首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lung volumes during low-intensity steady-state cycling   总被引:2,自引:0,他引:2  
The use of inspiratory capacity (IC) to estimate end-expiratory lung volume (EELV) during exercise has been questioned because of the assumption of constant total lung capacity (TLC). To investigate lung volumes during low-intensity steady-state cycling, we measured EELV by the open-circuit N2 washout method (MR-1, currently Sensormedics 2100) in eight healthy men while at rest and during unloaded and 60-W cycling. TLC was calculated by adding EELV and IC. Measurement variation of TLC was 142 ml at rest, 121 ml during unloaded cycling, and 158 ml during 60-W cycling. TLC did not differ significantly among the three conditions studied. EELV decreased during unloaded (P less than 0.002) and 60-W cycling (P less than 0.001) compared with rest. End-inspiratory lung volume increased only during 60-W cycling (P = 0.03). The decrease in EELV accounted for 100% of the increase in tidal volume during unloaded cycling. Although minute ventilation was similar in the subjects during unloaded cycling, we noted that breathing patterns varied among the subjects. The increase in respiratory frequency was negatively correlated to the change in tidal volume (R2 = 0.54, P = 0.038) and to the change in end-inspiratory lung volume (R2 = 0.68, P = 0.012). We conclude that TLC does not differ significantly during low-intensity steady-state cycling and that use of IC to estimate changes in EELV is appropriate.  相似文献   

2.
Tidal volume reduction during mechanical ventilation reduces mortality in patients with acute lung injury and the acute respiratory distress syndrome. To determine the mechanisms underlying the protective effect of low tidal volume ventilation, we studied the time course and reversibility of ventilator-induced changes in permeability and distal air space edema fluid clearance in a rat model of ventilator-induced lung injury. Anesthetized rats were ventilated with a high tidal volume (30 ml/kg) or with a high tidal volume followed by ventilation with a low tidal volume of 6 ml/kg. Endothelial and epithelial protein permeability were significantly increased after high tidal volume ventilation but returned to baseline levels when tidal volume was reduced. The basal distal air space fluid clearance (AFC) rate decreased by 43% (P < 0.05) after 1 h of high tidal volume but returned to the preventilation rate 2 h after tidal volume was reduced. Not all of the effects of high tidal volume ventilation were reversible. The cAMP-dependent AFC rate after 1 h of 30 ml/kg ventilation was significantly reduced and was not restored when tidal volume was reduced. High tidal volume ventilation also increased lung inducible nitric oxide synthase (NOS2) expression and air space total nitrite at 3 h. Inhibition of NOS2 activity preserved cAMP-dependent AFC. Because air space edema fluid inactivates surfactant and reduces ventilated lung volume, the reduction of cAMP-dependent AFC by reactive nitrogen species may be an important mechanism of clinical ventilator-associated lung injury.  相似文献   

3.
The effects of a filtering device and an air-line apparatus on breathing pattern were studied in healthy men with different physical characteristics and work capacity. The subjects comprised nine construction workers aged 35-44, and nine firemen aged 21-35. The construction workers' mean maximal oxygen consumption (VO2max) was 34.5 ml min-1 kg-1, the firemen's 66.9 ml min-1 kg-1. Breathing pattern was analyzed for its components, inspiratory time, expiratory time, breathing frequency, tidal volume, and pulmonary ventilation at rest, during two submaximal treadmill walks when the subjects' absolute work load was equal, and during recovery. Neither the filtering device nor the air-line apparatus had a significant effect on breathing pattern when compared with the control values measured twice with a low-resistance breathing valve. A significantly longer expiratory time, lower breathing frequency, and smaller pulmonary ventilation were found for the firemen with the breathing valve and the industrial respirators. The breathing pattern of the construction workers and the firemen differed, but the alterations were not induced by the use of the filtering device or the air-line apparatus when studied at aerobic work levels up to 60% VO2max.  相似文献   

4.
Tidal volumes used in high-frequency ventilation (HFV) may be smaller than anatomic dead space, but since gas exchange does take place, physiological dead space (VD) must be smaller than tidal volume (VT). We quantified changes in VD in three dogs at constant alveolar ventilation using the Bohr equation as VT was varied from 3 to 15 ml/kg and frequency (f) from 0.2 to 8 Hz, ranges that include normal as well as HFV. We found that VD was relatively constant at tidal volumes associated with normal ventilation (7-15 ml/kg) but fell sharply as VT was reduced further to tidal volumes associated with HFV (less than 7 ml/kg). The frequency required to maintain constant alveolar ventilation increased slowly as tidal volume was decreased from 15 to 7 ml/kg but rose sharply with attendant rapid increases in minute ventilation as tidal volumes were decreased to less than 7 ml/kg. At tidal volumes less than 7 ml/kg, the data deviated substantially from the conventional alveolar ventilation equation [f(VT - VD) = constant] but fit well a model derived previously for HFV. This model predicts that gas exchange with volumes smaller than dead space should vary approximately as the product of f and VT2.  相似文献   

5.
In this study we explored the effects of physical training on the response of the respiratory system to exercise. Eight subjects with irreversible mild-to-moderate airflow obstruction [forced expiratory volume in 1 s of 85 +/- 14 (SD) % of predicted and ratio of forced expiratory volume in 1 s to forced vital capacity of 68 +/- 5%] and six normal subjects with similar anthropometric characteristics underwent a 2-mo physical training period on a cycle ergometer three times a week for 31 min at an intensity of approximately 80% of maximum heart rate. At this work intensity, tidal expiratory flow exceeded maximal flow at control functional residual capacity [FRC; expiratory flow limitation (EFL)] in the obstructed but not in the normal subjects. An incremental maximum exercise test was performed on a cycle ergometer before and after training. Training improved exercise capacity in all subjects, as documented by a significant increase in maximum work rate in both groups (P < 0.001). In the obstructed subjects at the same level of ventilation at high workloads, FRC was greater after than before training, and this was associated with an increase in breathing frequency and a tendency to decrease tidal volume. In contrast, in the normal subjects at the same level of ventilation at high workloads, FRC was lower after than before training, so that tidal volume increased and breathing frequency decreased. These findings suggest that adaptation to breathing under EFL conditions does not occur during exercise in humans, in that obstructed subjects tend to increase FRC during exercise after experiencing EFL during a 2-mo strenuous physical training period.  相似文献   

6.
We have tested the response of 28 subjects to a three-stage ergometer test, with loads adjusted to 45, 60, and 75% of maximum aerobic power following ozone exposure. The subjects were exposed to one of 0.37, 0.50, or 0.75 ppm O3 for 2 h either at rest (R) or while exercising intermittently (IE) (15 min rest alternated with 15 min exercise at approximately 50 W. sufficient to increase VE by a factor of 2.5). Also, all subjects completed a mock exposure VE, respiratory frequency (fR), mixed expired PO2 and PCO2, and electrocardiogram were monitored continuously during the exercise test. Neither submaximal exercise oxygen consumption nor minute ventilation was significantly altered following any level of ozone exposure. The major response noted was an increase in respiratory frequency during exercise following ozone exposure. The increase in fR was closely correlated with the total dose of ozone (r = 0.98) and was accompanied by a decrease in tidal volume (r = 0.91) so that minute volume was unchanged. It is concluded that through its irritant properties, ozone modifies the normal ventilatory response to exercise, and that this effect is dose dependent.  相似文献   

7.
Respiratory water loss in Starlings (Sturnus vulgaris) at rest and during flight at ambient temperatures (T(amb)) between 6 and 25 degrees C was calculated from respiratory airflow and exhaled air temperature. At rest, breathing frequency f (1.4+/-0.3 Hz) and tidal volume Vt (1.9+/-0.4 ml) were independent of T(amb), but negatively correlated with each other. Mean ventilation at rest was 156+/-28 ml min(-1) at all T(amb). Exhaled air temperature (T(exh)) at rest increased with T(amb) (T(exh) = 0.92.T(amb)+12.45). Respiratory water loss at rest averaged 0.18+/-0.09 ml h(-1) irrespective of T(amb). In flying Starlings f was 4.0+/-0.4 Hz and independent of T(amb). Vt during flight averaged 3.6+/-0.4 ml and increased with T(amb) (Vt = 0.06.T(amb)+2.83) as, correspondingly, did ventilation. T(exh) during flight increased with T(amb) (T(exh) = 0.85.T(amb)+17.29). Respiratory water loss during flight (average REWL(f) = 0.74+/-0.22 ml h(-1)) was significantly higher than at rest and increased with T(amb). Our measurements suggest that respiratory evaporation accounts for most water loss in flying Starlings and increases more than cutaneous evaporation with rising ambient temperature.  相似文献   

8.
The hypothesis that respiratory frequency and the relative durations of inspiration and expiration are regulated according to a total cycle work rate minimization criterion was explored. Effects of negative work performed by the respiratory muscles and dead space variation as a function of tidal volume were included in a formulation which yielded a theoretically predictable optimal frequency and relative duration of inspiration and expiration at all levels of ventilation. Predicted cycle characteristics based on measured mechanical parameters were compared with data taken during CO-2 inhalation (3 and 5%) and moderate exercise (MRR = 3 and 6) in three normal human subjects. No major difference in breathing pattern was observed between CO-2 inhalation and exercise. Results suggest that conditions for minimization of total cycle work rate are achieved asympototically as the level of ventilation rises above the resting level. At rest and at low levels of hyperpnea complete work rate optimization is not achieved.  相似文献   

9.
The contribution of ruminal CO2 to gas exchange measurements and ventilation was determined in four rumen-fistulated Hereford steers at rest and during exercise. The calves were exercised at 1.4 and 2.2m X s-1 under three treatments: 1)full rumen with fistula sealed, 2) full rumen with fistula open, and 3) empty rumen. Measurements also were made at rest while flushing the empty rumen with either 100% N2 or a mixture of 50% CO2-50% N2. O2 consumption, CO2 production (Mco2), and ventilation were measured by collecting the expired gas. Absorption across the ruminal epithelium during rest increased Mco2 by 3%, whereas absorption and eructation together increased Mco2 by 15%. The respiratory exchange ratio (R) was significantly different among the three treatments at rest, but no differences were observed in R among the treatments during exercise. No changes were observed in minute ventilation among the three conditions, but a decrease in respiratory frequency and an increase in tidal volume occurred when the rumen was empty. These changes in ventilatory pattern may have been due to a decrease in body temperature when the rumen was empty. When the empty rumen was flushed with 50% CO2, Mco2 was increased 21% over the value observed when flushing with 100% N2. CO2 of fermentation origin is added to the expired gas by both eructation and absorption and has a significant effect on R in the resting animal, but no effect on R during exercise.  相似文献   

10.
To determine the importance of nonhumoral drives to exercise hyperpnea in birds, we exercised adult White Pekin ducks on a treadmill (3 degrees incline) at 1.44 km X h-1 for 15 min during unidirectional artificial ventilation. Intrapulmonary gas concentrations and arterial blood gases could be regulated with this ventilation procedure while allowing ventilatory effort to be measured during both rest and exercise. Ducks were ventilated with gases containing either 4.0 or 5.0% CO2 in 19% O2 (balance N2) at a flow rate of 12 l X min-1. At that flow rate, arterial CO2 partial pressure (PaCO2) could be maintained within +/- 2 Torr of resting values throughout exercise. Arterial O2 partial pressure did not change significantly with exercise. Heart rate, mean arterial blood pressure, and mean right ventricular pressure increased significantly during exercise. On the average, minute ventilation (used as an indicator of the output from the central nervous system) increased approximately 400% over resting levels because of an increase in both tidal volume and respiratory frequency. CO2-sensitivity curves were obtained for each bird during rest. If the CO2 sensitivity remained unchanged during exercise, then the observed 1.5 Torr increase in PaCO2 during exercise would account for only about 6% of the total increase in ventilation over resting levels. During exercise, arterial [H+] increased approximately 4 nmol X l-1; this increase could account for about 18% of the total rise in ventilation. We conclude that only a minor component of the exercise hyperpnea in birds can be accounted for by a humoral mechanism; other factors, possibly from muscle afferents, appear responsible for most of the hyperpnea observed in the running duck.  相似文献   

11.
We assessed the consequences of respiratory unloading associated with tracheostomy breathing (TBr). Three normal and three carotid body-denervated (CBD) ponies were prepared with chronic tracheostomies that at rest reduced physiological dead space (VD) from 483 +/- 60 to 255 +/- 30 ml and lung resistance from 1.5 +/- 0.14 to 0.5 +/- 0.07 cmH2O . l-1 . s. At rest and during steady-state mild-to-heavy exercise arterial PCO2 (PaCO2) was approximately 1 Torr higher during nares breathing (NBr) than during TBr. Pulmonary ventilation and tidal volume (VT) were greater and alveolar ventilation was less during NBr than TBr. Breathing frequency (f) did not differ between NBr and TBr at rest, but f during exercise was greater during TBr than during NBr. These responses did not differ between normal and CBD ponies. We also assessed the consequences of increasing external VD (300 ml) and resistance (R, 0.3 cmH2O . l-1 . s) by breathing through a tube. At rest and during mild exercise tube breathing caused PaCO2 to transiently increase 2-3 Torr, but 3-5 min later PaCO2 usually was within 1 Torr of control. Tube breathing did not cause f to change. When external R was increased 1 cmH2O . l-1 . s by breathing through a conventional air collection system, f did not change at rest, but during exercise f was lower than during unencumbered breathing. These responses did not differ between normal, CBD, and hilar nerve-denervated ponies, and they did not differ when external VD or R were added at either the nares or tracheostomy.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
We tested the hypothesis that, in humans, hyperthermic hyperpnea elicited in resting subjects differs from that elicited during submaximal, moderate-intensity exercise. In the rest trial, hot-water legs-only immersion and a water-perfused suit were used to increase esophageal temperature (T(es)) in 19 healthy male subjects; in the exercise trial, T(es) was increased by prolonged submaximal cycling [50% peak O(2) uptake (Vo(2))] in the heat (35 degrees C). Minute ventilation (Ve), ventilatory equivalent for Vo(2) (Ve/Vo(2)) and CO(2) output (Ve/Vco(2)), tidal volume (Vt), and respiratory frequency (f) were plotted as functions of T(es). In the exercise trial, Ve increased linearly with increases (from 37.0 to 38.7 degrees C) in T(es) in all subjects; in the rest trial, 14 of the 19 subjects showed a T(es) threshold for hyperpnea (37.8 +/- 0.5 degrees C). Above the threshold for hyperpnea, the slope of the regression line relating Ve and T(es) was significantly greater for the rest than the exercise trial. Moreover, the slopes of the regression lines relating Ve/Vo(2), Ve/Vco(2), and T(es) were significantly greater for the rest than the exercise trial. The increase in Ve reflected increases in Vt and f in the rest trial, but only f in the exercise trial, after an initial increase in ventilation due to Vt. Finally, the slope of the regression line relating T(es) and Vt or f was significantly greater for the rest than the exercise trial. These findings indicate that hyperthermic hyperpnea does indeed differ, depending on whether one is at rest or exercising at submaximal, moderate intensity.  相似文献   

13.
目的: 在初步验证超快反应聚合物基质光纤氧传感器及其测定系统记录颈动脉氧分压(PaO2)连续动态变化使用基础上,为了分析探讨肺通气对PaO2连续动态变化的影响,我们设计本活体整体动物实验观察研究。方法: 选择杂种山羊4只,全身麻醉气管插管空气机械通气下,切皮直接暴露把后接测定系统的氧传感器直接插入左侧颈动脉连续记录PaO2动态变化。正常分钟通气量机械通气分别通过三种潮气量实施:正常潮气量(潮气量VT=15 ml/kg、呼吸频率Rf=20 bpm)、减半潮气量(VT减半、Rf加倍)和加倍潮气量(VT加倍、Rf减半)。三种潮气量通气时间分别稳定10~15 min,选取后180 s分析计算PaO2平均值、呼吸间PaO2变化的升降幅度和肺-颈动脉延迟时间。以ANOVA及两两比较统计学差异分析不同潮气量的影响。结果: 活体山羊正常通气量机械通气实验时心率和血压均稳定;肺-颈动脉延迟时间为1.4~1.8 s(约为此时的3次心跳)。机械通气正常潮气量下PaO2平均值在(102.94±2.40,99.38~106.16)mmHg,升降幅度是(21.43±1.65,19.21~23.59)mmHg,占平均值的(20.80±1.34,18.65~22.22)%;减半潮气量下,PaO2平均值维持在(101.01±4.25,94.09~105.66)mmHg,虽略降但不显著(与正常机械通气比较P>0.05),但PaO2升降变化幅度却显著降低为(18.14±1.43,16.46~20.05) mmHg,占平均值的(17.95±1.07,16.16~18.98)%(与正常机械通气比较P<0.01);加倍潮气量机械通气下,虽仅略升的PaO2平均值维持在(106.42±4.74,101.19~114.08)mmHg(与正常机械通气比较P>0.05,与减半潮气量机械通气比较P<0.05),但PaO2升降幅度却显著增大为(26.58±1.88,23.46~28.46)mmHg,占平均值的24.99%±1.58%(与正常机械通气和减半潮气量比较P均<0.01)。结论: 正常肺通气的吸气和呼气是颈动脉PaO2上升和下降的始动因素。正常通气量机械通气下减半潮气量和倍增潮气量显著改变PaO2升降幅度,但PaO2平均值仅小幅改变,而肺-颈动脉延迟时间相近。  相似文献   

14.
Breathing was recorded via a pulsed ultrasonic flowmeter in 11 healthy subjects, at rest and during steady-state exercise (at 50% of their maximal O2 consumption) at both sea level (200 m) and simulated altitude (4,500 m in a hypobaric chamber). The pattern of breathing was quantified breath by breath in terms of classical respiratory variables (tidal volume and inspiratory and expiratory times), and the shape of the entire airflow profile was quantified by harmonic analysis. Statistical tests were used to compare the within-individual with the between-individual variations. In comparing the sea level vs. altitude rest (16% increase in ventilation) and sea level vs. altitude exercise (40% increase in ventilation) airflow profiles, we found a significantly greater resemblance within the individual than between individuals. Comparisons of sea level rest and exercise (295% increase in ventilation) and altitude rest and exercise (375% increase in ventilation) revealed no similarity within individuals. Despite airflow profile changes between rest and exercise, it is still possible to attest to a diversity of flow profile between individuals during exercise. Hypoxia at rest or during exercise does not alter the phenomenon of the individuality of breathing patterns.  相似文献   

15.
Shen, X., S. J. Gunst, and R. S. Tepper. Effect oftidal volume and frequency on airway responsiveness in mechanically ventilated rabbits. J. Appl. Physiol.83(4): 1202-1208, 1997.We evaluated the effects of the rate andvolume of tidal ventilation on airway resistance (Raw) duringintravenous methacholine (MCh) challenge in mechanically ventilatedrabbits. Five rabbits were challenged at tidal volumes of 5, 10, and 20 ml/kg at a frequency of 15 breaths/min and also under static conditions(0 ml/kg tidal volume). Four rabbits were subjected to MCh challenge atfrequencies of 6 and 30 breaths/min with a tidal volume of 10 ml/kg andalso under static conditions. In both groups, the increase in Raw with MCh challenge was significantly greater under static conditions thanduring tidal ventilation at any frequency or volume. Increases in thevolume or frequency of tidal ventilation resulted in significant decreases in Raw in response to MCh. We conclude that tidal breathing suppresses airway responsiveness in rabbits in vivo. The suppression ofnarrowing in response to MCh increases as the magnitude of the volumeor the frequency of the tidal oscillations is increased. Our findingssuggest that the effect of lung volume changes on airway responsivenessin vivo is primarily related to the stretch of airway smooth muscle.

  相似文献   

16.
The study evaluated the interrelationships between the extent of thoracic movements and respiratory chemical drive in shaping the intensity of the sensation of dyspnea. Normal subjects rated their sensations of dyspnea as PCO2 increased during free rebreathing and during rebreathing while ventilation was voluntarily maintained at a constant base-line level. Another trial evaluated the effects on the intensity of dyspnea, of voluntary reduction in the level of ventilation while PCO2 was held constant. During rebreathing, there was a power function relationship between changes in PCO2 and the intensity of dyspnea. At a given PCO2, constraining tidal volume and breathing frequency to the prerebreathing base-line level resulted in an increase in dyspnea. The fractional differences in the intensity of dyspnea between free and constrained rebreathing were independent of PCO2. However, the absolute difference in the intensity of dyspnea between free and constrained rebreathing enlarged with increasing hypercapnia. At PCO2 of 50 Torr, this difference correlated significantly with the increase in both minute ventilation (r = 0.675) and tidal volume (r = 0.757) above the base line during free rebreathing. Similarly, during steady-state hypercapnia at 50 Torr PCO2, the intensity of dyspnea increased progressively as ventilation was voluntarily reduced from the spontaneously adopted free-breathing level. These results indicate that dyspnea increases with the level of respiratory chemical drive but that the intensity of the sensation is further accentuated when ventilation is constrained below that demanded by the level of chemical drive. This may be explained by a loss of inhibitory feedback from lung or chest wall mechanoreceptors acting on brain stem and/or cortical centers.  相似文献   

17.
The purpose of this study was to determine the neural output of pulmonary stretch receptors (PSRs) in response to conditions that, in previous studies (J. Appl. Physiol. 65: 179-186, 1988 and Respir. Physiol. 80: 307-322, 1990), produced apnea in anesthetized cats. These conditions included changes in airway pressure (Paw; 2 or 6 cmH2O), stroke or tidal volume (1-4 ml/kg), frequency [conventional mechanical ventilation (CMV) vs. high-frequency ventilation (HFV) at 10, 15, and 20 Hz], and levels of inspired CO2 (0, 2, and 5%). These data were needed to assess properly the specific contribution of the PSRs to the apnea found with certain combinations of the above variables. Each PSR was subjected to HFV over a range of mechanical and chemical settings, and its activity was recorded. PSRs exhibited continuous activity associated with pump stroke in 11 of 12 fibers tested. PSRs fired more rapidly when mean Paw was 6 cmH2O [45.3 +/- 0.8 (SE) impulses/s] than when it was 2 cmH2O (31.7 +/- 0.9 impulses/s, P = 0.0001). At both pressures, PSR activity increased as the volume of inflation, or tidal volume, was increased from 1 to 4 ml/kg. At Paw of 2 cmH2O, the number of impulses per second for HFV was not different from that for CMV (averaged over the respiratory cycle), under conditions previously demonstrated as apneogenic for both modes of ventilation. Therefore the absolute amount of information being sent to the brain stem processing centers via PSRs during HFV did not differ from that during CMV. Thus any PSR contribution to HFV-induced apnea must have been the result of changes in the pattern of the signal or the central nervous system's processing of it rather than an increase in the amount of inhibitory afferent signal.  相似文献   

18.
We determined how close highly trained athletes [n = 8; maximal oxygen consumption (VO2max) = 73 +/- 1 ml.kg-1.min-1] came to their mechanical limits for generating expiratory airflow and inspiratory pleural pressure during maximal short-term exercise. Mechanical limits to expiratory flow were assessed at rest by measuring, over a range of lung volumes, the pleural pressures beyond which no further increases in flow rate are observed (Pmaxe). The capacity to generate inspiratory pressure (Pcapi) was also measured at rest over a range of lung volumes and flow rates. During progressive exercise, tidal pleural pressure-volume loops were measured and plotted relative to Pmaxe and Pcapi at the measured end-expiratory lung volume. During maximal exercise, expiratory flow limitation was reached over 27-76% of tidal volume, peak tidal inspiratory pressure reached an average of 89% of Pcapi, and end-inspiratory lung volume averaged 86% of total lung capacity. Mechanical limits to ventilation (VE) were generally reached coincident with the achievement of VO2max; the greater the ventilatory response, the greater was the degree of mechanical limitation. Mean arterial blood gases measured during maximal exercise showed a moderate hyperventilation (arterial PCO2 = 35.8 Torr, alveolar PO2 = 110 Torr), a widened alveolar-to-arterial gas pressure difference (32 Torr), and variable degrees of hypoxemia (arterial PO2 = 78 Torr, range 65-83 Torr). Increasing the stimulus to breathe during maximal exercise by inducing either hypercapnia (end-tidal PCO2 = 65 Torr) or hypoxemia (saturation = 75%) failed to increase VE, inspiratory pressure, or expiratory pressure. We conclude that during maximal exercise, highly trained individuals often reach the mechanical limits of the lung and respiratory muscle for producing alveolar ventilation. This level of ventilation is achieved at a considerable metabolic cost but with a mechanically optimal pattern of breathing and respiratory muscle recruitment and without sacrifice of a significant alveolar hyperventilation.  相似文献   

19.
We studied the role of central command mediation of exercise hyperpnea by comparing the ventilatory and arterial CO2 partial pressure (PaCO2) responses to voluntary (ExV) and electrically induced (ExE) muscle contractions in normal, awake human subjects. We hypothesized that if central command signals are critical to a normal ventilatory response, then ExE should cause a slower ventilatory response resulting in hypercapnia at the onset of exercise. ExE was induced through surface electrodes placed over the quadriceps and hamstring muscles. ExE and ExV produced leg extension (40/min) against a spring load that increased CO2 production (VCO2) 100-1,000 ml/min above resting level. PaCO2 and arterial pH during work transitions and in the steady state did not differ significantly from rest (P greater than 0.05) or between ExE and ExV. The temporal pattern of ventilation, tidal volume, breathing frequency, and inspired and expired times, and the ventilation-VCO2 relationship were similar between ExE and ExV. We conclude that since central command was reduced and/or eliminated by ExE, central command is not requisite for the precise matching of alveolar ventilation to increases in VCO2 during low-intensity muscle contractions.  相似文献   

20.
To evaluate the contribution of vagal airway receptors to ventilatory control during hypercapnia, we studied 11 normal humans. Airway receptor block was induced by inhaling an aerosol of lidocaine; a preferential upper oropharyngeal block was also induced in a subgroup by gargling a solution of the anesthetic. Inhalation of lidocaine aerosol adequate to increase cough threshold, as measured by citric acid, did not change the ventilatory response to CO2, ratio of the change in minute ventilation to change in alveolar PCO2 (delta VI/delta PACO2), compared with saline control. Breathing pattern at mean CO2-stimulated ventilation of 25 l/min showed significantly decreased respiratory frequency, increased tidal volume, and prolonged inspiratory time compared with saline. Resting breathing pattern also showed significantly increased tidal volume and inspiratory time. In nine of the same subjects gargling a lidocaine solution adequate to extinguish gag response without altering cough threshold did not change delta VI/delta PACO2 or ventilatory pattern during CO2-stimulated or resting ventilation compared with saline. These results suggest that lower but not upper oropharyngeal vagal airway receptors modulate breathing pattern during hypercapnic as well as resting ventilation but do not affect delta VI/delta PACO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号