首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Fu Q  Cheng L  Guo Y  Turgeon R 《Plant physiology》2011,157(3):1518-1527
Most herbaceous plants employ thermodynamically active mechanisms of phloem loading, whereas in many trees, the mechanism is passive, by diffusion. Considering the different water transport characteristics of herbs and trees, we hypothesized that water relations play a role in the adoption of phloem loading strategies. We measured whole-plant hydraulic conductance (K(p)), osmolality, concentrations of polar metabolites, and key inorganic ions in recently mature leaves of 45 dicotyledonous species at midafternoon. Trees, and the few herbs that load passively, have low K(p), high osmolality, and high concentrations of transport sugars and total polar metabolites. In contrast, herbs that actively load sucrose alone have high K(p), low osmolality, and low concentrations of sugars and total polar metabolites. Solute levels are higher in sugar alcohol-transporting species, both herbs and trees, allowing them to operate at lower leaf water potentials. Polar metabolites are largely responsible for leaf osmolality above a baseline level (approximately 300 mm) contributed by ions. The results suggest that trees must offset low K(p) with high concentrations of foliar transport sugars, providing the motivating force for sugar diffusion and rendering active phloem loading unnecessary. In contrast, the high K(p) of most herbaceous plants allows them to lower sugar concentrations in leaves. This reduces inventory costs and significantly increases growth potential but necessitates active phloem loading. Viewed from this perspective, the elevation of hydraulic conductance marks a major milestone in the evolution of the herbaceous habit, not only by facilitating water transport but also by maximizing carbon use efficiency and growth.  相似文献   

3.
We have re-examined the evidence against the phloem mobility of oligogalacturonide elicitors using a reduced oligogalacturonide in the phloem translocation system ofRicinus communis var. Gibsonii. A tritium-labelled end-reduced oligogalacturonide of degree of polymerisation 6 was injected into the hollow centre of the petiole of four- to five-week-old plants. Two experimental procedures were followed. In the first, the whole plant was harvested and dissected after 5 h incubation. In the second, phloem sap was collected from an incision in the main stem below the injected petiole; collection started 2 h after incubation and continued for a further 3 h. Determination of the total radiolabel present in the dissected plant showed that at least 8% of the applied activity was exported from the injected leaf, most of this being recovered from the main stem below the injected petiole and the roots. The activity in the phloem exudate showed that the rate of export of radiolabel was already at its maximum by the end of the 2-h incubation period. Radiolabelled material recovered from the main stem was found to be highly comparable to starting material when subjected to thin-layer chromatography. These results demonstrate the phloem mobility of reduced oligogalacturonides of low degree of polymerisation and therefore re-establish the potential for oligogalacturonides to act as systemic signals.  相似文献   

4.
Phloem translocation of [14C]-sucrose and 5/6-carboxyfluorescein(CF) from scion into the stock was studied in in vitro-heterograftsof Lycopersicon on Solanum (L/S) and Vicia on Helianthus (V/H)at various stages of regeneration. Autografts of all partnersserved as controls. Corresponding with the translocation experimentsnewly formed sieve-tube connections between the graft partnerswere counted. 14C-translocation experiments with [14C]-sucrose revealed anage-dependent increase of radioactivity in the stock of allcombinations. In L/S and all autografts the major increase of14C-label in the stock occurred 5–10 d after grafting.In V/H, however, import of label into the stock remained lowthroughout the regeneration period. In L/S grafts, increasesin the numbers of sieve-tube connections parallel the increasingrate of 14C-transport, indicating functioning sieve-tube connectionsin the graft union. In contrast, V/H grafts did not show thisstrong correlation between structure and function of wound repairphloem. This suggested the existence of non-transporting sieve-tubesbetween the graft partners. Similar results were obtained withCF-transport, showing that effective phloem translocation acrossthe graft interface occurred in L/S, but not in V/H grafts.The observed differences in phloem translocation are discussedwith regard to compatibility/incompatibility phenomena in heterografts. Key words: Compatibility/incompatibility, in-vitro-heterografts, phloem transport ([14C]-sucrose, carboxyfluorescein), wound phloem  相似文献   

5.
Since the first ultrastructural investigations of sieve tubes in the early 1960s, their structure has been a matter of debate. Because sieve tube structure defines frictional interactions in the tube system, the presence of P protein obstructions shown in many transmission electron micrographs led to a discussion about the mode of phloem transport. At present, it is generally agreed that P protein agglomerations are preparation artifacts due to injury, the lumen of sieve tubes is free of obstructions, and phloem flow is driven by an osmotically generated pressure differential according to Münch's classical hypothesis. Here, we show that the phloem contains a distinctive network of protein filaments. Stable transgenic lines expressing Arabidopsis thaliana Sieve-Element-Occlusion-Related1 (SEOR1)-yellow fluorescent protein fusions show that At SEOR1 meshworks at the margins and clots in the lumen are a general feature of living sieve tubes. Live imaging of phloem flow and flow velocity measurements in individual tubes indicate that At SEOR1 agglomerations do not markedly affect or alter flow. A transmission electron microscopy preparation protocol has been generated showing sieve tube ultrastructure of unprecedented quality. A reconstruction of sieve tube ultrastructure served as basis for tube resistance calculations. The impact of agglomerations on phloem flow is discussed.  相似文献   

6.
Summary The relative effectiveness of vascular connections between adjacent leaves of tobacco is demonstrated. It is shown that water movement between adjacent leaves is more difficult than between phyllotactically related leaves. Total and specific resistance ratios between adjacent and phyllotactically related leaves are calculated. These figures indicate that vertical water potential profiles need to be interpreted with a full knowledge of the vascular structure and phyllotaxy as well as gross structural and environmental parameters.  相似文献   

7.
The laboratory germination (criterion radicle emergence) of seven seed lots of winter wheat cv. Slejpner was similar. However, they differed in vigour as demonstrated by differences in germination after controlled deterioration carried out at a range of seed moisture contents, at two temperatures and for different times. A vigour assessment for each lot was quantified by calculating a value for the seed lot constant Ki, of the viability equation. Germination in lower water potentials reduced the uptake of water, radicle and coleoptile emergence and radicle and coleoptile extension. There was no difference in the water uptake of seed lots differing in vigour. However, seed lots of lower vigour showed less radicle emergence, less coleoptile emergence and shorter radicles than higher vigour seed lots in low water potentials. Similarly, controlled deterioration resulted in reduced radicle and coleoptile emergence and growth compared to unaged seed, and also to a greater sensitivity to low water potentials. The implications for field establishment are discussed.  相似文献   

8.
Summary A previous method of measuring the swelling pressure ( g ) of the cytoplasmic gel of the giant axon ofLoligo vulgaris was refined. The estimates of g made with the improved method were consistent with those made with the earlier method. In these methods the activity of the solvent in the gel is measured by increasing the activity of the solvent in the internal phase of the gel by application of hydrostatic pressure to the gel directly. Comparable values for the activity of the solvent in the gel were obtained also by an alternate method, in which the deswelling of the gel is measured upon decreasing the activity of the solvent in the external phase by addition of a nonpenetrating high mol wt polymer (i.e., Ficoll).Additional support was obtained for the earlier suggestion that g contributes to the swelling and shrinkage pattern of the whole axon. In part, the new evidence involved two consecutivedirect measurements of intraxonal pressure. The first measurement was that of a mixed pressure composed of g and m ( m being the effective osmotic pressure due to the intra-extraxonal gradient in the activity of mobile solutes). The subsequent measurement was that of g alone. The latter measurement was made feasible by destroying the axolemma, thereby eliminating the contribution of m . An estimate of m was obtained by subtracting g from the total pressure measured initially. The m determined by the above method was two orders of magnitude smaller than the theoretical osmotic pressure. This is consistent with the m determined previously, where osmotic intra-extraxonal filtration coefficients were compared to the hydrostatic. The mixed pressure experiments lend credence to the idea that the substantial contribution of g to the water relations of the whole axon is due to g being of the same order of magnitude as m .The degree of free swelling of axoplasmic gels was studied as a function of pH, salt concentration, and hydration radius of the anion of the salt used. The swelling increased with an increase in the reciprocal of the hydration radius, a decrease in salt concentration, and at pH below or above 4.5.The nature of the constraints to the free swelling of axoplasm in axons immersed in seawater was studied. With the seawater employed, these constraints appeared to be due more to the retractive forces of the sheath than to m .  相似文献   

9.
10.
11.
1. 1. Desert bees do not show significant differences in most thermal parameters; mean endothermic warm-up rates are similar to those of temperate species, with no special cooling mechanisms, and normal upper critical temperatures (unlike desert ants and beetles). Thermoregulatory abilities may however be improved.
2. 2. They show the whole range of possible water balance problems; small species are acutely water-stressed when foraging, but large bees suffer from excessive generation of metabolic water in flight.
3. 3. Activity patterns are therefore either matinal, crepuscular or bimodal; essentially desert bees avoid heat and adapt to cold desert dawns and dusks. Desert plants must be coevolved to offer appropriate rewards and match the physiological constraints on their pollinators.
4. 4. Endothermy in bees may have evolved primarily in arid zones, and served as a pre-adaptation for subsequent invasion of cool temperate biomes.
  相似文献   

12.
Phloem loading and plasmodesmata   总被引:7,自引:0,他引:7  
  相似文献   

13.
14.
Changing concepts regarding plant water relations   总被引:9,自引:13,他引:9  
  相似文献   

15.
《Aquatic Botany》2004,78(4):349-360
The effects of salinity on water relations and ion concentrations were investigated in seedlings of the mangroves Avicennia alba, Bruguiera gymnorrhiza, Heritiera littoralis and Xylocarpus granatum grown at salinities of 0, 10, 20, 30, 40 and 60‰. All four species survived and grew at salinities ranging from 0 to 40‰, but none survived at a salinity of 60‰. The concentration of sodium and chloride in the xylem sap increased with increasing salinity in both A. alba and B. gymnorrhiza. Sodium and chloride concentrations in the xylem sap of A. alba grown at 40‰ salinity both reached 114 mol m−3, about 15% of the external concentration around the roots. The xylem sap of B. gymnorrhiza grown at 40‰ salinity, by contrast, contained only 7.0 mol m−3 sodium and 4.1 mol m−3 chloride, about 1% of their concentrations in the external solution around the roots. The results indicated that B. gymnorrhiza, which does not have salt-secreting glands, was more effective at excluding salt than A. alba, which has salt-secreting glands.Analysis of pressure–volume curves showed that the bulk modulus of elasticity increased with increasing salinity. This was accompanied by a decrease in shoot water potential, mainly associated with a reduction in shoot osmotic potentials with increasing salinity. The decrease in osmotic potential was attributed to increasing solute concentrations, particularly sodium and chloride, in the leaves of all species except H. littoralis, which had little sodium and chloride in the leaves.  相似文献   

16.
17.
D. H. Drew 《Plant and Soil》1967,27(1):92-102
Summary When young tomato plants were transferred from nutrient solution to mineral-free water, reductions in transpiration, water content of the shoots and stomatal aperture were not accompanied by a reduction in the relative water content or an increase in the suction pressure of the leaves. The relative water content of the leaves was increased and the suction pressure was little affected.Following transfer of the plants to mineral-free water, the mineral content of the shoots and the osmotic pressure of expressed leaf sap were reduced. It was concluded that mineral salts were necessary for maintaining the osmotic pressure of the leaf cell sap and that this was achieved, at least in part, by maintaining the mineral concentration of the sap. The amount of water that could be taken up by leaves and their turgor pressure were related to the osmotic pressure of the sap and calculations of turgor pressure showed that it was less in the leaves of plants with their roots in mineral-free water than in the leaves of plants in nutrient solution.Evidence was obtained that in leaflets detached from plants with their roots in mineral-free water, stomatal closure could occur at a higher water content than in leaflets detached from plants in nutrient solution, indicating a further role of minerals in leaf water relations. It is suggested that this role may be related to the properties of the cell walls.  相似文献   

18.
Recent developments in water status measurement techniques using the psychrometer, the pressure probe, the osmometer and pressure chamber are reviewed, and the process of cell elongation from the viewpoint of plant-water relations is discussed for plants subjected to various environmental stress conditions. Under water-deficient conditions, cell elongation of higher plants can be inhibited by interruption of water flow from the xylem to the surrounding elongating cells. The process of growth inhibition at low water potentials could be reversed by increasing the xylem water potential by means of pressure application in the root region, allowing water to flow from the xylem to the surrounding cells. This finding confirmed that a water potential field associated with growth process,i.e., the growth-induced water potential, is an important regulating factor for cell elongation other than metabolic factors. The concept of the growth-induced water potential was found to be applicable for growth retardation caused by cold stress, heat stress, nutrient deficiency and salinity stress conditions. In the present review, the fact that the cell elongation rate is primarily associated with how much water can be absorbed by elongating cells under water-deficiency, nutrient deficiency, salt stress, cold stress and heat stress conditions is suggested.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号