首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The net balance between urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor type-1 (PAI-1) has been implicated in tumor cell invasion and metastasis. To elucidate the mechanism of the transforming growth factor-beta1 (TGF-beta1)-dependent up-regulation of PAI-1 expression, we investigated which signaling pathway transduced by TGF-beta1 is responsible for this effect. Here, we show (1) nontoxic concentrations of TGF-beta1 up-regulates uPA expression in HRA and SKOV-3 human ovarian cancer cells, (2) TGF-beta1 activates Smads (phosphorylation of Smad2 and nuclear translocation of Smad3) and subsequently up-regulates PAI-1 expression in HRA cells, whereas TGF-beta1 neither activates Smads nor up-regulates PAI-1 in SKOV-3 cells, (3) pharmacological Src inhibitor PP2 or antisense (AS) c-Src oligodeoxynucleotide (ODN) treatment significantly induces TGF-beta1-dependent activation of Smads, leading to PAI-1 synthesis, compared with controls, in SKOV-3 cells, (4) combination of TGF-beta1 and PP2, which activates PAI-1 expression and reduces uPA expression in SKOV-3, results in decreased invasiveness, (5) pharmacological inhibitors for mitogen-activated protein kinase (MAPK) (PD98059) and phosphoinositide-3-kinase (PI3K) (LY294002 and wortmannin) or AS-PI3K ODN transfection do not affect TGF-beta1-induced Smad signaling and up-regulation of PAI-1 expression in SKOV-3 cells pretreated with PP2, and (6) the induction of PAI-1 protein was partially inhibited by an inhibitor of Sp1-DNA binding, mithramycin, implicating, at least in part, Sp1 in the regulation of this gene by TGF-beta1. In conclusion, TGF-beta1-dependent activation of Smad2/3, leading to PAI-1 synthesis, may be negatively regulated by Src, but not its downstream targets MAPK and PI3K in SKOV-3 cells. These data also reflect the complex biological effect of uPA-PAI-1 system.  相似文献   

3.
Bikunin is a Kunitz-type protease inhibitor, acting at the level of tumor invasion and metastasis. The goal of this study was to investigate the effect of bikunin-dependent signal transduction involved in the expression of a plasminogen activator (PA) system and invasion. We report here the following. 1) The human ovarian cancer cell line HRA produced secreted and cell-associated urokinase-type PA (uPA) and PA inhibitor type 1 (PAI-1). The plasma membrane of the cells showed enzymatically active uPA even in the presence of high level of PAI-1, as measured by zymography, Western blot, chromogenic assay, enzyme-linked immunosorbent assay, and Northern blot. 2) HRA cells leading to invasion are induced through up-regulation of uPA expression. 3) HRA cells specifically released transforming growth factor-beta type 1 (TGF-beta1) participating in an autocrine/paracrine regulation of cell invasion. 4) Elimination of endogenous TGF-beta1 could induce change in uPA/PAI-1 expression, which could in turn modify the invasive behavior of the cells. 5) The constitutive expression of TGF-beta1 as well as up-regulation of the PA system observed in HRA cells was inhibited by preinoculation of the cells with bikunin or calcium channel blocker SK&F 96365 but not with nifedipine or verapamil, with an IC(50) of approximately 100 nm for bikunin or approximately 30 microm for SK&F 96365, respectively, as measured by enzyme-linked immunosorbent assay. Bikunin showed no additive effect on SK&F 96365-mediated suppression of TGF-beta1 expression. 6) The ability of TGF-beta1 to elevate free intracellular Ca(2+), followed by activation of Src and ERK, was reduced by preincubation of the cells with bikunin. In conclusion, bikunin could inhibit the constitutive expression of TGF-beta1 and TGF-beta1-mediated, Src- and ERK-dependent, PA system signaling cascade, at least in part, through inhibition of a non-voltage-sensitive calcium channel.  相似文献   

4.
Using a cDNA microarray analysis, we previously found that exposure of a highly invasive ovarian cancer cell line HRA with bikunin, a Kunitz-type protease inhibitor, or bikunin gene overexpression markedly reduced phosphoinositide kinase (PI3K) p85 gene expression, demonstrating that PI3K may be a candidate bikunin target gene. To clarify how reduced levels of PI3K may confer repressed invasiveness, we transfected HRA cells with PI3K p85 antisense-oligodeoxynucleotide (AS-ODN) and compared the properties of the transfected cells with those of parental cells and sense (S)-ODN cells. We have also demonstrated previously that transforming growth factor-beta1 (TGF-beta1) stimulates urokinase-type plasminogen activator (uPA)-dependent invasion and metastasis of HRA cells. Here, we show that 1) TGF-beta1 induced a rapid increase of the PI3K activity that was accompanied by increased expression (5-fold) of the uPA mRNA; 2) pharmacological inhibition of PI3K or AS-PI3K ODN transfection inhibited TGF-beta1-stimulated Akt phosphorylation; 3) both PI3K pharmacological inhibitors and forced expression of AS-PI3K ODN reduced TGF-beta1-stimulated uPA mRNA and protein expression by approximately 70% compared with controls; 4) concentrations of PI3K inhibitors, sufficient to inhibit uPA up-regulation, inhibited TGF-beta1-dependent HRA cell invasion; 5) the AS-PI3K ODN cells had a decreased ability to invade the extracellular matrix layer as compared with controls; and 6) when the AS-PI3K ODN cells were injected intraperitoneally into nude mice, the mice developed smaller intraperitoneal tumors and showed longer survival. We conclude that PI3K plays an essential role in promoting uPA-mediated invasive phenotype in HRA cells. Our data identify a novel role for PI3K as a bikunin target gene on uPA up-regulation and invasion.  相似文献   

5.
The processes of ovarian cancer dissemination are characterized by altered local proteolysis, cellular proliferation, cell attachment, and invasion, suggesting that the urokinase-type plasminogen activator (uPA) and its specific inhibitor (plasminogen activator inhibitor type-1 (PAI-1)) could be involved in the pathogenesis of peritoneal dissemination. We showed previously that expression of uPA and PAI-1 in the human ovarian cancer cell line HRA can be down-regulated by exogenous bikunin (bik), a Kunitz-type protease inhibitor, via suppression of transforming growth factor-beta1 (TGF-beta1) up-regulation and that overexpression of the bik gene can specifically suppress the in vivo growth and peritoneal dissemination of HRA cells in an animal model. We hypothesize that the plasminogen activator system in mesothelial cells can be modulated by HRA cells. To test this hypothesis, we used complementary techniques in mesothelial cells to determine whether uPA and PAI-1 expression are altered by exposure to culture media conditioned by HRA cells. Here we show the following: 1) that expression of PAI-1, but not uPA, was markedly induced by culture media conditioned by wild-type HRA cells but not by bik transfected clones; 2) that by antibody neutralization the effect appeared to be mediated by HRA cell-derived TGF-beta1; 3) that exogenous TGF-beta1 specifically enhanced PAI-1 up-regulation at the mRNA and protein level in mesothelial cells in a time- and concentration-dependent manner, mainly through MAPK-dependent activation mechanism; and 4) that mesothelial cell-derived PAI-1 may promote tumor invasion possibly by enhancing cell-cell interaction. This represents a novel pathway by which tumor cells can regulate the plasminogen activator system-dependent cellular responses in mesothelial cells that may contribute to formation of peritoneal dissemination of ovarian cancer.  相似文献   

6.
Urokinase-type plasminogen activator (uPA) degrades the extracellular matrix and plays critical roles in tumor invasion and metastasis. Matriptase, a membrane-bound serine protease, was shown to activate uPA in a uPA receptor-free, solution-based study. We now investigate whether matriptase affects activation of receptor-bound uPA and contributes to the invasiveness of HRA human ovarian cancer cells in vitro and tumor behavior in nude mice. Here we show the following. 1) uPA expression was effectively stimulated by TGF-beta1 in HRA cells. 2) Antisense (AS)-matriptase transfection achieved a marked inhibition of receptor-bound pro-uPA activation without altering expression of uPA and uPA receptor mRNA and proteins, irrespective of whether cells were stimulated with TGF-beta1. 3) Tumor cell receptor-bound pro-uPA could be efficiently cleaved by matriptase to generate enzymatically active two-chain uPA. Thus, matriptase can substitute for plasmin in the proteolytic activation of pro-uPA to enzymatically active uPA. 4) The AS-matriptase-treated cells had a decreased ability to invade an extracellular matrix layer, as compared with control cells. 5) When the AS-matriptase-treated cells were injected intraperitoneally into nude mice, the mice developed smaller tumors. Our data identify a novel role for matriptase for activation of receptor-bound uPA.  相似文献   

7.
Our laboratory showed that bikunin, a Kunitz-type protease inhibitor, suppresses 4beta-phorbol 12-myristate 13-acetate (PMA)- or tumor necrosis factor-alpha (TNFalpha)-induced urokinase-type plasminogen activator (uPA) expression in different cell types. In addition to its effects on protease inhibition, bikunin could be modulating other cellular events associated with the metastatic cascade. To test this hypothesis, we examined whether bikunin was able to suppress the expression of uPA receptor (uPAR) mRNA and protein in a human chondrosarcoma cell line, HCS-2/8, and two human ovarian cancer cell lines, HOC-I and HRA. The present study showed that (a) bikunin suppresses the expression of constitutive and PMA-induced uPAR mRNA and protein in a variety of cell types; (b) an extracellular signal-regulated kinase (ERK) activation system is necessary for the PMA-induced increase in uPAR expression, as PD098059 and U0126, which prevent the activation of MEK1, reduce the uPAR expression; (c) bikunin markedly suppresses PMA-induced phosphorylation of ERK1/2 at the concentration that prevents uPAR expression, but does not reduce total ERK1/2 antigen level; (d) bikunin has no ability to inhibit overexpression of uPAR in cells treated with sodium vanadate; and (e) we further studied the inhibition of uPAR expression by stable transfection of HRA cells with bikunin gene, demonstrating that bikunin secretion is necessary for inhibition of uPAR expression. We conclude that bikunin downregulates constitutive and PMA-stimulated uPAR mRNA and protein possibly through suppression of upstream targets of the ERK-dependent cascade, independent of whether cells were treated with exogenous bikunin or transfected with bikunin gene.  相似文献   

8.
H Kobayashi 《Human cell》2001,14(3):233-236
Bikunin (bik, also known as urinary trypsin inhibitor [UTI]), a Kunitz-type protease inhibitor, interacts with cells as a negative modulator of the invasive cells. Human ovarian cancer cell line, HRA, was treated with phorbol ester (PMA) in order to evaluate the effect on expression of urokinase-type plasminogen activator (uPA). Preincubation of the cells with bik reduced the ability of PMA to trigger the uPA expression at the gene level and at the protein level. We next asked whether the mechanism of inhibition of uPA expression by bik is due to interference with MAP kinase, since PMA could also activate a signaling pathway involving MEK/ERK/c-Jun-dependent uPA expression. When cells were preincubated with bik, we could detect suppression of phosphorylation of these proteins, demonstrating that bik markedly suppresses the cell motility possibly through negative regulation of MEK/ERK/c-Jun-dependent mechanisms, and that these changes in behavior are correlated with a coordinated down-regulation of uPA which is likely to contribute to the cell invasion processes. To clarify the role of bik on tumor metastasis, HRA cells were transfected with an expression vector harboring a cDNA encoding for human bik. Transfection of HRA with the bik cDNA resulted in five variants stably expressing functional bik and significantly reduced invasion, but not proliferation, adhesion, or migration relative to the parental cells. Animals with bik* transfectants induced reduced peritoneal dissemination and long term survival. These results suggest that transfection with the bik gene induces the suppression of tumor cell invasion and peritoneal dissemination, and can prolong survival. This pre-clinical animal model offers the possibility to explore gene therapy as a new treatment modality for ovarian cancer.  相似文献   

9.
10.
Transformed PDV keratinocytes respond to TGF-beta(1) by stimulating cell motility and invasiveness concomitantly to enhancement of the urokinase-type plasminogen activator (uPA) expression/secretion. Depletion of extracellular signal-regulated kinase (ERK1, 2) proteins by treatment of PDV cells with antisense oligonucleotides reduced basal uPA production and abolished stimulation of uPA secreted levels and cell motility by TGF-beta(1). PD098059, an inhibitor of mitogen-activated protein kinase (MAPK) kinase (MEK), decreased TGF-beta(1)-induced uPA mRNA expression, secreted activity in a dose-dependent manner, and abrogated TGF-beta(1)-stimulated cell motility and invasiveness. PDV-derived dominant-negative RasN17 cell transfectants secreted similar amounts of uPA and exhibited similar invasive abilities as the parental cells or control clones, but were unable to respond to TGF-beta(1) for stimulation of uPA-secreted levels and invasiveness. These results suggest that a Ras/MAPK transduction pathway is involved in the invasive response of transformed keratinocytes to TGF-beta(1).  相似文献   

11.
We previously found that bikunin (bik), a Kunitz-type protease inhibitor, suppresses transforming growth factor-beta1 (TGF-beta1)-stimulated expression of urokinase-type plasminogen activator (uPA) in human ovarian cancer cells that lack endogenous bik. In the present study, we tried to elucidate the mechanism by which bik also inhibits plasminogen activator inhibitor type-1 (PAI-1) and collagen synthesis using human ovarian cancer cells. Here, we show that (a) there was an enhanced production of both uPA and PAI-1 in HRA cells in response to TGF-beta1; (b) the overexpression of bik in the cells or exogenous bik results in the inhibition of TGF-beta1 signaling as measured by phosphorylation of the downstream signaling effector Smad2, nuclear translocation of Smad3, and production of PAI-1 and collagen; (c) bik neither decreased expression of TGF-beta receptors (TbetaRI and TbetaRII) in either cell types nor altered the specific binding of 125I TGF-beta1 to the cells, indicating that the effects of bik in these cells are not mediated by ligand sequestration; (d) TbetaRI and TbetaRII present on the same cells exclusively form aggregates in TGF-beta1-stimulated cells; (e) co-treatment of TGF-beta1-stimulated cells with bik suppresses TGF-beta1-induced complex formation of TbetaRI and TbetaRII; and (f) a chondroitin-4-sulfate side chain-deleted bik (deglycosylated bik) does not inhibit TGF-beta1 signaling or association of type I/type II receptor. We conclude that glycosylated bik attenuates TGF-beta1-elicited signaling cascades in cells possibly by abrogating the coupling between TbetaRI and TbetaRII and that this probably provides the mechanism for the suppression of uPA and PAI-1 expression.  相似文献   

12.
13.
We previously reported that the 3,5,3'-triiodo-L-thyronine (T3)-induced increase of Na-K-ATPase activity in rat alveolar epithelial cells (AECs) required activation of Src kinase, PI3K, and MAPK/ERK1/2. In the present study, we assessed the role of Akt in Na-K-ATPase activity and the interaction between the PI3K and MAPK in response to T3 by using MP48 cells, inhibitors, and constitutively active mutants in the MP48 (alveolar type II-like) cell line. The Akt inhibitor VIII blocked T3-induced increases in Na-K-ATPase activity and amount of plasma membrane Na-K-ATPase protein. The Akt inhibitor VIII also abolished the increase in Na-K-ATPase activity induced by constitutively active mutants of either Src kinase or PI3K. Moreover, constitutively active mutants of Akt increased Na-K-ATPase activity in the absence of T3. Thus activation of Akt was required for T3-induced Na-K-ATPase activity in AECs and is sufficient in the absence of T3. Inhibitors of Src kinase (PP1), PI3K (wortmannin), and ERK1/2 (U0126) all blocked the T3-induced Na-K-ATPase activity. PP1 blocked the activation of PI3K and also ERK1/2 by T3, whereas U0126 did not prevent T3 activation of Src kinase or PI3K activity. Wortmannin did not significantly alter T3-increased MAPK/ERK1/2 activity, suggesting that T3-activated PI3K/Akt and MAPK/ERK1/2 pathways acted downstream of the Src kinase. Furthermore, in the absence of T3, a constitutively active mutant of Src kinase increased activities of Na-K-ATPase, PI3K, and MAPK/ERK1/2. A constitutively active mutant of PI3K enhanced Na-K-ATPase activity but did not alter the MAPK/ERK1/2 activity significantly. In summary, in adult rat AECs T3-stimulated Src kinase activity can activate both PI3K/Akt and MAPK/ERK1/2, and activation of Akt is necessary for T3-induced Na-K-ATPase activity.  相似文献   

14.
15.
16.
Vascular cell adhesion molecule (VCAM)-1 has been implicated in interactions between leukocytes and connective tissue, including rheumatoid arthritis (RA) synovial tissue fibroblasts. Such interactions within the synovium contribute to RA inflammation. Using phosphoinositide 3-kinase (PI3-kinase) inhibitor LY294002 and Src inhibitor PP2, we show that interleukin (IL)-18-induced ERK1/2 activation is Src kinase-dependent. Antisense (AS) c-Src oligonucleotide (ODN) treatment reduced IL-18-induced ERK1/2 expression by 32% compared with control, suggesting an upstream role of Src in ERK1/2 activation. AS c-Src ODN treatment also inhibited Akt expression by 74% compared with sense control. PI3-kinase inhibitor LY294002 or AS PI3-kinase ODN inhibited Akt expression. AS c-Src ODN inhibited Akt phosphorylation, confirming Src is upstream of PI3-kinase in IL-18-induced RA synovial fibroblast signaling. IL-18 induced a time-dependent activation of c-Src, Ras, and Raf-1, suggesting this signaling cascade plays a role in ERK activation. IL-18 directly activated Src kinase by more than 4-fold over basal levels by enzymatic assay. Electrophoretic mobility shift assay showed that activator protein-1 (AP-1) is activated by IL-18 through ERK and Src but not through PI3-kinase. In an alternate pathway, inhibition of IL-1 receptor-associated kinase-1 (IRAK) with AS ODN to IRAK reduced IL-18-induced expression of nuclear factor kappaB (NFkappaB). Finally, IL-18-induced cell surface VCAM-1 expression was inhibited by treatment with AS ODNs to c-Src, IRAK, PI3-kinase, and ERK1/2 by 57, 43, 41, and 32% compared with control sense ODN treatment, respectively. These data support a role for IL-18 activation of three distinct pathways during RA synovial fibroblast stimulation: two Src-dependent pathways and the IRAK/NFkappaB pathway. Targeting VCAM-1 signaling mechanisms may represent therapeutic approaches to inflammatory and angiogenic diseases characterized by adhesion molecule up-regulation.  相似文献   

17.
Transforming growth factor-beta1 (TGF-beta1) is a multifunctional cytokine involved in differentiation, growth, and survival of mesenchymal cells while inhibiting growth/survival of most other cell types. The mechanism(s) of pro-survival signaling by TGF-beta1 in mesenchymal cells is unclear. In this report, we demonstrate that TGF-beta1 protects against serum deprivation-induced apoptosis of mesenchymal cells isolated from patients with acute lung injury and of normal human fetal lung fibroblasts (IMR-90). TGF-beta receptor(s)-activated signaling in these cells involves rapid activation of the Smad and p38 MAPK pathways within minutes of TGF-beta1 treatment followed by a more delayed activation of the pro-survival phosphatidylinositol 3-kinase-protein kinase B (PKB)/Akt pathway. Pharmacological inhibition of p38 MAPK with SB203580 or expression of a p38 kinase-deficient mutant protein inhibits TGF-beta1-induced PKB/Akt phosphorylation. Conditioned medium from TGF-beta1-treated cells rapidly induces PKB/Akt activation in an SB203580- and suramin-sensitive manner, suggesting p38 MAPK-dependent production of a secreted growth factor that activates this pro-survival pathway by an autocrine/paracrine mechanism. Inhibition of the phosphatidylinositol 3-kinase-PKB/Akt pathway blocks TGF-beta1-induced resistance to apoptosis. These results demonstrate the activation of a novel TGF-beta1-activated pro-survival/anti-apoptotic signaling pathway in mesenchymal cells/fibroblasts that may explain cell-specific actions of TGF-beta1 and provide mechanistic insights into its pro-fibrotic and tumor-promoting effects.  相似文献   

18.
Previous studies from this laboratory have demonstrated a critical role of cytosolic phospholipase A2 (cPLA2) and arachidonic acid in angiotensin II (Ang II) AT2 receptor-mediated signal transduction in renal epithelium. In primary proximal tubular epithelial cells exposed to hydrogen peroxide (H2O2), both the selective cPLA2 inhibitors and the cPLA2 antisense oligonucleotides significantly attenuated H2O2-induced arachidonic acid liberation and activation of p38(SAPK), ERK1/2, and Akt1. This H2O2-induced kinase activation was significantly attenuated by a Src kinase inhibitor PP2, or by transient transfection of carboxyl-terminal Src kinase (CSK) that maintained Src in the dormant form. Under basal conditions, Src coimmunoprecipitated with epidermal growth factor receptor (EGFR), while H2O2 increased EGFR phosphorylation in the complex. We observed that inhibition of EGFR kinase activity with AG1478 significantly attenuated H2O2-induced p38(SAPK) and ERK1/2 activation, but did not inhibit Akt1 activation. Furthermore, it seems that p38(SAPK) is upstream of ERK1/2 and Akt1, since a p38(SAPK) inhibitor SB203580 significantly blocked H2O2-induced activation of ERK1/2 and Akt1. Interestingly, overexpression of the dominant-negative p38(SAPK) isoform alpha inhibited ERK1/2 but not Akt1 activation. Our observations demonstrate that in these nontransformed cells, activation of cPLA2 is a converging point for oxidative stress and Ang II, which share common downstream signaling mechanisms including Src and EGFR. In addition, p38(SAPK) provides a positive input to both growth and antiapoptotic signaling pathways induced by acute oxidative stress.  相似文献   

19.
20.
We have previously shown that transactivation-proficient hepatitis virus B X protein (HBx) protects Hep 3B cells from transforming growth factor-beta (TGF-beta)-induced apoptosis via activation of the phosphatidylinositol 3-kinase (PI 3-kinase)/Akt signaling pathway. This work further investigated how HBx activates PI 3-kinase. Src activity was elevated in Hep 3B cells following expression of transactivation-proficient HBx or HBx-GFP fusion proteins. The Src family kinase inhibitor PP2 and C-terminal Src kinase (Csk) both alleviated HBx-mediated PI 3-kinase activation and protection from TGF-beta-induced apoptosis. Therefore, HBx activated a survival signal by linking Src to PI 3-kinase. Systemic subcellular fractionation and membrane flotation assays indicated that approximately 1.5% of ectopically expressed HBxGFP was associated with periplasmic membrane where Src was located. However, neither nucleus-targeted nor periplasmic membrane-targeted HBxGFP was able to upregulate Src activity or to augment PI 3-kinase survival signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号