胚的增殖,高粱离体再生途径以体细胞胚发生为主,并同时存在少量器官发生途径。在高粱体细胞胚胎发生中,外起源和内起源同时存在。本研究为高粱体细胞胚胎发生提供细胞学理论基础。  相似文献   

15.
Summary The potential of somatic embryogenesis was evaluated for 10 cultivars of sweet potato through extensive embryogenic response and isozyme analysis. Embryogenic callus was induced by incubating lateral buds on Murashige and Skoog medium containing 10 M 2,4-dichlorophenoxyacetic acid for 6–8 weeks. The frequency of embryogenic response was low, and varied with genotypes, ranging from 0 to 17%. Embryo to plantlet formation could be enhanced by the use of the combination of 2,4-dichlorophenoxyacetic acid with kinetin, both used at 0.01 M. Embryogenic callus with its potential of plantlet formation has constantly been maintained for over two years. However, after several subcultures, 0.5 to 12% of embryogenic callus reverted irreversibly into friable fast-growing non-embryogenic callus whose ability to regenerate shoots was then definitively lost. The isozymes of esterase, peroxidase, glutamate oxaloacetate transaminase and acid phosphatase investigated in this study were found appropriate to distinguish compact embryogenic from friable non-embryogenic callus in sweet potato. In fact, the callus reversion was associated with a loss of bands or a decline in isozyme activity. On the contrary, very small changes in isozyme activity or no specific changes at all were observed during the differentiation of embryogenic callus into globular embryos.Abbreviations Acp acid phosphatase - BAP 6-benzylaminopurine - cv cultivar - df degree of freedom - 2,4-D 2,4-dichlorophenoxyacetic acid - Est esterase - Got glutamate oxaloacetate transaminase - IAA indole-3-acetic acid - MS Murashige and Skoog (1962) medium - Prx peroxidase - Tris tris(hydroxymethyl)aminomethane  相似文献   

16.
Efficient plant regeneration through somatic embryogenesis was established for safflower (Carthamus tinctorius L.) cv. NARI-6. Embryogenic calli were induced from 10 to 17-d-old cotyledon and leaf explants from in vitro seedlings. High frequency (94.3 %) embryogenic callus was obtained from cotyledon explants cultured on Murashige and Skoog’s germination (MSG) basal medium supplemented with thidiazuron, 2-isopentenyladenine and indole-3-butyric acid. Primary, secondary and cyclic somatic embryos were formed from embryogenic calli in a different media free of plant growth regulators, however, 100 % cyclic somatic embryogenesis was obtained from cotyledon derived embryogenic calli cultured on MSG. Somatic embryos matured and germinated in quarter-strength MSG medium supplemented with gibberellic acid. Cotyledons with root poles or non root poles were converted to normal plantlets and produced adventitious roots in rooting medium. Rooted plants were acclimatized and successfully transferred to the field.  相似文献   

17.
 Callus induction, somatic embryogenesis and plant regeneration were obtained in six different citrus species [Citrus deliciosa Ten. (cv 'Avana'), C.limon (L.) Burm. (cv 'Berna'), C.madurensis Lour. (cv 'CNR P9'), C.medica L. (cv 'Cedro di Trabia'), C.tardiva Hort. ex Tan. (cv 'CNR P6'), C.sinensis (L.) Osb. (cv 'Ugdulena 7')] from cultures of pistil transverse thin cell layer explants [(t)TCL]. Explants were cultured on three different media: the nutrients and vitamins of Murashige and Skoog medium alone (MS) or MS supplemented with either 500 mg l–1 malt extract (MS I) or 500 mg l–1 malt extract and 13.3 μM 6-benzylaminopurine (MS II). Sucrose (146 mM) was used as the carbon source. Somatic embryos were visible 2–5 months after culture initiation. The different genotypes showed a different embryogenic frequency from stigma, style and ovary (t)TCL explants. All of the cultivars regenerated somatic embryos. Percentages of style (t)TCL explants producing somatic embryos ranged from 0% (C.deliciosa, C.madurensis, C.sinensis and C.tardiva on the three different media) to 5.2% (C.limon on MS II). Embryo formation in stigma (t)TCL explants ranged from 0% (C.madurensis on MS and MS I, C.sinensis on MS, C.deliciosa and C.tardiva on the three different media) to 42.4% (C.limon on MS II). Embryo formation in ovary (t)TCL explants ranged from 0% (C.deliciosa on MS, C.limon, C.medica, and C.sinensis on the three different media) to 9.3% (C.tardiva on MS I). After about 12 weeks somatic embryos developed into plantlets at a high frequency. Received: 22 September 1998 / Revision received: 6 November 1998 / Accepted: 23 November 1998  相似文献   

18.
Duckweed(Lemna gibba) is a useful model system for elucidating plant development, but the techniques needed for regenerating fronds from calli are not yet well established. This study examined the effects of auxin, sucrose, and gelling agents on callus and frond formation inL. gibba G3. After three weeks of culturing on a solid medium, two types of calli were observed: watery, pale-green, and undifferentiated; or white, compact calli that were organized into nodules and which resembled somatic embryogenie calli. Homogeneous callus lines were produced through selective subculture. To induce nodular calli, auxin (2,4-D) was absolutely required, with an effective concentration of 5 to 20 μM; induction was found to be possible with up to a maximum concentration of 4.4%. The calli were then maintained on a medium with a reduced 2,4-D concentration (1 μM), and were transferred every three weeks. Optimal callus induction and growth were obtained by using 3% sucrose with a combination of 0.15% Gelrite and 0.4% agar. Fronds, however, could be regenerated only on distilled water solidified with a combination of 0.4% agar and 0.15% Gelrite. On this medium, 87% of the callus expiants regenerated into fronds after four weeks of culture. These new fronds were morphologically normal but small, approximately 15 to 20% of the size of stock fronds. Continued culture of these fronds in an SH medium produced normal duckweeds, and histological examination of the cultures revealed several distinct types of callus nodules. Nonetheless, because zygotic embryogenesis inL. gibba does not produce distinct bipolar structures, the developmental pathway of frond regeneration from these nodular cultures remains unknown.  相似文献   

19.
Summary Efficient plant regeneration systems via somatic embryogenesis have been developed for Acacia farnesiana and Acacia schaffneri [Leguminosae (Mimosoideae)]. The protocol used in this study consisted of placing immature, zygotic embryos of these species in Murashige and Skoog semi-solid basal medium supplemented with 9.05 μM 2,4-dichlorophenoxyacetic acid (2,4-D) and 4.65 μM kinetin to induce callus. Some parts of the callus were used for direct embryo differentiation and others for establishment of cell suspension cultures. In the first case, somatic embryos were produced on semi-solid differentiation media without growth regulators or with abscisic acid (ABA). The higher number of somatic embryos, 345 and 198 embryos per g callus in A. farnesiana and A. schaffneri, respectively was obtained in media without growth regulators, but adding ABA increased the percentage of embryos that reached more advanced differentiation stages. The production of somatic embryos was achieved starting from cell suspensions only when these suspensions were plated into the semi-solid differentiation medium. Somatic embryos germinated on medium containing 217 μM adenine sulfate with efficiencies of 69% in A. farnesiana and 47% in A. schaffneri. Some somatic embryos that developed into plantlets were acclimatized in the greenhouse, and they grew into normal plants.  相似文献   

20.
 The development of a rapid protocol for high-efficiency somatic embryogenesis and plant regeneration from seed-derived embryogenic callus cultures of California poppy (Eschscholzia californica Cham.) is reported. The optimized procedure required less than 13 weeks from the initiation of seed cultures to the recovery of plantlets and involved the sequential transfer of cultures onto solid Murashige and Skoog basal medium containing three different combinations of growth regulators. All steps were performed at 25  °C. Friable primary callus was induced from seeds of E. californica cultured on medium supplemented with 1.0 mg l−1 2,4-dichlorophenoxyacetic acid. The primary callus was transferred to medium containing 1.0 mg l−1 1-naphthaleneacetic acid and 0.5 mg l−1 6-benzylaminopurine to establish embryogenic callus and promote somatic embryogenesis. Regenerated plantlets were recovered after the conversion of somatic embryos on medium containing 0.05 mg l−1 6-benzylaminopurine and showed normal development. Embryogenic callus was induced at a frequency of 85%, an average of 45 somatic embryos were produced per callus, 90% of the somatic embryos converted, and about 70% of the plantlets were recovered in soil. The growth rate of somatic embryo-derived shoots could be increased by gibberellic acid treatment, but the resulting plantlets were hyperhydritic. Received: 14 February 1999 / Revision received: 27 April 1999 / Accepted: 14 May 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号