首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
The gene encoding glutamic acid decarboxylase (GAD), the key enzyme in the synthesis of the inhibitory neurotransmitter gamma-aminobutyric acid, is shown to be expressed in the testis of several different species. Nucleotide sequence analysis of a cDNA clone isolated from the human testis confirmed the presence of GAD mRNA in the testis. The major GAD mRNA in the testis was 2.5 kilobases. Smaller amounts of a 3.7-kilobase mRNA with the same size as GAD mRNA in the brain was also detected in the testis. In situ hybridization using a GAD-specific probe revealed GAD mRNA expressing spermatocytes and spermatids located in the middle part of rat seminiferous tubules. Studies on the ontogeny of GAD mRNA expression showed low levels of GAD mRNA in testes of prepubertal rats, with increasing levels as sexual maturation is reached, compatible with GAD mRNA expression in germ cells. In agreement with this, fractionation of cells from the rat seminiferous epithelium followed by Northern (RNA) blot analysis showed the highest levels of GAD mRNA associated with spermatocytes and spermatids. Evidence for the presence of GAD protein in the rat testis was obtained from the demonstration of GAD-like immunoreactivity in seminiferous tubules, predominantly at a position where spermatids and spermatozoa are found. Furthermore, GAD-like immunoreactivity was seen in the midpiece of ejaculated human spermatozoa, the part that is responsible for generating energy for spermatozoan motility.  相似文献   

3.
We studied the expression of lysosomal acid phosphatase (LAP) in mouse by hybridizing Northern blots and tissue sections with the mouse LAP cDNA. Three mRNA species of 2.3, 3.2 and 5.2 KB were identified, which differ in the length of their 3' untranslated region (UTR). The 3.2 KB mRNA is expressed in equal amounts in all tissues and represents the major species in most tissues, whereas the amounts of the 2.3 and 5.2 KB species differ. In situ hybridization of different tissues of adult mice showed a uniform expression of LAP, as expected for a housekeeping gene, except in testis and brain. In testis we found an increase in the LAP mRNA level in spermatocytes. By Northern blot analysis of young mouse testis, this increase could be attributed to late pachytene primary spermatocytes or secondary spermatocytes. In brain tissue the neurons were predominantly labeled, especially the Purkinje and pyramidal cells, whereas glial cells expressed only low amounts of LAP mRNA. Very high LAP expression was also found in the epithelial cells of the choroid plexus. Analysis of LAP expression during mouse embryonic development between Days 9.5 and 17.5 revealed a prominent expression relative to other tissues in the neural tube from Day 9.5 to Day 13.5.  相似文献   

4.
5.
A monoclonal antibody directed against the amino terminal of rat phosphodiesterase 10A (PDE10A) was used to localize PDE10A in multiple central nervous system (CNS) and peripheral tissues from mouse, rat, dog, cynomolgus macaque, and human. PDE10A immunoreactivity is strongly expressed in the CNS of these species with limited expression in peripheral tissues. Within the brain, strong immunoreactivity is present in both neuronal cell bodies and neuropil of the striatum, in striatonigral and striatopallidal white matter tracks, and in the substantia nigra and globus pallidus. Outside the brain, PDE10A immunoreactivity is less intense, and distribution is limited to few tissues such as the testis, epididymal sperm, and enteric ganglia. These data demonstrate that PDE10A is an evolutionarily conserved phosphodiesterase highly expressed in the brain but with restricted distribution in the periphery in multiple mammalian species.  相似文献   

6.
The expression of the Alzheimer amyloid protein precursor (AAPP) was examined in human, monkey, dog and rat brains. Two proteins, one identified as AAPP695 and the other as AAPP751, were immunoprecipitated from the in vitro translation of human, dog and rat brain polysomes. The AAPP751 to AAPP695 ratio was highest in human, intermediate in dog and lowest in rat brain polysomes. Human cerebral cortex contained higher levels of the AAPP751 mRNA than either dog or rat cortex. AAPP695 was detected in both cerebral cortex and cerebellum of all species examined. In contrast, AAPP751 was detected predominantly in the cortex of human, monkey and to a lesser extent dog brains while it was not detected in rat brain. These findings indicate that the amyloid precursors are differentially expressed in different mammalian brains and suggest that AAPP751 is mainly expressed in the brain regions involved in plaque formation.  相似文献   

7.
8.
Microtubules in the cytoplasm of rat Sertoli cell stage VI-VIII testicular seminiferous epithelium were studied morphometrically by electron microscopy. The Sertoli cell microtubules demonstrated axonal features, being largely parallel in orientation and predominantly spaced one to two microtubule diameters apart, suggesting the presence of microtubule-bound spacer molecules. Testis microtubule-associated proteins (MAPs) were isolated by a taxol, salt elution procedure. Testis MAPs promoted microtubule assembly, but to a lesser degree than brain MAPs. High molecular weight MAPs, similar in electrophoretic mobilities to brain MAP-1 and MAP-2, were prominent components of total testis MAPs, though no shared immunoreactivity was detected between testis and brain high molecular weight MAPs using both polyclonal and monoclonal antibodies. Unlike brain high molecular weight MAPs, testis high molecular weight MAPs were not heat stable. Testis MAP composition, studied on postnatal days 5, 10, 15, and 24 and in the adult, changed dramatically during ontogeny. However, the expression of the major testis high molecular weight MAP, called HMW-2, was constitutive and independent of the development of mature germ cells. The Sertoli cell origin of HMW-2 was confirmed by identifying this protein as the major MAP found in an enriched Sertoli cell preparation and in two rat models of testicular injury characterized by germ cell depletion. HMW-2 was selectively released from testis microtubules by ATP and co-purified by sucrose density gradient centrifugation with MAP-1C, a neuronal cytoplasmic dynein. The inhibition of the microtubule-activated ATPase activity of HMW-2 by vanadate and erythro-(2-hydroxy-3-nonyl)adenine and its proteolytic breakdown by vanadate-dependent UV photocleavage confirmed the dynein-like nature of HMW-2. As demonstrated by this study, the neuronal and Sertoli cell cytoskeletons share morphological, structural and functional properties.  相似文献   

9.
Retinoic acid (RA) is essential for cellular growth and differentiation in developing and adult animals. The central nervous system (CNS) suffers developmental defects if embryonic levels of RA are too high or too low. The production and function of RA in adult brain are unclear. We report that RA is present throughout the brain and spinal cord of adult, vitamin A-deficient (VAD) rats treated with a physiological amount of all-trans-retinol. The hippocampus/cortex contained the highest proportion of RA in the brain (27.2 +/- 2.9% of the organic phase radioactivity, and 23.5 +/- 0.8% of the organic phase radioactivity extracted from spinal cord was RA). RA comprises a higher proportion of the retinoid pool in the CNS compared with amounts reported in other target tissues (E Werner and HF DeLuca. Arch Biochem Biophys 393: 262-270, 2001). However, RA is not preferentially transported from the blood to the brain. There were 2.90 +/- 0.20 fmol RA/g tissue transported to the brain of VAD rats treated with 2.00 nmol [20-(3)H]all-trans-retinoic acid, but higher amounts of RA were delivered to the liver, testis, and spleen. Because RA is not transported preferentially to brain, this tissue likely synthesizes RA more efficiently than other target tissues.  相似文献   

10.
[3H]Harman (1-[3H]methyl-beta-carboline) was used in a novel radioligand binding assay to label selectively and with high affinity monoamine oxidase (MAO) type A. The concentration of the enzyme was determined in six CNS regions of the primate species marmoset (Callithrix jacchus) and of the rat: hypothalamus, hippocampus, cerebellum, cerebral cortex, striatum, and spinal cord. The specific [3H]harman binding in the CNS of the marmoset reveals the same pharmacological profile and other characteristics (affinity, saturability, and reversibility) as in the CNS of the rat. The regional distribution of the [3H]harman binding density (Bmax) in the CNS exhibits a distinct pattern in the marmoset and the rat and a 35 (hypothalamus) to 75% (hippocampus) lower Bmax in the marmoset than in the rat. The Bmax values of [3H]harman binding in the CNS of the marmoset and the rat combined as well as those from visceral organs of the rat (liver, heart, lung, thymus, spleen, and kidney) correlated positively and highly significantly with the respective Vmax values of specific MAO activity of the A type but not of the B type, determined with kynuramine as the substrate. In subcellular fractionation experiments with rat cerebral cortex, the highest [3H]harman binding density (Bmax) and MAO-A activity (Vmax) were detected in mitochondrial fractions and severalfold lower values in the synaptosomal membrane fraction. In conclusion, we suggest that [3H]harman binding is a biochemical tool as a selective marker to quantify MAO-A in the CNS of different mammalian species as well as in extraneuronal tissues.  相似文献   

11.
12.
Abstract: Dopamine transporters (DATs) from the caudate nucleus of four species (rat, mouse, dog, and human) and four regions of rat brain (striatum, nucleus accumbens, prefrontal cortex, and midbrain) were photoaffinity labeled and analyzed by immunoprecipitation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis for cross-reactivity to four epitope-specific rat antipeptide antibodies. Each of these antibodies varied in its efficiency at recognizing DAT. The DATs from the rat brain regions exhibited the same degree of recognition by each of the four sera, a result compatible with these proteins being the product of a single gene. The DATs from the different species were recognized by all four sera but with different efficiencies, possibly relating to amino acid sequence differences within the immunizing epitope. All of the photolabeled, immunoprecipitated DATs migrated with a molecular mass of ∼80 kDa, and no lower molecular mass forms were found. The DATs from all species and brain regions tested were shown by enzymatic deglycosylation to contain N-linked carbohydrates and sialic acids in amounts comparable with rat striatal DATs. The finding that no photolabeled DAT forms <80 kDa were isolated from membranes indicates that partially or incompletely glycosylated forms are not present, even in the midbrain cell bodies where immature forms might be expected to be found. These findings verify the utility of these anti-rat antibodies as biochemical tools for studying DATs from other species and extend our knowledge of biochemical characteristics of DATs from these species and brain regions.  相似文献   

13.
14.
Using a highly sensitive and specific gas chromatography-mass spectrometric assay, the glycol metabolites of norepinephrine (NE), 3,4-dihydroxyphenylethyleneglycol (DHPG) and 3-methoxy-4-hydroxyphenylethyleneglycol (MHPG) were determined simultaneously in brain and body fluids of several mammalian species, including humans. Highest molar ratios of DHPG to MHPG were found in rat brain (1.20), a species in which these glycol metabolites were primarily conjugated. In mouse, guinea pig, hamster, monkey, and human brain, DHPG and MHPG were mostly unconjugated, and DHPG concentrations were about 30–60% of the respective MHPG levels. In dog cortex, MHPG occurred predominantly as conjugates, whereas DHPG could only be detected in its unconjugated form. In all species studies, highest DHPG and MHPG concentrations occurred in hypothalamus followed, in general, by midbrain and brainstem whereas cerebral cortex, caudate and cerebellum had the lowest values. These results demonstrate substantial differences in the degree of conjugation and relative abundance of brain DHPG compared to MHPG between the rat and other animal species studied.  相似文献   

15.
Abstract: The gap junction protein connexin43 (Cx43) has been reported to exist as several phosphorylated forms migrating at ˜43 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis as well as an unphosphorylated 41-kDa form. In brain, Cx43 is expressed predominantly in astrocytes and is also expressed in several other cell types. Whereas the phosphorylated forms of Cx43 predominate in heart, several studies have indicated that high levels of the unphosphorylated form of Cx43 are present in brain. Various experiments in this report indicate that the 41-kDa molecular form in brain is a postmortem dephosphorylation product of phosphorylated Cx43. In rats killed by cranial high-energy microwave irradiation leading to rapid inactivation of brain metabolism, Cx43 in cerebral cortex was present almost exclusively as the 43-kDa phosphorylated form. Rapid dissection of brain followed by heat treatment or inclusion of phosphatase inhibitors during tissue homogenization also largely prevented the conversion of the 43-to the 41-kDa form. The 41-kDa species was generated after alkaline phosphatase digestion of the 43-kDa material obtained by immunoprecipitation from microwave-irradiated brain. Immunolabeling patterns and relative regional levels of Cx43 as seen by immunohistochemical and western blot detection were the same whether or not metabolism to the 41-kDa species was prevented. In developing rat brain, Cx43 levels in frontal cortex and brainstem increased with age, but the degree of dephosphorylation of the 43-to the 41-kDa form was greater at earlier ages in the brainstem. It appears that brain contains a phosphatase that may be involved in modulating the phosphorylation state of Cx43 and thus may regulate intercellular communication via astrocytic gap junctions.  相似文献   

16.
Monoclonal antibody HNK-1 reacts with a carbohydrate epitope present in proteins, proteoglycans, and sulfoglucuronylglycolipids (SGGLs). On high-performance TLC plates, SGGLs of the CNS from several species migrated consistently slower than those from the PNS, a result indicating possible differences in the structures. The structural characteristics of the major SGGL, sulfoglucuronylneolactotetraosylceramide (SGGL-1), from CNS was compared with those of SGGL-1 from PNS. Although the composition, sequence, and linkages of the carbohydrate moiety of the SGGL-1 species were identical, SGGL-1 from CNS contained mainly short-chain fatty acids, 16:0, 18:0, and 18:1, amounting to 85% of the total fatty acids, whereas SGGL-1 from PNS contained large proportions (59%) of long-chain fatty acids (greater than 18:0). These differences in the fatty acid composition accounted for the different migration pattern observed. The developmental expression of SGGLs and HNK-1-reactive proteins was studied in rat cerebral cortex between embryonic day (ED) 15 to adulthood. SGGLs in the rat cortex were maximally expressed around ED 19 and almost completely disappeared by postnatal day (PD) 20. This expression was contrary to their increasing expression in the cerebellum and sciatic nerve with postnatal development. Six to eight protein bands with a molecular mass of greater than 160 kDa were HNK-1 reactive in the rat cerebral cortex at different ages. The major HNK-1 reactivity to the 160-kDa protein band seen in ED 19 to PD 10 cortex decreased and completely disappeared from the adult cortex, whereas several other proteins remained HNK-1 reactive even in the adult. Western blot analyses of the neural cell adhesion molecules (N-CAMs) during development of the rat cortex with a polyclonal anti-N-CAM antibody showed that the major HNK-1-reactive protein bands were not N-CAMs. Between PD 1 and 10, 190-200-kDa N-CAM was the major N-CAM, and between PD 15 to adulthood, 180-kDa N-CAM was the only N-CAM present in the rat cortex.  相似文献   

17.
Abstract: Ascorbic acid and glutathione (GSH) are antioxidants and free radical scavengers that provide the first line of defense against oxidative damage in the CNS. Using HPLC with electrochemical detection, we determined tissue contents of these antioxidants in brain and spinal cord in species with varying abilities to tolerate anoxia, including anoxia-tolerant pond and box turtles, moderately tolerant garter snakes, anoxia-intolerant clawed frogs (Xenopus laevis), and intolerant Long-Evans hooded rats. These data were compared with ascorbate and GSH levels in selected regions of guinea pig CNS, human cortex, and values from the literature. Ascorbate levels in turtles were typically 100% higher than those in rat. Cortex, olfactory bulb, and dorsal ventricular ridge had the highest content in turtle, 5–6 µmol g?1 of tissue wet weight, which was twice that in rat cortex (2.82 ± 0.05 µmol g?1) and threefold greater than in guinea pig cortex (1.71 ± 0.03 µmol g?1). Regionally distinct levels (2–4 µmol g?1) were found in turtle cerebellum, optic lobe, brainstem, and spinal cord, with a decreasing anterior-to-posterior gradient. Ascorbate was lowest in white matter (optic nerve) in each species. Snake cortex and brainstem had significantly higher ascorbate levels than in rat or guinea pig, although other regions had comparable or lower levels. Frog ascorbate was generally in an intermediate range between that in rat and guinea pig. In contrast to ascorbate, GSH levels in anoxia-tolerant turtles, 2–3 µmol g?1 of tissue wet weight, were similar to those in mammalian or amphibian brain, with no consistent pattern associated with anoxia tolerance. GSH levels in pond turtle CNS were significantly higher (by 10–20%) than in rat for several regions but were generally lower than in guinea pig or frog. GSH in box turtle and snake CNS were the same or lower than in rat or guinea pig. The distribution GSH in the CNS also had a decreasing anterior-to-posterior gradient but with less variability than ascorbate; levels were similar in optic nerve, brainstem, and spinal cord. The paradoxically high levels of ascorbate in turtle brain, which has a lower rate of oxidative metabolism than mammalian, suggest that ascorbate is an essential cerebral antioxidant. High levels may have evolved to protect cells from oxidative damage when aerobic metabolism resumes after a hypoxic dive.  相似文献   

18.
Gonadotropin-regulated long chain acyl-CoA synthetase (GR-LACS) is a novel hormonally regulated fatty acyl-CoA synthetase (FACS) with activity for long-chain fatty acids. The presence of this enzyme in the Leydig cells of the mature rat testis and its mode of regulation suggest that it participates in testicular steroidogenesis. This study demonstrates that GR-LACS expression is tissue, cell and species-specific. The 79 kDa GR-LACS protein is expressed in rodent gonads and brain, and only in the mouse in the adrenal cortex. In the ovary of both species it is associated with follicles undergoing atresia. It is present in the newborn and immature testis tubules and after puberty only in the Leydig cells. A distinct GR-LACS protein species of 64 kDa that was more abundant than the 79 kDa long form was found in the rat brain. Also, a minor 73 kDa form was observed in the rat brain and mouse ovary. Two novel species resulting from alternatively splicing of the GR-LACS gene were identified in a rat brain cDNA library: a short form 1 (S1) lacking exon 8 and short form 2 (S2) lacking exons 6–8. Expression studies revealed that the sizes of the S1/S2 proteins are comparable to those of the endogenous variant species. Neither S form contains FACSs activity, suggesting that exon 8 is essential for the enzymatic function. GR-LACS variants exhibit small but significant dominant negative effects on the FACS activity of the long form. GR-LACS variants may regulate the long form's activity in the brain.  相似文献   

19.
Tissues of the reproductive tract have been shown to contain mRNAs coding for pro-opiomelanocortin (POMC), pro-enkephalin and pro-dynorphin. However, the amounts of immunoreactive opioid peptides in these tissues are low, and in the case of the enkephalins and dynorphin, the molecular species responsible for the immunoreactivities have not been characterized. The chromatographic properties of dynorphin and enkephalin immunoreactivities in extracts of guinea pig and rat testis have therefore been determined. Dynorphin A and dynorphin B immunoreactivity was heterogeneous, with a significant amount attributable to high-molecular-weight forms. About 20% of the dynorphin A immunoreactivity, and about 40% of the dynorphin B immunoreactivity, in guinea pig testis extracts behaved as authentic dynorphin A or B, respectively during fractionation by ion exchange, gel filtration and high-performance liquid chromatography. Both high- and low-molecular-weight forms of [Leu5]enkephalin immunoreactivity were also present, with roughly 50-70% of the immunoreactivity attributable to low-molecular-weight forms. In extracts of guinea pig testis only a small part of this immunoreactivity eluted as authentic [Leu5]enkephalin during high-performance liquid chromatography. In rat testis most of the low-molecular-weight [Leu5]enkephalin immunoreactivity behaved as the authentic peptide. These results confirm that opioid peptides are produced in guinea pig and rat testis, and demonstrate that immunoreactive forms of the peptides similar to those found in brain and pituitary are present in the tissue.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号