首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The VAI RNA of adenovirus is a small, RNA polymerase III-transcribed species required for the efficient translation of host cell and viral mRNAs late after infection. VAI RNA prevented activation of the interferon-induced P1/eIF-2 alpha kinase. In its absence the kinase was activated, eIF-2 alpha was phosphorylated, and translational initiation was inhibited. H5dl331 (dl331), a mutant which cannot express VAI RNA, grew poorly in 293 cells but generated wild-type yields in KB cells. The growth phenotype of the mutant appeared to correlate with the kinetics of kinase induction and activation. Active kinase appeared more rapidly in cell extracts prepared from infected 293 cells, in which dl331 grew poorly, than in extracts of KB cells, in which the mutant grew well. However, when kinase was induced in KB cells by interferon treatment and then activated subsequent to dl331 infection, viral protein synthesis was less severely inhibited than in interferon-treated 293 cells. Thus, activated kinase per se is insufficient to severely inhibit dl331 protein synthesis in KB cells.  相似文献   

2.
We have investigated the interaction of VAI RNA with the interferon-induced, double-stranded (ds) RNA-activated protein kinase, P68, both of which regulate protein synthesis in adenovirus-infected cells. Previous work has shown that during infection by the VAI RNA-negative mutant, dl331, both viral and cellular protein synthesis are inhibited due to phosphorylation of the alpha-subunit of the eukaryotic initiation factor, eIF-2, by the P68 protein kinase. Utilizing monoclonal antibodies specific for P68, we demonstrated that the physical levels of P68 in dl331-infected, wild-type Ad2-infected and uninfected cells were all comparable suggesting that the elevated kinase activity detected during mutant infection was not due to increased P68 synthesis. To examine the basis of the increased activity of P68, the protein kinase was purified from infected-cell extracts using the monoclonal antibody. We found that P68 was heavily autophosphorylated during dl331 infection but not during wild-type or mock infection. The extent of autophosphorylation correlated with elevated P68 activity and the loss of the dsRNA requirements to phosphorylate the exogenous substrates, eIF-1 alpha and histones. We also analyzed VAI RNA function in vitro and present evidence that purified VAI RNA can block the autophosphorylation of P68 in the ribosomal salt wash fraction of interferon-treated cells. Finally we suggest VAI RNA functions through a direct interaction with the P68 protein kinase, since we demonstrated that VAI RNA forms a complex with P68 both in vitro and in vivo.  相似文献   

3.
Selective translation of influenza viral mRNAs occurs after influenza virus superinfection of cells infected with the VAI RNA-negative adenovirus mutant dl331 (M. G. Katze, Y.-T. Chen, and R. M. Krug, Cell 37:483-490, 1984). Cell extracts from these doubly infected cells catalyze the initiation of essentially only influenza viral protein synthesis, reproducing the in vivo situation. This selective translation is correlated with a 5- to 10-fold suppression of the dl331-induced kinase that phosphorylates the alpha subunit of eucaryotic initiation factor eIF-2. This strongly suggests that influenza virus encodes a gene product that, analogous to the adenoviral VAI RNA, prevents the shutdown of overall protein synthesis caused by an eIF-2 alpha kinase turned on by viral infection. Adenoviral mRNA translation was restored to the extract from the doubly infected cells by the addition of the guanine nucleotide exchange factor eIF-2B, which is responsible for the normal recycling of eIF-2 during protein synthesis. This indicates that the residual kinase in the doubly infected cells leads to a limitation in functional (nonsequestered) eIF-2B and hence functional (GTP-containing) eIF-2 and that under these conditions influenza viral mRNAs are selectively translated over adenoviral mRNAs. Addition of double-stranded RNA to the extracts from these cells restored the eIF-2 alpha kinase to a level approaching that seen in extracts from cells infected with dl331 alone and caused the inhibition of influenza viral mRNA translation. This suggests that the putative influenza viral gene product acts against the double-stranded RNA activation of the kinase and indicates that influenza viral mRNA translation is also linked to the level of functional eIF-2. Our results thus indicate that a limitation in functional eIF-2 which causes a nonspecific reduction in the rate of initiation of protein synthesis results in the preferential translation of the better mRNAs (influenza viral mRNAs) at the expense of the poorer mRNAs (adenoviral mRNAs).  相似文献   

4.
5.
The effect of interferon (IFN) treatment and virus infection on the phosphorylation both in vitro and in vivo of the alpha subunit of protein synthesis initiation factor eIF-2 (eIF-2 alpha) was examined in mouse fibroblast L929 cells. The [gamma-32P]ATP-mediated in vitro phosphorylation of eIF-2 alpha catalyzed by cell-free extracts prepared from IFN-treated, uninfected cells was dependent upon exogenously added double-stranded RNA (dsRNA). However, the dsRNA requirement for eIF-2 alpha phosphorylation in vitro was eliminated by prior infection of cells with reovirus Dearing strain virions but not with defective top component particles. The enhanced phosphorylation in vitro of eIF-2 alpha and ribosome-associated protein P1 depended in a similar manner upon the multiplicity of virus infection. The extent of phosphorylation in vivo of eIF-2 alpha prepared from L929 cells was also examined by utilizing two-dimensional isoelectric focusing/sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting techniques. About 5-10% of the eIF-2 alpha was typically phosphorylated in vivo in untreated, mock-infected cells, whereas 25-30% was phosphorylated in IFN-treated, reovirus-infected cells. An intermediate extent of eIF-2 alpha phosphorylation, routinely between 15 and 20%, was observed with either IFN treatment or reovirus infection alone. The integrity of eIF-4A and eIF-4B was also examined by two-dimensional electrophoresis and immunoblotting, and no significant alterations in molecular size or charge heterogeneity were detected when these factors were prepared from IFN-treated, reovirus-infected cells as compared to untreated, uninfected cells.  相似文献   

6.
The double-stranded RNA (dsRNA)-dependent protein kinase DAI (also termed dsI and P1) possesses two kinase activities; one is an autophosphorylation activity, and the other phosphorylates initiation factor eIF-2. We purified the enzyme, in a latent form, to near homogeneity from interferon-treated human 293 cells. The purified enzyme consisted of a single polypeptide subunit of approximately 70,000 daltons, retained its dependence on dsRNA for activation, and was sensitive to inhibition by adenovirus VA RNAI. Autophosphorylation required a suitable concentration of dsRNA and was second order with respect to DAI concentration, which suggests an intermolecular mechanism in which one DAI molecule phosphorylates a neighboring molecule. Once autophosphorylated, the enzyme could phosphorylate eIF-2 but seemed unable to phosphorylate other DAI molecules, which implies a change in substrate specificity upon activation. VA RNAI blocked autophosphorylation and activation but permitted the activated enzyme to phosphorylate eIF-2. VA RNAI also blocked the binding of dsRNA to the enzyme. The data are consistent with a model in which activation requires the interaction of two molecules of DAI with dsRNA, followed by intermolecular autophosphorylation of the latent enzyme. VA RNAI would block activation by preventing the interaction between DAI and dsRNA.  相似文献   

7.
The interferon-induced protein kinase DAI, the double-stranded RNA (dsRNA)-activated inhibitor of translation, plays a key role in regulating protein synthesis in higher cells. Once activated, in a process that involves autophosphorylation, it phosphorylates the initiation factor eIF-2, leading to inhibition of polypeptide chain initiation. The activity of DAI is controlled by RNA regulators, including dsRNA activators and highly structured single-stranded RNAs which block activation by dsRNA. To elucidate the mechanism of activation, we studied the interaction of DAI with RNA duplexes of discrete sizes. Molecules shorter than 30 bp fail to bind stably and do not activate the enzyme, but at high concentrations they prevent activation by long dsRNA. Molecules longer than 30 bp bind and activate the enzyme, with an efficiency that increases with increasing chain length, reaching a maximum at about 85 bp. These dsRNAs fail to activate at high concentrations and also prevent activation by long dsRNA. Analysis of complexes between dsRNA and DAI suggests that at maximal packing the enzyme interacts with as little as a single helical turn of dsRNA (11 bp) but under conditions that allow activation the binding site protects about 80 bp of duplex. When the RNA-binding site is fully occupied with an RNA activator, the complex appears to undergo a conformational change.  相似文献   

8.
The effect of reovirus double-stranded RNA (dsRNA) and 5'-O-monophosphate form of 2',5'-oligoadenylate (pA(2'p5'A)2) on the translation and degradation of reovirus messenger RNA and on protein phosphorylation was examined in extracts prepared from interferon-treated mouse L fibroblasts. The following results were obtained. 1) The enhanced degradation of reovirus [3H]mRNA observed in the presence of either dsRNA or the 5'-O-triphosphate form of 2',5'-oligoadenylate (pppA(2'p5'A)3) was completely blocked by pA(2'p5'A)2. 2) The dsRNA-dependent phosphorylation of protein P1 and the alpha subunit of eukaryotic initiation factor (eIF-2) depended in a similar manner upon the concentration of dsRNA and was optimal at low dsRNA concentrations (0.1 to 1 microgram/ml). However, high concentrations of dsRNA (greater than 100 micrograms/ml) drastically reduced the phosphorylation of both P1 and eIF-2 alpha. Neither P1 nor eIF-2 alpha phosphorylation was affected by either pA(2'p5'A)2 or pppA(2'p5'A)3. 3) The translation of reovirus mRNA in vitro was inhibited by the addition of either low concentrations of dsRNA or pppA(2'p5'A)3. Whereas pA(2'p5'A)2 completely reversed the pppA(2'p5'A)3-mediated inhibition of translation, the inhibition mediated by low concentrations of dsRNA was only partially reversed by pA(2'p5'A)2. Under conditions where the pppA-(2'p5'A)3mediated degradation of reovirus mRNA was blocked, the translation of reovirus mRNA was still inhibited by low but not by high concentrations of dsRNA in a manner that correlated with the activation of P1 and eIF-2 alpha phosphorylation. These results suggest that the pppA(2'p5'A)n-dependent ribonuclease is not required and that protein phosphorylation may indeed be sufficient for the dsRNA-dependent inhibition of reovirus mRNA translation in cell-free systems derived from interferon-treated mouse fibroblasts.  相似文献   

9.
A mechanism for the control of protein synthesis by adenovirus VA RNAI   总被引:55,自引:0,他引:55  
  相似文献   

10.
Heme-deficiency and double-stranded RNA (dsRNA) activate distinct cyclic 3':5'-AMP independent protein kinases (HRI and dsI, respectively) in rabbit reticulocyte lysates. These kinases inhibit protein synthesis by phosphorylating the 38,000 daltons (38K) subunit of the initiation factor eIF-2 (eIF-2 alpha). Using separation techniques to obtain a reticulocyte enriched fraction and reticulocyte-free erythrocytes, we have prepared lysates of these fractions from normal human whole blood. Human reticulocyte-enriched lysates contain the hemin-regulated and dsRNA-dependent protein kinases which inhibit protein synthesis and which phosphorylate rabbit eIF-2 alpha. An endogenous 38K polypeptide which co-migrates with rabbit eIF-2 alpha is also phosphorylated. In contrast, human mature erythrocytes contain little or no heme-regulated or dsRNA-dependent eIF-2 alpha kinase activities which are inhibitory of protein synthesis.  相似文献   

11.
The VAI RNA of adenovirus is a small, RNA polymerase III-transcribed species required for efficient translation of host cell and viral mRNAs late after infection. The growth of a viral mutant that is unable to produce the RNA is inhibited by interferon, while wild-type virus is not affected. VAI RNA prevents activation of the interferon-induced P1/eIF-2 alpha kinase. This inhibition can be reproduced in extracts of interferon-treated cells where purified VAI RNA prevents activation of latent kinase by double-stranded RNA.  相似文献   

12.
N-myristoylated viral polypeptide mu 1 was produced in COS cells transfected with a transient expression vector containing a DNA copy of the reovirus M2 gene. The mu 1 product was specifically cleaved to polypeptide mu 1C in cells that were cotransfected with the reovirus S4 gene and that expressed polypeptide sigma 3. Studies with site-specific mutants of the M2 gene demonstrated that conversion of mu 1 to mu 1C was dependent on myristoylation and the presence of the proteolytic cleavage sequence asparagine 42-proline 43 in mu 1, as well as on the presence of polypeptide sigma 3. The mu 1C product and polypeptide sigma 3 formed complexes that were immunoprecipitated by sigma 3-directed antibody, and a myristoylation-negative M2 double mutant, G2A-N42T, yielded mu 1 that did not undergo cleavage to mu 1C or bind sigma 3. However, the N42T single mutant did form immunoprecipitable complexes with sigma 3, indicating that binding can occur in the absence of cleavage. Polypeptide sigma 3 alternatively can bind double-stranded RNA and in COS cells stimulates translation of reporter chloramphenicol acetyltransferase mRNA translation, presumably by blocking double-stranded RNA-mediated activation of the eukaryotic initiation factor 2 alpha subunit kinase which inhibits the initiation of protein synthesis. Consistent with these observations and with the formation of mu 1C-sigma 3 complexes, coexpression of M2 with S4 DNA prevented the translational stimulatory effect of polypeptide sigma 3.  相似文献   

13.
The protein kinase DAI is activated upon viral infection of mammalian cells and inhibits protein synthesis by phosphorylation of the alpha subunit of translation initiation factor 2 (eIF-2 alpha). DAI is activated in vitro by double-stranded RNAs (dsRNAs), and binding of dsRNA is dependent on two copies of a conserved sequence motif located N terminal to the kinase domain in DAI. High-level expression of DAI in Saccharomyces cerevisiae cells is lethal because of hyperphosphorylation of eIF-2 alpha; at lower levels, DAI can functionally replace the protein kinase GCN2 and stimulate translation of GCN4 mRNA. These two phenotypes were used to characterize structural requirements for DAI function in vivo, by examining the effects of amino acid substitutions at matching positions in the two dsRNA-binding motifs and of replacing one copy of the motif with the other. We found that both copies of the dsRNA-binding motif are required for high-level kinase function and that the N-terminal copy is more important than the C-terminal copy for activation of DAI in S. cerevisiae. On the basis of these findings, we conclude that the requirements for dsRNA binding in vitro and for activation of DAI kinase function in vivo closely coincide. Two mutant alleles containing deletions of the first or second binding motif functionally complemented when coexpressed in yeast cells, strongly suggesting that the active form of DAI is a dimer. In accord with this conclusion, overexpression of four catalytically inactive alleles containing different deletions in the protein kinase domain interfered with wild-type DAI produced in the same cells. Interestingly, three inactivating point mutations in the kinase domain were all recessive, suggesting that dominant interference involves the formation of defective heterodimers rather than sequestration of dsRNA activators by mutant enzymes. We suggest that large structural alterations in the kinase domain impair an interaction between the two protomers in a DAI dimer that is necessary for activation by dsRNA or for catalysis of eIF-2 alpha phosphorylation.  相似文献   

14.
15.
The interferon induced double-stranded-RNA-dependent eIF-2 alpha kinase has an established role in mediating part of interferons anti-viral effects. Several studies have suggested that it may have additional functions in cells not infected with virus. The mechanism of activation of the kinase and the consequences of its activity in uninfected cells remain to be determined. Our previous results have indicated that the activation (phosphorylation) of this kinase may be an important regulatory signal to the arrest of growth of mouse 3T3-F442A fibroblasts and their subsequent differentiation to adipocytes. We have found that the phosphorylation of the kinase occurred in vivo in the absence of viral infection and in vitro without the addition of dsRNA. We demonstrate here that total cytoplasmic RNA from 3T3-F442A cells contains a regulatory RNA(s) capable of activating dsRNA-dependent eIF-2 alpha kinase. Fractionation of the cytoplasmic RNA by oligo(dT)-cellulose indicated that the regulatory RNA eluted with the poly(A)-rich RNA fraction. It bound tightly to the dsRNA-dependent eIF-2 alpha kinase and was immune-precipitated with its antibodies as a complex of regulatory RNA and dsRNA-dependent eIF-2 alpha kinase. The regulatory RNA activity was further purified by phenol extraction of immune precipitates containing this complex. These findings indicated that the regulatory RNA forms a specific complex with the dsRNA-dependent eIF-2 alpha kinase. The activity of the regulatory RNA was sensitive to the dsRNA-specific RNase VI but not to proteinase K, DNase I or ssRNA-specific RNase T1. The activation of the dsRNA-dependent eIF-2 alpha kinase by regulatory RNA was prevented by addition of a high concentration of poly(I).poly(C). The regulatory RNA was also shown to activate partially purified dsRNA-dependent eIF-2 alpha kinase prepared from rabbit reticulocyte lysates and to inhibit protein synthesis in reticulocyte lysates. Our findings, that cellular RNAs can specifically activate the dsRNA-dependent eIF-2 alpha kinase, are consistent with a physiological role for the dsRNA-dependent eIF-2 alpha kinase and interferon during cell growth and differentiation. The relationship of the regulatory RNA activity to growth and differentiation of 3T3-F442A cells is discussed.  相似文献   

16.
The protein kinase from human cells dependent on double-stranded (ds) RNA is a 68-kDa protein (p68 kinase), the level of which is enhanced significantly in cells treated with interferon. When activated by low concentrations of dsRNA, the p68 kinase becomes phosphorylated and thereby catalyzes the phosphorylation of the protein-synthesis initiation factor, eIF2. Here, we have purified the p68 kinase to homogeneity using a specific monoclonal antibody to investigate its capacity to bind dsRNA, poly(I).poly(C). Our study suggest that p68 kinase has high- and low-affinity binding sites: the high-affinity binding site is responsible for the activation and the low-affinity binding site for the inhibition of kinase activity. This is in accord with the fact that autophosphorylation of p68 kinase occurs at low concentrations of dsRNA whereas high concentrations of dsRNA inhibit its autophosphorylation. We have also investigated the binding of adenoviral VAI RNA to the purified p68 kinase and have found that the affinity of this binding is lower than that of poly(I).poly(C). We show that VAI RNA can activate or inhibit autophosphorylation of p68 kinase in a dose-dependent manner, i.e. activation at less than or equal to 1 microgram/ml or inhibition at greater than 1 microgram/ml of VAI RNA. In spite of its lower affinity of binding, VAI RNA cannot be displaced by poly(I).poly(C) or reovirus dsRNA. These data confirm our previous results to illustrate that VAI RNA can bind p68 kinase and cause its inactivation irreversably.  相似文献   

17.
The role of eukaryotic initiation factor 2 (eIF-2) phosphorylation in translational control has been demonstrated in vivo by overexpressing variant forms of eIF-2 alpha that are not phosphorylated. COS-1 cells transiently transfected with expression vectors for human eIF-2 alpha contain 10-20-fold more eIF-2 alpha subunit than the endogenous COS cell eIF-2 trimeric complex. Expression of the variant form of eIF-2 alpha, Ser51Asp, where Asp replaces Ser51, causes inhibition of protein synthesis, whereas the Ser48Asp variant does not. When either Ser48 or Ser51 is replaced by Ala, the variants stimulate dihydrofolate reductase synthesis when the eIF-2 alpha kinase, DAI, is activated. In order to elucidate these mechanisms, we have separated eIF-2 trimeric complexes from free overexpressed eIF-2 alpha subunits by fast protein liquid chromatography Superose chromatography. Pulse-labeled cells transfected with wild-type or variant DNAs produced eIF-2 preparations with greater than 10-fold higher specific radioactivity in the alpha-subunit compared to the gamma-subunit, thus demonstrating that the human eIF-2 alpha produced from the plasmids readily exchanges into COS cell eIF-2 complexes. Both wild-type and Ser48Ala variant forms of the free 2 alpha-subunit, further purified by MonoQ chromatography, are poor substrates for the heme-regulated eIF-2 alpha kinase, HRI, but are good substrates for double-stranded RNA-activated inhibitor in vitro; the Ser51Ala variant subunit is not phosphorylated by either kinase. None of the purified free eIF-2 alpha subunits inhibits phosphorylation of eIF-2 in vitro, even at up to 8-fold molar excess. Examination of the extent of eIF-2 alpha phosphorylation in the COS cell eIF-2 complexes by two-dimensional polyacrylamide gel electrophoresis shows that the stimulation of dihydrofolate reductase synthesis by the Ser51Ala variant is most readily explained by failure of eIF-2 to be phosphorylated. Stimulation by the Ser48Ala variant appears to occur by mitigation of the effect of phosphorylation at Ser51 since the double variant, Ser48Ala-Ser51Asp, inhibits protein synthesis less than the single variant Ser51Asp. The evidence argues strongly against there being a second site of phosphorylation involved in translational repression.  相似文献   

18.
Phosphorylation of the alpha subunit of the eucaryotic translation initiation factor (eIF-2 alpha) by the double-stranded RNA-activated inhibitor (DAI) kinase correlates with inhibition of translation initiation. The importance of eIF-2 alpha phosphorylation in regulating translation was studied by expression of specific mutants of eIF-2 alpha in COS-1 cells. DNA transfection of certain plasmids could activate DAI kinase and result in poor translation of plasmid-derived mRNAs. In these cases, translation of the plasmid-derived mRNAs was improved by the presence of DAI kinase inhibitors or by the presence of a nonphosphorylatable mutant (serine to alanine) of eIF-2 alpha. The improved translation mediated by expression of the nonphosphorylatable eIF-2 alpha mutant was specific to plasmid-derived mRNA and did not affect global mRNA translation. Expression of a serine-to-aspartic acid mutant eIF-2 alpha, created to mimic the phosphorylated serine, inhibited translation of the mRNAs derived from the transfected plasmid. These results substantiate the hypothesis that DAI kinase activation reduces translation initiation through phosphorylation of eIF-2 alpha and reinforce the importance of phosphorylation of eIF-2 alpha as a way to control initiation of translation in intact cells.  相似文献   

19.
R J Schneider  C Weinberger  T Shenk 《Cell》1984,37(1):291-298
The adenovirus VAI RNA is a small polymerase III-transcribed species that is required for optimal translation of mRNAs late after infection. Mutant dl331 fails to produce this RNA species and, as a result, grows poorly. Mutant-infected cells contain normal levels of late mRNAs, but reduced levels of polypeptides are synthesized late after infection. Translational elongation occurs at normal rates in mutant, as compared to wild-type, virus-infected cells. Initiation of translation occurs with reduced efficiency in dl331 -infected cells. VAI RNA is required for formation of a stable 48S preinitiation complex and very likely functions to facilitate the interaction between 43S preinitiation complex and mRNA to form the 48S species.  相似文献   

20.
Treatment of primary cultures of chicken embryo fibroblasts with a recombinant chicken alpha/beta interferon (rcIFN) induces an antiviral state that causes a strong inhibition of vaccinia virus and vesicular stomatitis virus replication but has no effect on avian reovirus S1133 replication. The fact that avian reovirus polypeptides are synthesized normally in rcIFN-treated cells prompted us to investigate whether this virus expresses factors that interfere with the activation and/or the activity of the IFN-induced, double-stranded RNA (dsRNA)-dependent enzymes. Our results demonstrate that extracts of avian-reovirus-infected cells, but not those of uninfected cells, are able to relieve the translation-inhibitory activity of dsRNA in reticulocyte lysates, by blocking the activation of the dsRNA-dependent enzymes. In addition, our results show that protein sigmaA, an S1133 core polypeptide, binds to dsRNA in an irreversible manner and that clearing this protein from extracts of infected cells abolishes their protranslational capacity. Taken together, our results raise the interesting possibility that protein sigmaA antagonizes the IFN-induced cellular response against avian reovirus by blocking the intracellular activation of enzyme pathways dependent on dsRNA, as has been suggested for several other viral dsRNA-binding proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号