首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 172 毫秒
1.
Some insights into energy metabolism for osmoregulation in fish   总被引:1,自引:0,他引:1  
A sufficient and timely energy supply is a prerequisite for the operation of iono- and osmoregulatory mechanisms in fish. Measurements of whole-fish or isolated-gill (or other organs) oxygen consumption have demonstrated regulation of the energy supply during acclimation to different osmotic environments, and such regulation is dependent on species, the situation of acclimation or acclimatization, and life habits. Carbohydrate metabolism appears to play a major role in the energy supply for iono- and osmoregulation, and the liver is the major source supplying carbohydrate metabolites to osmoregulatory organs. Compared with carbohydrates, the roles of lipids and proteins remain largely unclear. Energy metabolite translocation was recently found to occur between fish gill ionocytes and neighboring glycogen-rich (GR) cells, indicating the physiological significance of a local energy supply for gill ion regulatory mechanisms. Spatial and temporal relationships between the liver and other osmoregulatory and non-osmoregulatory organs in partitioning the energy supply for ion regulatory mechanisms during salinity challenges were also proposed. A novel glucose transporter was found to specifically be expressed and function in gill ionocytes, providing the first cue for investigating energy translocation among gill cells. Advanced molecular physiological approaches can be used to examine energy metabolism relevant to a particular cell type (e.g., gill ionocytes), and functional genomics may also provide another powerful approach to explore new metabolic pathways related to fish ion regulation.  相似文献   

2.
3.
PKB and the mitochondria: AKTing on apoptosis   总被引:8,自引:0,他引:8  
Cellular homeostasis depends upon the strict regulation of responses to external stimuli, such as signalling cascades triggered by nutrients and growth factors, and upon cellular metabolism. One of the major molecules coordinating complex signalling pathways is protein kinase B (PKB), a serine/threonine kinase also known as Akt. The number of substrates known to be phosphorylated by PKB and its interacting partners, as well as our broad understanding of how PKB is implicated in responses to growth factors, metabolic pathways, proliferation, and cell death via apoptosis is constantly increasing. Activated by the insulin/growth factor-phosphatidylinositol 3-kinase (PI3K) cascade, PKB triggers events that promote cell survival and prevent apoptosis. It is also now widely accepted that mitochondria are not just suppliers of ATP, but that they participate in regulatory and signalling events, responding to multiple physiological inputs and genetic stresses, and regulate both cell proliferation and death. Thus, mitochondria are recognized as important players in apoptotic events and it is logical to predict some form of interplay with PKB. In this review, we will summarize mechanisms by which PKB mediates its anti-apoptotic activities in cells and survey recent developments in understanding mitochondrial dynamics and their role during apoptosis.  相似文献   

4.
5.
6.
7.
8.
In eukaryotic cells, G-protein-coupled receptors (GPCRs), non-transporting nutrient carrier homologues and active nutrient carriers have been recently shown to function as sensors that directly monitor the level of nutrients in the extracellular environment. The plasma membrane is not only the cellular boundary at which signalling molecules that govern metabolism and proliferation are detected, but also the boundary across which nutrients that sustain the generation of energy and building blocks are transported. Nutrient sensors combine these functions in various ways. Classical receptor proteins detect the presence of nutrients, carriers combine the functions of nutrient transporters and receptors, and carrier homologues have lost their transport capacity and become pure receptors. The activation of signal transduction pathways by nutrients adds a new layer to the regulatory network that controls metabolism and proliferation. Nutrient sensors highlight the importance of both nutrients as signalling molecules and nutrient carriers as receptors for signalling pathways.  相似文献   

9.
10.
11.
12.
The production of ROS is an inevitable consequence of metabolism. However, high levels of ROS within a cell can be lethal and so the cell has a number of defences against oxidative cell stress. Occasionally the cell's antioxidant mechanisms fail and oxidative stress occurs. High levels of ROS within a cell have a number of direct and indirect consequences on cell signalling pathways and may result in apoptosis or necrosis. Although some of the indirect effects of ROS are well known, limitations in technology mean that the direct effects of the cell's redox environment upon proteins are less understood. Recent work by a number of groups has demonstrated that ROS can directly modify signalling proteins through different modifications, for example by nitrosylation, carbonylation, di-sulphide bond formation and glutathionylation. These modifications modulate a protein's activity and several recent papers have demonstrated their importance in cell signalling events, especially those involved in cell death/survival. Redox modification of proteins allows for further regulation of cell signalling pathways in response to the cellular environment. Understanding them may be critical for us to modulate cell pathways for our own means, such as in cytotoxic drug treatments of cancer cells. Protein modifications mediated by oxidative stress can modulate apoptosis, either through specific protein modifications resulting in regulation of signalling pathways, or through a general increase in oxidised proteins resulting in reduced cellular function. This review discusses direct oxidative protein modifications and their effects on apoptosis.  相似文献   

13.
14.
The regulation of cell cycle and apoptosis is fundamental to the control of cell growth and organism homeostasis. Failure to efficiently regulate these processes often results in the increased cell growth observed in tumours. Accumulation of genetic lesions frequently eliminates these regulatory steps so it is imperative that multiple signalling pathways are employed to ensure that efficient control is maintained. Over the last few years a novel signalling pathway entered the limelight that prevents inappropriate activation of the cell cycle and can elicit apoptosis to limit cell numbers. Denoted the MST/hippo pathway, it is involved in regulating cell number in organism development and tumour progression. Here we aim to review the evidence for a conserved pathway from flies to mammals, and of equal importance to initiate the discussion on the additional cellular and signalling processes that have been adopted by this pathway to achieve further regulation and diversified cellular outcomes in mammals.  相似文献   

15.
16.
王雪丽  李珊  吕向阳  邹振 《昆虫学报》2022,65(4):512-521
吸血昆虫是可以传播病原微生物的一类节肢动物,包括蚊虫、白蛉、蠓、猎蝽、跳蚤等。由于其特殊的吸血习性,它们成为了疟疾、登革热、丝虫病、锥虫病等急性传染性疾病的媒介载体。虫媒疾病具有传播速度快、扩散面积广和危害重等特点,不仅严重危害人类健康,还容易造成巨大的经济损失。由于针对虫媒传染病的药物匮乏以及虫媒病原对化学药物抗性的不断增加,阻断吸血昆虫的生殖成为控制虫媒疾病传播的有效措施。保幼激素(juvenile hormone, JH)和20-羟基蜕皮激素(20-hydroxyecdysone, 20E)在昆虫生殖过程中扮演着重要的角色。JH与胞内受体复合物Met/Tai结合后调控JH/Met靶基因表达,进而促进卵黄发生过程,为昆虫之后的吸血及产卵提供了必要条件;20E胞内受体为EcR/USP组成的异源二聚体,两者结合后激活下游基因表达,诱导卵黄原蛋白(vitellogenin, Vg)合成,为发育的卵巢提供营养。营养信号通路(胰岛素信号通路以及氨基酸介导的雷帕霉素靶蛋白信号通路)同样可以激活Vg合成,促进昆虫生殖;此外,营养信号通路与JH和20E之间可以相互作用共同调控吸血昆虫发育和繁殖。碳水化合物代谢以及脂代谢等能量代谢过程是昆虫生殖过程中主要能量来源,可以满足吸血昆虫生殖发育不同阶段极高的能量需求。研究表明,JH和20E信号通路在能量代谢过程中起着重要的调控作用;微小RNA在蚊虫这一类吸血昆虫中被证明与肠道微生物稳态、血液消化以及脂代谢等生理学过程密切相关,进一步影响了蚊虫卵巢发育。近年来,随着分子生物学及测序技术的革新,吸血昆虫生殖调控机制的研究不断取得新的进展。本文主要阐述了吸血昆虫生殖调控的分子机制研究进展,以期为通过调控吸血昆虫生殖的方法以阻断病原传播提供重要线索。  相似文献   

17.
18.
19.
20.
Compartmentation in plant metabolism   总被引:6,自引:0,他引:6  
Cell fractionation and immunohistochemical studies in the last 40 years have revealed the extensive compartmentation of plant metabolism. In recent years, new protein mass spectrometry and fluorescent-protein tagging technologies have accelerated the flow of information, especially for Arabidopsis thaliana, but the intracellular locations of the majority of proteins in the plant proteome are still not known. Prediction programs that search for targeting information within protein sequences can be applied to whole proteomes, but predictions from different programs often do not agree with each other or, indeed, with experimentally determined results. The compartmentation of most pathways of primary metabolism is generally covered in plant physiology textbooks, so the focus here is mainly on newly discovered metabolic pathways in plants or pathways that have recently been revised. Ultimately, all of the pathways of plant metabolism are interconnected, and a major challenge facing plant biochemists is to understand the regulation and control of metabolic networks. One of the best-characterized networks links sucrose synthesis in the cytosol with photosynthetic CO(2) fixation and starch synthesis in the chloroplasts. One of the key features of this network is how the transport of pathway intermediates and signal metabolites across the chloroplast envelope conveys information between the two compartments, influencing the regulation of several enzymes to co-ordinate fluxes through the different pathways. It is widely accepted that chloroplasts and mitochondria originated from prokaryotic endosymbionts, and that new transporters and regulatory networks evolved to integrate metabolism in these organelles with the rest of the cell. Curiously, the present-day locations of many metabolic pathways within the cell often do not reflect their evolutionary origin, and there is evidence of extensive shuffling of enzymes and whole pathways between compartments during the evolution of plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号