首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
EB1 proteins are ubiquitous microtubule-associated proteins involved in microtubule search and capture, regulation of microtubule dynamics, cell polarity, and chromosome stability. We have cloned a complete cDNA of Dictyostelium EB1 (DdEB1), the largest known EB1 homolog (57 kDa). Immunofluorescence analysis and expression of a green fluorescent protein-DdEB1 fusion protein revealed that DdEB1 localizes along microtubules, at microtubule tips, centrosomes, and protruding pseudopods. During mitosis, it was found at the spindle, spindle poles, and kinetochores. DdEB1 is the first EB1-homolog that is also a genuine centrosomal component, because it was localized at isolated centrosomes that are free of microtubules. Furthermore, centrosomal DdEB1 distribution was unaffected by nocodazole treatment. DdEB1 colocalized with DdCP224, the XMAP215 homolog, at microtubule tips, the centrosome, and kinetochores. Furthermore, both proteins were part of the same cytosolic protein complex, suggesting that they may act together in their functions. DdEB1 deletion mutants expressed as green fluorescent protein or maltose-binding fusion proteins indicated that microtubule binding requires homo-oligomerization, which is mediated by a coiled-coil domain. A DdEB1 null mutant was viable but retarded in prometaphase progression due to a defect in spindle formation. Because spindle elongation was normal, DdEB1 seems to be required for the initiation of the outgrowth of spindle microtubules.  相似文献   

2.
The presence of supernumerary centrosomes in cells infected with Chlamydia trachomatis may provide a mechanism to explain the association of C. trachomatis genital infection with cervical cancer. We show that the amplified centrosomal foci induced during a chlamydial infection contain both centriolar and pericentriolar matrix markers, demonstrating that they are bona fide centrosomes. As there were multiple immature centrioles but approximately one mature centriole per cell, aborted cytokinesis alone cannot account for centrosome amplification during a chlamydial infection. Production of supernumerary centrosomes required the kinase activities of Cdk2 and Plk4, which are known regulators of centrosome duplication, and progression through S-phase, which is the stage in the cell cycle when duplication of the centrosome occurs. These requirements indicate that centrosome amplification during a chlamydial infection depends on the host centrosome duplication pathway, which normally produces a single procentriole from each template centriole. However, C. trachomatis induces a loss of numerical control so that multiple procentrioles are formed per template.  相似文献   

3.
Tight regulation of centrosome duplication is critical to ensure that centrosome number doubles once and only once per cell cycle. Superimposed onto this centrosome duplication cycle is a functional centrosome cycle in which they alternate between phases of quiescence and robust microtubule (MT) nucleation and MT-anchoring activities. In vertebrate cycling cells, interphase centrioles accumulate less pericentriolar material (PCM), reducing their MT nucleation capacity. In mitosis, centrosomes mature, accumulating more PCM to increase their nucleation and anchoring capacities to form robust MT asters. Interestingly, functional cycles of centrosomes can be altered to suit the cell's needs. Some interphase centrosomes function as a microtubule-organizing center by increasing their ability to anchor MTs to form centrosomal radial arrays. Other interphase centrosomes maintain their MT nucleation capacity but reduce/eliminate their MT-anchoring capacity. Recent work demonstrates that Drosophila cells take this to the extreme, whereby centrioles lose all detectable PCM during interphase, offering an explanation as to how centrosome-deficient flies develop to adulthood. Drosophila stem cells further modify the functional cycle by differentially regulating their two centrioles – a situation that seems important for stem cell asymmetric divisions, as misregulation of centrosome duplication in stem/progenitor cells can promote tumor formation. Here, we review recent findings that describe variations in the functional cycle of centrosomes.  相似文献   

4.
The centrosome is the main microtubule-organizing center in animal cells, and helps to influence the morphology of the microtubule cytoskeleton in interphase and mitosis. The centrosome also templates the assembly of the primary cilium, and together they serve as a nexus of cell signaling that provide cells with diverse organization, motility, and sensory functions. The majority of cells in the human body contain a solitary centrosome and cilium, and cells have evolved regulatory mechanisms to precisely control the numbers of these essential organelles. Defects in the structure and function of cilia lead to a variety of complex disease phenotypes termed ciliopathies, while dysregulation of centrosome number has long been proposed to induce genome instability and tumor formation. Here, we review recent findings that link centrosome amplification to changes in cilium number and signaling capacity, and discuss how supernumerary centrosomes may be an important aspect of a set of cilia-related disease phenotypes.  相似文献   

5.
As the primary microtubule-organizing center in animal cells, centrosomes regulate microtubule cytoskeleton to support various cellular behaviors. They also serve as the base for nucleating primary cilia, the hub of diverse signaling pathways. Cells typically possess one centrosome that contains two inequal centrioles and undergoes semi-conservative duplication during cell division, resulting in two centrosomes with an inherent asymmetry in age and properties. While the centrosome is ubiquitously present, mutations of centrosome proteins are strongly associated with human microcephaly characterized by a small cerebral cortex, underscoring the importance of an intact centrosome in supporting cortical neurogenesis. Here we review recent advances on centrosome regulation and function in mammalian cortical neural progenitors and discuss the implications for a better understanding of cortical neurogenesis and related disease mechanisms.  相似文献   

6.
Centrosomes direct microtubule organization during cell division. Aberrant number of centrosomes results from alteration of its components and leads to abnormal mitoses and chromosome instability. HOPS is a newly discovered protein isolated during liver regeneration, implicated in cell proliferation. Here, we provide evidence that HOPS is an integral constituent of centrosomes. HOPS is associated with classical markers of centrosomes and found in cytosolic complexes containing CRM-1, γ-tubulin, eEF-1A and HSP70. These features suggest that HOPS is involved in centrosome assembly and maintenance. HOPS depletion generates supernumerary centrosomes, multinucleated cells and multipolar spindle formation leading to activation of p53 checkpoint and cell cycle arrest. The presence of HOPS in cytosolic complexes supports that centrosome proteins might be preassembled in the cytoplasm to then be rapidly recruited for centrosome duplication. Altogether these data show HOPS implication in the control of cell division. HOPS contribution appears relevant to understand genomic instability and centrosome amplification in cancer.  相似文献   

7.
Centrosomes are the major microtubule nucleating center in the cell; they also contribute to spindle pole organization and play a role in cell cycle progression as well as completing cytokinesis. Here we describe the molecular characterization of a novel human gene, CEP55, located in 10q23.33 that is expressed in multiple tissues and various cancer cell lines. Sequence analysis of the cDNA predicted a protein of 464 amino acids with several putative coiled-coil domains that are responsible for protein-protein interactions. Indeed, we found homodimerization of CEP55 by coimmunoprecipitation. Subcellular localization analysis revealed that endogenous CEP55 as well as an EGFP-CEP55 fusion protein is present at the centrosome throughout mitosis, whereas it also appears at the cleavage furrow in late anaphase and in the midbody in cytokinesis. Neither nocodazole nor taxol interfered with centrosome association of endogenous CEP55, suggesting that it directly interacts with centrosome components rather than with microtubules. In microtubule regrowth assays, overexpression of CEP55 did not enhance or inhibit microtubule nucleation. Together, these data suggest a possible involvement of CEP55 in centrosome-dependent cellular functions, such as centrosome duplication and/or cell cycle progression, or in the regulation of cytokinesis.  相似文献   

8.
In animal cells, centrosomes nucleate microtubules that form polarized arrays to organize the cytoplasm. Drosophila presents an interesting paradox however, as centrosome-deficient mutant animals develop into viable adults. To understand this discrepancy, we analyzed behaviors of centrosomes and microtubules in Drosophila cells, in culture and in vivo, using a combination of live-cell imaging, electron microscopy, and RNAi. The canonical model of the cycle of centrosome function in animal cells states that centrosomes act as microtubule-organizing centers throughout the cell cycle. Unexpectedly, we found that many Drosophila cell-types display an altered cycle, in which functional centrosomes are only present during cell division. On mitotic exit, centrosomes disassemble producing interphase cells containing centrioles that lack microtubule-nucleating activity. Furthermore, steady-state interphase microtubule levels are not changed by codepleting both gamma-tubulins. However, gamma-tubulin RNAi delays microtubule regrowth after depolymerization, suggesting that it may function partially redundantly with another pathway. Therefore, we examined additional microtubule nucleating factors and found that Mini-spindles, CLIP-190, EB1, or dynein RNAi also delayed microtubule regrowth; surprisingly, this was not further prolonged when we codepleted gamma-tubulins. Taken together, these results modify our view of the cycle of centrosome function and reveal a multi-component acentrosomal microtubule assembly pathway to establish interphase microtubule arrays in Drosophila.  相似文献   

9.
The mammalian SPD-2 ortholog Cep192 regulates centrosome biogenesis   总被引:2,自引:0,他引:2  
Centrosomes are the major microtubule-organizing centers of mammalian cells. They are composed of a centriole pair and surrounding microtubule-nucleating material termed pericentriolar material (PCM). Bipolar mitotic spindle assembly relies on two intertwined processes: centriole duplication and centrosome maturation. In the first process, the single interphase centrosome duplicates in a tightly regulated manner so that two centrosomes are present in mitosis. In the second process, the two centrosomes increase in size and microtubule nucleation capacity through PCM recruitment, a process referred to as centrosome maturation. Failure to properly orchestrate centrosome duplication and maturation is inevitably linked to spindle defects, which can result in aneuploidy and promote cancer progression. It has been proposed that centriole assembly during duplication relies on both PCM and centriole proteins, raising the possibility that centriole duplication depends on PCM recruitment. In support of this model, C. elegans SPD-2 and mammalian NEDD-1 (GCP-WD) are key regulators of both these processes. SPD-2 protein sequence homologs have been identified in flies, mice, and humans, but their roles in centrosome biogenesis until now have remained unclear. Here, we show that Cep192, the human homolog of C. elegans and D. melanogaster SPD-2, is a major regulator of PCM recruitment, centrosome maturation, and centriole duplication in mammalian cells. We propose a model in which Cep192 and Pericentrin are mutually dependent for their localization to mitotic centrosomes during centrosome maturation. Both proteins are then required for NEDD-1 recruitment and the subsequent assembly of gamma-TuRCs and other factors into fully functional centrosomes.  相似文献   

10.
The centrosome is a unique organelle that functions as the microtubule organizing center in most animal cells. During cell division, the centrosomes form the poles of the bipolar mitotic spindle. In addition, the centrosomes are also needed for cytokinesis. Each mammalian somatic cell typically contains one centrosome, which is duplicated in coordination with DNA replication. Just like the chromosomes, the centrosome is precisely reproduced once and only once during each cell cycle. However, it remains a mystery how this protein-based structure undergoes accurate duplication in a semiconservative manner. Intriguingly, amplification of the centrosome has been found in numerous forms of cancers. Cells with multiple centrosomes tend to form multipolar spindles, which result in abnormal chromosome segregation during mitosis. It has therefore been postulated that centrosome aberration may compromise the fidelity of cell division and cause chromosome instability. Here we review the current understanding of how the centrosome is assembled and duplicated. We also discuss the possible mechanisms by which centrosome abnormality contributes to the development of malignant phenotype.  相似文献   

11.
The role of microtubule-based motors in the induction of abnormal centrosome integrity by dimethylarsinic acid (DMAA) was investigated with the use of monastrol, a specific inhibitor of mitotic kinesin, and vanadate, an inhibitor of dynein ATPase. Cytoplasmic dynein co-localized with multiple foci of gamma-tubulin in mitotic cells arrested by DMAA. Disruption of microtubules caused dispersion of dynein while multiple foci of gamma-tubulin were coalesced to a single dot. Vanadate also caused dispersion of dynein, which had been co-localized with multiple foci of gamma-tubulin by DMAA, without affecting spindle organization. However, the dispersion of dynein did not prohibit the induction of abnormal centrosome integrity by DMAA. Inhibition of mitotic kinesin by monastrol resulted in monoastral cells with non-migrated centrosomes in the cell center. Monastrol, when applied to mitotic cells with abnormal centrosome integrity, rapidly reduced the incidence of cells with the centrosome abnormality. Moreover, monastrol completely inhibited reorganization of abnormal centrosomes that had been coalesced to a single dot by microtubule disruption. These results suggest that abnormal centrosome integrity caused by DMAA is not simply due to dispersion of fragments of microtubule-organizing centers, but is dependent on the action of kinesin. In addition, the results suggest that kinesin plays a role not only in the induction of mitotic centrosome abnormality, but also in maintenance.  相似文献   

12.
We have designed experiments that distinguish centrosomal , nuclear, and cytoplasmic contributions to the assembly of the mitotic spindle. Mammalian centrosomes acting as microtubule-organizing centers were assayed by injection into Xenopus eggs either in a metaphase or an interphase state. Injection of partially purified centrosomes into interphase eggs induced the formation of extensive asters. Although centrosomes injected into unactivated eggs (metaphase) did not form asters, inhibition of centrosomes is not irreversible in metaphase cytoplasm: subsequent activation caused aster formation. When cytoskeletons containing nuclei and centrosomes were injected into the metaphase cytoplasm, they produced spindle-like structures with clearly defined poles. Electron microscopy revealed centrioles with nucleated microtubules. However, injection of nuclei prepared from karyoplasts that were devoid of centrosomes produced anastral microtubule arrays around condensing chromatin. Co-injection of karyoplast nuclei with centrosomes reconstituted the formation of spindle-like structures with well-defined poles. We conclude from these experiments that in mitosis, the centrosome acts as a microtubule-organizing center only in the proximity of the nucleus or chromatin, whereas in interphase it functions independently. The general implications of these results for the interconversion of metaphase and interphase microtubule arrays in all cells are discussed.  相似文献   

13.
The widespread LIS1-proteins were originally identified as the target for sporadic mutations causing lissencephaly in humans. Dictyostelium LIS1 (DdLIS1) is a microtubule-associated protein exhibiting 53% identity to human LIS1. It colocalizes with dynein at isolated, microtubule-free centrosomes, suggesting that both are integral centrosomal components. Replacement of the DdLIS1 gene by the hypomorphic D327H allele or overexpression of an MBP-DdLIS1 fusion disrupted various dynein-associated functions. Microtubules lost contact with the cell cortex and were dragged behind an unusually motile centrosome. Previously, this phenotype was observed in cells overexpressing fragments of dynein or the XMAP215-homologue DdCP224. DdLIS1 was coprecipitated with DdCP224, suggesting that both act together in dynein-mediated cortical attachment of microtubules. Furthermore, DdLIS1-D327H mutants showed Golgi dispersal and reduced centrosome/nucleus association. Defects in DdLIS1 function also altered actin dynamics characterized by traveling waves of actin polymerization correlated with a reduced F-actin content. DdLIS1 could be involved in actin dynamics through Rho-GTPases, because DdLIS1 interacted directly with Rac1A in vitro. Our results show that DdLIS1 is required for maintenance of the microtubule cytoskeleton, Golgi apparatus and nucleus/centrosome association, and they suggest that LIS1-dependent alterations of actin dynamics could also contribute to defects in neuronal migration in lissencephaly patients.  相似文献   

14.
Supernumerary centrosomes contribute to spindle defects and aneuploidy at mitosis, but the effects of excess centrosomes during interphase are poorly understood. In this paper, we show that interphase endothelial cells with even one extra centrosome exhibit a cascade of defects, resulting in disrupted cell migration and abnormal blood vessel sprouting. Endothelial cells with supernumerary centrosomes had increased centrosome scattering and reduced microtubule (MT) nucleation capacity that correlated with decreased Golgi integrity and randomized vesicle trafficking, and ablation of excess centrosomes partially rescued these parameters. Mechanistically, tumor endothelial cells with supernumerary centrosomes had less centrosome-localized γ-tubulin, and Plk1 blockade prevented MT growth, whereas overexpression rescued centrosome γ-tubulin levels and centrosome dynamics. These data support a model whereby centrosome–MT interactions during interphase are important for centrosome clustering and cell polarity and further suggest that disruption of interphase cell behavior by supernumerary centrosomes contributes to pathology independent of mitotic effects.  相似文献   

15.
According to the current view, the microtubule system in animal cells consists of two components: microtubules attached to the centrosome (these microtubules stretch radially towards the cell margin), and free microtubules randomly distributed in the cytoplasm without visible association with any microtubule-organizing centers. The ratio of the two sets of microtubules in the whole microtubule array is under discussion. Addressing this question, we have analysed the recovery of microtubules in cultured Vero nucleated cells and cytoplasts, with and without centrosomes in these. Cells were fixed at different time points, and individual microtubules were traced on serial optical sections. During a slow recovery after cold treatment (4 degrees C, for 4 h; recovery at 30 degrees C) polymerization of microtubules started mainly from the centrosome. At early stages of recovery the share of free microtubules made about 10% of all microtubules, and their total length increased slower than the lenght of centrosome-attached microtubules. During a rapid recovery after nocodazole treatment (10 microg/ml, 2 h; recovery in drug-free medium at 37 degrees C), the share of free microtubules was about 35%, but their total length increased slower than the length of centrosome-attached microtubules. In 6-8 min (rapid recovery) or 12-16 min (slow recovery), tips of centrosomal microtubules reached the cell margin, and their increased density made it impossible to recognize individual microtubules. However, under the same conditions in cytoplasts without centrosomes the normal number of microtubules recovered only in 60 min, which enabled us to suppose that the complete recovery of microtubule system in the whole cells may be also rather long. When the first centrosomal microtubules reached the cell margin, the optical density of microtubules started to decrease from the centrosome region towards the cell margin, according to the exponential curve. Later on, the optical density in the centrosome region and near the cell margin remained at the same level, but microtubule density increased in the middle part of the cell, and in 45-60 min the plot of the optical density vs the distance from the centrosome became linear, as in control cells. Since no significant curling of microtubules occurs near the cell margin, the density of microtubules in the endoplasm may increase due only to polymerization of free microtubules. We suppose that in cultured cells the microtubule network recovery proceeds in two stages. At the initial stage, a rapid growth of centrosomal microtubules takes place in addition to the turnover of free microtubules with unstable minus ends. At the second stage, when microtubule growth from the centrosome becomes limited by the cell margin, a gradual extension of free microtubules occurs in the internal cytoplasm.  相似文献   

16.
Nigg EA  Stearns T 《Nature cell biology》2011,13(10):1154-1160
Centrosomes are microtubule-organizing centres of animal cells. They influence the morphology of the microtubule cytoskeleton, function as the base for the primary cilium and serve as a nexus for important signalling pathways. At the core of a typical centrosome are two cylindrical microtubule-based structures termed centrioles, which recruit a matrix of associated pericentriolar material. Cells begin the cell cycle with exactly one centrosome, and the duplication of centrioles is constrained such that it occurs only once per cell cycle and at a specific site in the cell. As a result of this duplication mechanism, the two centrioles differ in age and maturity, and thus have different functions; for example, the older of the two centrioles can initiate the formation of a ciliary axoneme. We discuss spatial aspects of the centrosome duplication cycle, the mechanism of centriole assembly and the possible consequences of the inherent asymmetry of centrioles and centrosomes.  相似文献   

17.
Cep135 is a 135-kDa, coiled-coil centrosome protein important for microtubule organization in mammalian cells [Ohta et al., 2002: J. Cell Biol. 156:87-99]. To identify Cep135-interacting molecules, we screened yeast two-hybrid libraries. One clone encoded dynamitin, a p50 dynactin subunit, which localized at the centrosome and has been shown to be involved in anchoring microtubules to centrosomes. The central domain of p50 binds to the C-terminal sequence of Cep135; this was further confirmed by immunoprecipitation and immunostaining of CHO cells co-expressing the binding domains for Cep135 and p50. Exogenous p50 lacking the Cep 135-binding domain failed to locate at the centrosome, suggesting that Cep135 is required for initial targeting of the centrosome. Altered levels of Cep135 and p50 by RNAi and protein overexpression caused the release of endogenous partner molecules from centrosomes. This also resulted in dislocation of other centrosomal molecules, such as gamma-tubulin and pericentrin, ultimately leading to disorganization of microtubule patterns. These results suggest that Cep135 and p50 play an important role in assembly and maintenance of functional microtubule-organizing centers.  相似文献   

18.
Accurate control of the number of centrosomes, the major microtubule-organizing centers of animal cells, is critical for the maintenance of genome integrity. Abnormalities in centrosome number can promote errors in spindle formation that lead to subsequent chromosome missegregation, and extra centrosomes are found in many cancers. Centrosomes are comprised of a pair of centrioles surrounded by amorphous pericentriolar material, and centrosome duplication is controlled by centriole replication. Polo-like kinase 4 (Plk4) plays a key role in initiating centriole duplication, and overexpression of Plk4 promotes centriole overduplication and the formation of extra centrosomes. Using chemical genetics, we show that kinase-active Plk4 is inherently unstable and targeted for degradation. Plk4 is shown to multiply self-phosphorylate within a 24–amino acid phosphodegron. Phosphorylation of multiple sites is required for Plk4 instability, indicating a requirement for a threshold level of Plk4 kinase activity to promote its own destruction. We propose that kinase-mediated, autoregulated instability of Plk4 self-limits Plk4 activity so as to prevent centrosome amplification.  相似文献   

19.
The centrosome, which consists of two centrioles and the surrounding pericentriolar material, is the primary microtubule-organizing center (MTOC) in animal cells. Like chromosomes, centrosomes duplicate once per cell cycle and defects that lead to abnormalities in the number of centrosomes result in genomic instability, a hallmark of most cancer cells. Increasing evidence suggests that the separation of the two centrioles (disengagement) is required for centrosome duplication. After centriole disengagement, a proteinaceous linker is established that still connects the two centrioles. In G2, this linker is resolved (centrosome separation), thereby allowing the centrosomes to separate and form the poles of the bipolar spindle. Recent work has identified new players that regulate these two processes and revealed unexpected mechanisms controlling the centrosome cycle.  相似文献   

20.
The Cyclin-Dependent Kinase (CDK)-activating phosphatase CDC25B, localises to the centrosomes where its activity is both positively and negatively regulated by several kinases including Aurora A and CHK1. Our recent data also demonstrate a role for CDC25B in the centrosome duplication cycle and microtubule nucleation in interphase that appears to involve the recruitment of γ-tubulin to the centrosomes. In the present study, we report that CDC25B, along with CHK1, CDK1 and WEE1, localise asymmetrically around the mother centrosome from S to G2-phases, and gradually become evenly distributed to the two centrosomes by late G2 phase, concomitant with centrosome maturation. We further demonstrate that siRNA inhibition of CDC25B results in an accumulation of cells in G2 phase with two separated centrosomes, each containing only a single centriole, suggesting a requirement for CDC25B in centriole duplication. We propose that the localisation of key cell cycle regulators to the mother centrosome ensures synchrony between the centrosome duplication and cell division cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号