首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The toxic and carcinogenic effects of arsenic may be mediated by both inorganic and methylated arsenic species. The methylation of arsenic(III) is thought to take place via sequential oxidative methylation and reduction steps to form monomethylarsenic (MMA) and dimethylarsenic (DMA) species, but recent evidence indicates that glutathione complexes of arsenic(III) can be methylated without oxidation. The kinetics of arsenic methylation were determined in freshly isolated hepatocytes from male B6C3F1 mice. Hepatocytes (>90% viability) were isolated by collagenase perfusion and suspended in Williams' Medium E with various concentrations of arsenic(III) (sodium m-arsenite). Aliquots of the lysed cell suspension were analyzed for arsenic species by hydride generation-atomic absorption spectrometry. The formation of MMA(III) from sodium arsenite (1 microM) was linear with respect to time for >90 min. DMA(III) formation did not become significant until 60 min. MMA(V) and DMA(V) were not consistently observed in the incubations. These results suggest that the glutathione complex mechanism of methylation plays an important role in arsenic biotransformation in mouse hepatocytes. Metabolism of arsenic(V) was not observed in mouse hepatocytes, consistent with inhibition of arsenic(V) active cellular uptake by phosphate in the medium. The formation of MMA(III) increased with increasing arsenic(III) concentrations up to approximately 2 microM and declined thereafter. The concentration dependence is consistent with a saturable methylation reaction accompanied by uncompetitive substrate inhibition of the reaction by arsenic(III). Kinetic analysis of the data suggested an apparent K(M) of approximately 3.6 microM arsenic(III), an apparent V(max) of approximately 38.9 microg MMA(III) formed/L/h/million cells, and an apparent K(I) of approximately 1.3 microM arsenic(III). The results of this study can be used in the physiologically based pharmacokinetic model for arsenic disposition in mice to predict the concentration of MMA(III) in liver and other tissues.  相似文献   

2.
3.
4.
Using hepatocytes in suspension, freshly isolated from adult male fed rats, we studied the acute influence of recombinant human interleukins 1 alpha, 2 and 6 on glycogen and fatty acid metabolism. By far the largest effects were observed with interleukin-1 alpha: short incubations (up to 60 min) sufficed to depress glycogen synthesis in a dose-dependent manner, while the rates of glycogenolysis and glycolysis were increased as indicated by the release of glucose and lactate. Interleukin-6 acted similarly, though being much less effective on a molar basis, whereas interleukin-2 only caused a small increase in lactate production. In hepatocytes from 24h-starved rats interleukin-1 alpha caused a minor stimulation of gluconeogenesis. Although neither fatty acid synthesis nor oxidation of fatty acids in quiescent hepatocytes from fed rats was significantly affected by interleukins, interleukin-1 alpha was able to cause appreciable inhibition of fatty acid synthesis in hepatocytes from regenerating liver (isolated 22h after partial hepatectomy). It is concluded (i) that interleukins, in particular interleukin-1 alpha, acutely promote hepatic glucose release, and (ii) that transition of adult hepatocytes from a quiescent into a proliferatory state allows the occurrence of rapid effects of interleukin-1 alpha on fatty acid metabolism.  相似文献   

5.
Isolated rat liver cells convert [14C]vinyl chloride into non-volatile metabolites. The metabolism is not increased by in vivo pretreatment with phenobarbital. It is sensitive to inhibition by ethanol, which at a concentration of 4 mM inhibits vinyl chloride metabolism to 50% in hepatocyte suspensions. The metabolic activity is NADPH-dependent and is localized in the microsomal fraction of the liver. The enzyme is also strongly inhibited by tetrahydrofuran, indicating that it could be identical to an ethanol-inducible cytochrome P-450 described in the literature [1].  相似文献   

6.
Evidence has suggested that STAT3 functions as an oncogene in gliomagenesis. As a consequence, changes in the inflammatory microenvironment are thought to promote tumor development. Regardless of its origin, cancer-related inflammation has many tumor-promoting effects, such as the promotion of cell cycle progression, cell proliferation, cell migration and cell survival. Given that IL-6, a major cancer-related inflammatory cytokine, regulates STAT3 activation and is upregulated in glioblastoma, we sought to investigate the inhibitory effects of the chemopreventive flavonoid quercetin on glioblastoma cell proliferation and migration triggered by IL-6, and to determine the underlying mechanisms of action. In this study, we show that quercetin is a potent inhibitor of the IL-6-induced STAT3 signaling pathway in T98G and U87 glioblastoma cells. Exposure to quercetin resulted in the reduction of GP130, JAK1 and STAT3 activation by IL-6, as well as a marked decrease of the proliferative and migratory properties of glioblastoma cells induced by IL-6. Interestingly, quercetin also modulated the expression of two target genes regulated by STAT3, i.e. cyclin D1 and matrix metalloproteinase-2 (MMP-2). Moreover, quercetin reduced the recruitment of STAT3 at the cyclin D1 promoter and inhibited Rb phosphorylation in the presence of IL-6. Overall, these results provide new insight into the role of quercetin as a blocker of the STAT3 activation pathway stimulated by IL-6, with a potential role in the prevention and treatment of glioblastoma.  相似文献   

7.
Non-invasive immobilization stress causes an increase in the plasma interleukin (IL)-6 level accompanied by increased IL-6 mRNA expression and IL-6 immunoactivity in the liver [Biochem. Biophys. Res. Commun. (1997) 238, 707-711]. In the present study, using rat primary cultured hepatocytes and non-parenchymal liver cells, the effect of norepinephrine (NE) on IL-6 mRNA expression was determined. IL-6 mRNA expression in hepatocytes, but not in non-parenchymal liver cells, increased when the cells were treated with NE. The stimulatory effect of NE was inhibited by the combined use of alpha- and beta-adrenergic antagonists. IL-6 mRNA expression in hepatocytes also increased on incubation with the culture medium of non-parenchymal liver cells treated with NE. The effect of the medium was blocked by an IL-1 receptor antagonist. Moreover, exogenous IL-1beta stimulated IL-6 mRNA expression in hepatocytes. IL-1beta was present in the medium of non-parenchymal liver cells and increased with NE-treatment. These results suggest that NE released from sympathetic nerve terminals during stress can directly increase IL-6 mRNA expression in hepatocytes and indirectly through IL-1beta production from non-parenchymal liver cells.  相似文献   

8.
9.
The determination of the mixed function flavin-containing monooxygenase activity in rat liver and in hepatocytes and their cultures by spectrophotometric measurement of the oxygenation of methimazole is complicated by an inhibition caused by some of the reagents used during this method. Optimal conditions were determined for measuring this enzyme activity in microsomal preparations of rat liver and its hepatocytes. Optimal flavin-containing monooxygenase activities were obtained for measurements performed in a 0.25 M N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]glycine-EDTA buffer at pH 8.7 and at a methimazole concentration of 2 mM. Data are also presented which show that no interferences caused by either cytochrome P450-dependent enzymes or by the reduction of methimazole disulfide by glutathione have to be taken into account when determining methimazole oxygenation. Finally, the above assay was also used to study flavin-containing monooxygenase activity in primary monolayer cultures of hepatocytes for 6 days.  相似文献   

10.
Analysis of the uptake and metabolism of [14C]cysteine in rat liver was undertaken using freshly isolated hepatocytes and hepatocytes maintained in primary culture. The uptake of [14C]cysteine by freshly isolated hepatocytes was by means of both saturable and non-saturable transport systems and the former system was thought to involve facilitated diffusion. The uptake of [14C]cysteine by hepatocytes maintained in primary culture for 24 h also consisted of non-saturated and saturated transport mechanisms. The magnitude of the saturable transport system in cultured hepatocytes was, however, much greater than that found in freshly isolated hepatocytes, and was considered to be operated by active transport. Both freshly isolated and primary cultured hepatocytes had cysteine sulphinic acid decarboxylase activity, but this enzyme activity in the latter cells was noticeably reduced in comparison with that found in freshly isolated hepatocytes. Hepatocytes maintained in primary culture produced not only radiolabelled taurine, but also radiolabelled cysteine sulphinic acid, hypotaurine and alanine when incubated with [14C]cysteine. The present results indicate that cultured hepatocytes actively transport cysteine as well as metabolizing cysteine to taurine via cysteine sulphinic acid and hypotaurine.  相似文献   

11.
12.
The effect of ethanol on receptor-mediated phospholipase C-linked signal transduction processes was investigated in isolated rat hepatocytes. Pretreatment of the cells with ethanol (6-300 mM) markedly inhibited a subsequent stimulation of phospholipase C by vasopressin, angiotensin II, or epidermal growth factor. By contrast, the effects of the alpha 1-adrenergic agonist phenylephrine and of glucagon were not affected by ethanol pretreatment. Ethanol inhibited the agonist-induced decrease in polyphosphoinositides, the formation of inositol phosphates, and the increase in cytosolic free Ca2+ levels, as detected with the intracellular Ca2+ indicator indo-1. The effects of ethanol were concentration dependent and were pronounced at low concentrations of agonists but were not significant at saturating levels. Pretreatment of the cells with the protein kinase C inhibitor H7 partly prevented the inhibition by ethanol of vasopressin-induced phospholipase C activation. By contrast, pretreatment of the cells with (Rp)-adenosine cyclic 3':5'-phosphorothioate [Rp)-cAMP-S), a competitive inhibitor of protein kinase A, potentiated the inhibitory effect of ethanol on the Ca2+ mobilization by vasopressin. (Rp)-cAMP-S similarly potentiated the inhibition of phospholipase C by the protein kinase C-activating phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA). The kinase A inhibitor also made the Ca2+ mobilization by phenylephrine sensitive to ethanol, indicating that the formation of cAMP in the cells played a role in suppressing the sensitivity to ethanol. Pretreatment of the cells with ethanol enhanced the inhibitory effects of TPA on the vasopressin-induced phospholipase C activation at all concentrations of the hormone; however, these synergistic effects were prevented when TPA was added prior to ethanol, a condition that prevents the activation of phospholipase C by ethanol. The data indicate that ethanol causes desensitization of the receptor-mediated phospholipase C secondary to the ethanol-induced activation of phospholipase C and activation of protein kinase C. Ethanol treatment also affects the sensitivity of the phospholipase C system to control by protein kinases A and C. The data indicate that ethanol can affect the control of intracellular signal transduction processes in liver cells under physiologically relevant conditions.  相似文献   

13.
14.
Hepatic synthesis of complement component C3 is regulated in part by inflammatory cytokines. Rat models are frequently employed to investigate pathogenic roles of complement and cytokines. However, cytokines obtained from species other than the rat were used in previous studies of cytokine regulation of C3 synthesis in rat hepatocytes or hepatoma cells. It is not known whether these prior reports predict hepatocellular responses evoked by rat cytokines. Therefore, H-35 rat hepatoma cells were employed to measure the effect of recombinant rat IL-1beta, IL-6, IFN-gamma, and TNF-alpha on C3 protein secretion and C3 mRNA levels quantified by ELISA and quantitative RT-PCR. Compared to untreated control cells, H-35 cells treated with IL-1beta, IL-6, and IFN-gamma increased C3 secretion approximately 10-, 4-, and 2-fold, respectively. TNF-alpha was toxic, precluding further analysis. IL-1beta and IL-6 demonstrated synergy with respect to the quantity and rate of increase of C3 mRNA measured and the magnitude of C3 protein secretion. Previous reports using non-rat cytokines did not consistently predict H-35 responses to rat cytokines. Consequently, we recommend the use of rat cytokines in rat models that include analysis of cytokine-mediated events.  相似文献   

15.
Epidermal growth factor (EGF) has previously been shown to stimulate gluconeogenesis in rat liver by decreasing the activity of pyruvate kinase [(1988) Biochem. J. 255, 361-364]. Here we investigate the mechanism underlying the inactivation of the enzyme. EGF was found to increase the incorporation of phosphate into pyruvate kinase, with maximal phosphorylation achieved only after 10 min in the presence of the growth factor. The increase in phosphorylation was not additive with that caused by cyclic AMP. Phosphoamino acid analysis of pyruvate kinase isolated from cells treated with EGF indicated that EGF increases phosphorylation solely on serine residues. The exact site of EGF-mediated phosphorylation has yet to be identified.  相似文献   

16.
We have analysed the effects of natural aliphatic polyamines on hormonal induction of tyrosine aminotransferase (TAT) in suspensions of hepatocytes isolated from adult fed rats. Glucagon or cyclic AMP derivatives (dibutyryl and 8-bromo) used alone caused a 4-5 fold increase in enzyme activity within 4h. This effect was independent of glucocorticoids, which also increased TAT activity (2.5-fold); when combined, the effects of the two inducers were additive. Spermine and putrescine totally inhibited the hormonally-mediated increase in enzyme activity when added at the onset of incubation with the inducers. Furthermore, polyamines could block the hormonal effect at any time during the course of TAT induction, with, however, a 30 min lag period, suggesting that they must enter the cells. Hepatocytes were indeed shown to take up spermine. At low external concentrations (less than 50 microM), an Na+-dependent, saturable and concentrative mechanism was predominant; at high concentrations (greater than 0.5 mM) transport occurred mainly through a non-saturable, Na+-independent mechanism, building up intracellular concentrations slightly lower than those in the medium. Dose-dependence analysis of the polyamine effect on enzyme induction indicated that half-maximal and maximal inhibition occurred with 0.75 mM- and 2.5 mM-spermine respectively, whereas 2.5mM- and 7.5 mM-putrescine were required respectively to obtain similar effects. Spermidine was much less effective and cadaverine had virtually no effect. None of the polyamines affected the rate of decay of TAT, nor did they directly or indirectly cause enzyme inactivation, indicating that a post-translational modification was unlikely to account for the polyamine effects. Similarly, these effects could not be ascribed to a non-specific inhibition of overall protein synthesis. We conclude that, in hepatocytes, polyamines (or their metabolites) directly interfere with one or several steps controlled by hormones in the synthesis of tyrosine aminotransferase.  相似文献   

17.
A hybridocytochemical approach has been applied to establish whether the gene for the C/EBP mRNA might be involved in the topographical regulation of gene expression in adult rat liver. To that end the spatial distribution of the mRNA of C/EBP has been compared to that of the mRNAs of glutamine synthetase (GS), phosphoenolpyruvate carboxykinase (PEPCK) and glucokinase (GK) in normal adult livers, in livers from dexamethasone-treated animals and in livers from starved animals refed with glucose for 4 h. In normal rat liver, in situ hybridization with a probe for C/EBP mRNA revealed a low density of apparently homogeneously distributed grains, indicating low levels of C/EBP mRNA. In contrast, the livers of the experimentally-treated animals revealed a zonal distribution of the mRNA of C/EBP with the highest density of grains around the central venules. The dynamics of the pattern of expression of C/EBP mRNA are virtually identical to that of the GK mRNA. These data qualify C/EBP mRNA as a pericentral mRNA and suggest a role for the C/EBP protein in the topographical regulation of the expression of the GK mRNA.  相似文献   

18.
《Phytomedicine》2014,21(8-9):1088-1091
STAT3 signaling pathway is an important target for human cancer therapy. Thus, the identification of small-molecules that target STAT3 signaling will be of great interests in the development of anticancer agents. The aim of this study was to identify novel inhibitors of STAT3 pathway from the roots of Zanthoxylum nitidum (Roxb.) DC. The bioassay-guided fractionation of MeOH extract of Z. nitidum using a STAT3-responsive gene reporter assay led to the isolation of angoline (1) as a potent and selective inhibitor of the STAT3 signaling pathway (IC50 = 11.56 μM). Angoline inhibited STAT3 phosphorylation and its target gene expression and consequently induced growth inhibition of human cancer cells with constitutively activated STAT3 (IC50 = 3.14–4.72 μM). This work provided a novel lead for the development of anti-cancer agents targeting the STAT3 signaling pathway.  相似文献   

19.
Cancer cell growth was increased when co-cultured with fibroblasts, however, no effect was observed when co-cultured with TIS21-overexpressed fibroblast. Therefore, the role of TIS21 played in cancer microenvironment was investigated. TIS21 decreased interleukin-6 (IL-6) expression in human dermal fibroblast (HDF). Adenoviral transduction of TIS21 gene to HDF decreased the secretion of IL-6, whereas knockdown of the gene increased IL-6 expression. Furthermore, TIS21 overexpression inhibited STAT3 binding to IL-6 promoter region as well as JAK2–STAT3 signaling by inhibiting reactive oxygen species (ROS) generation by being localized in mitochondria. Mitochondria-target TIS21 (MT-TIS21) also inhibited IL-6 expression by downregulating STAT3 phosphorylation, whereas NF-κB pathway was not influenced by TIS21 expression. These results indicate that TIS21 negatively regulated cancer cell growth by inhibiting IL-6 expression through downregulation of STAT3 activation.  相似文献   

20.
According to the known primary sequences of three neurotoxins active on small conductance Ca2+-activated potassium channels from the scorpion Buthus martensi Karsch, their corresponding cDNAs were cloned and sequenced using 3'- and 5'-RACE. All of them encoded a signal peptide composed of 28 residues and a mature toxin of 29, 28 and 33 residues, respectively. Their cDNA deduced sequences were totally consistent with those determined, and the C-terminal amidation of one neurotoxin was confirmed. The genomic DNAs of these three toxins were also amplified by PCR, cloned and sequenced. They all consisted of two exons disrupted by a small single intron. All of these introns were inserted within the signal peptide at the same -10 position upstream from the mature toxin, consisting of 94, 78 and 87 bp, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号