首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Intercellular contacts between adjacent cells migrating over each other are important in many cellular processes. However, it has been difficult to visualize and identify dynamic intercellular adhesions between migrating cells in situ. METHODS: Two fluorescent membrane dyes, PKH2 and PKH26 for staining HT1080 and hematopoietic cells and cell lines, and an automated fluorescence microscopy system were used to monitor intercellular adhesion. RESULTS: Cellular extensions connecting two or more adjacent cells were visualized, showing the intercellular adhesion between migrating cells for minutes and up to hours. After cells adhered to each other, followed by cell migration in different directions, cellular extensions were dragged from the pivotal contact points in different focal planes. CD34(+)-enriched mobilized peripheral blood cells and six hematopoietic cell lines showed intercellular connections in cocultures with HT1080. However, the frequency of intercellular connections was variable in different cocultures. A cell density of about 3.1 x 10(4) cells/cm(2) for both cell lines in cocultures provided an adequate number of cells in each field of view, showing up to four intercellular connections per 100 total cells plated. DISCUSSION: The tools derived from this study will open new areas of investigation for understanding the mechanism of the intercellular adhesion process.  相似文献   

2.
3.
Reduction of lipofuscin-like autofluorescence in fluorescently labeled tissue.   总被引:19,自引:0,他引:19  
The fluorescent pigment lipofuscin accumulates with age in the cytoplasm of cells of the CNS. Because of its broad excitation and emission spectra, the presence of lipofuscin-like autofluorescence complicates the use of fluorescence microscopy (e.g., fluorescent retrograde tract tracing and fluorescence immunocytochemistry). In this study we examined several chemical treatments of tissue sections for their ability to reduce or eliminate lipofuscin-like autofluorescence without adversely affecting other fluorescent labels. We found that 1-10 mM CuSO4 in 50 mM ammonium acetate buffer (pH 5) or 1% Sudan Black B (SB) in 70% ethanol reduced or eliminated lipofuscin autofluorescence in sections of monkey, human, or rat neural tissue. These treatments also slightly reduced the intensity of immunofluorescent labeling and fluorescent retrograde tract tracers. However, the reduction of these fluorophores was far less dramatic than that for the lipofuscin-like compound. We conclude that treatment of tissue with CuSO4 or SB provides a reasonable compromise between reduction of lipofuscin-like fluorescence and maintenance of specific fluorescent labels.  相似文献   

4.
Actin and the light chains of myosin were labeled with fluorescent dyes and injected into interphase PtK2 cells in order to study the changes in distribution of actin and myosin that occurred when the injected cells subsequently entered mitosis and divided. The first changes occurred when stress fibers in prophase cells began to disassemble. During this process, which began in the center of the cell, individual fibers shortened, and in a few fibers, adjacent bands of fluorescent myosin could be seen to move closer together. In most cells, stress fiber disassembly was complete by metaphase, resulting in a diffuse distribution of the fluorescent proteins throughout the cytoplasm with the greatest concentration present in the mitotic spindle. The first evidence of actin and myosin concentration in a cleavage ring occurred at late anaphase, just before furrowing could be detected. Initially, the intensity of fluorescence and the width of the fluorescent ring increased as the ring constricted. In cells with asymmetrically positioned mitotic spindles, both protein concentration and furrowing were first evident in the cortical regions closest to the equator of the mitotic spindle. As cytokinesis progressed in such asymmetrically dividing cells, fluorescent actin and myosin appeared at the opposite side of the cell just before furrowing activity could be seen there. At the end of cytokinesis, myosin and actin were concentrated beneath the membrane of the midbody and subsequently became organized in two rings at either end of the midbody.  相似文献   

5.
We have developed a novel technique of using fluorescent tRNA for translation monitoring (FtTM). FtTM enables the identification and monitoring of active protein synthesis sites within live cells at submicron resolution through quantitative microscopy of transfected bulk uncharged tRNA, fluorescently labeled in the D-loop (fl-tRNA). The localization of fl-tRNA to active translation sites was confirmed through its co-localization with cellular factors and its dynamic alterations upon inhibition of protein synthesis. Moreover, fluorescence resonance energy transfer (FRET) signals, generated when fl-tRNAs, separately labeled as a FRET pair occupy adjacent sites on the ribosome, quantitatively reflect levels of protein synthesis in defined cellular regions. In addition, FRET signals enable detection of intra-populational variability in protein synthesis activity. We demonstrate that FtTM allows quantitative comparison of protein synthesis between different cell types, monitoring effects of antibiotics and stress agents, and characterization of changes in spatial compartmentalization of protein synthesis upon viral infection.  相似文献   

6.
Skeletal muscle F-actin and smooth muscle tropomyosin separately labeled with the fluorescent reporter group 5-iodoacetamidofluorescein (5-IAF) were further purified to yield G-actin fully competent to polymerize and tropomyosin able to bind specifically to F-actin. The two fluorescent proteins (dye content of 0.4–0.5 moles/mole of protein) were microinjected into tissue culture cells and their intracellular distribution was followed by TV image intensification. Fluorescent actin is found in the stress fibers and in the lamellopodia and ruffling edges of the cells. In addition a general cytoplasmic fluorescence is observed as well as fluorescent patches, which could be actin paracrystals. In contrast tropomyosin is not incorporated into ruffles although it is clearly seen along the stress fibers and gives rise to general cytoplasmic fluorescence. Control experiments using fluorescent serum albumin show no specific visualization of either stress fibers or ruffles. The specificity of the incorporation of the fluorescently labeled contractile proteins into the microfilament structures is further documented by the preparation of detergent resistant cytoskeletons which retain actin and tropomyosin in the appropriate structures but are devoid of fluorescent serum albumin. In addition the distribution of the contractile proteins in the living cells is affected by the microfilament specific drugs phalloidin and cytochalasin B (CB). The results obtained on live cells are in excellent agreement with conclusions drawn from immunofluorescence microscopical observations on fixed cells. In addition they directly prove the rather obvious point that contractile proteins are constantly rearranged in tissue culture cells.  相似文献   

7.
Diffusion of fluorescently labeled macromolecules in cultured muscle cells.   总被引:3,自引:2,他引:3  
Myotubes were obtained from culture of satellite cells. They had a sarcomeric organization similar to that of muscle. The diffusion in the direction perpendicular to the fibers of microinjected fluorescein isothiocyanate-dextrans of molecular weight ranging from 9500 to 150,000 was examined by modulated fringe pattern photobleaching. On the time scale of the observation, 10-30 S, all of the dextrans were completely mobile in the cytoplasm. The diffusion coefficients were compared to the values obtained in water. The ratio D(cytoplasm)/D(w) decreased with the hydrodynamic radius R(h) of the macromolecules. The mobility of inert molecules in muscle cells is hindered by both the crowding of the fluid phase of the cytoplasm and the screening effect due to myofilaments: D(cytoplasm)/D(w) = (D/D(w)) protein crowding x (D/D(w))(filament screening). The equation (D/D(w))filament screening = exp(-K(L)RCh) was used for the contribution of the filaments to the restriction of diffusion. A free protein concentration of 135 mg/ml, a solvent viscosity of cytoplasm near that of bulk water, and a calculated K(L) of 0.066 nm(-1), which takes into account the sarcomeric organization of filaments, accurately represent our data.  相似文献   

8.
Myosin subfragment 1 (S1) can be specifically modified at Lys-553 with the fluorescent probe FHS (6-[fluorescein-5(and 6)-carboxamido]hexanoic acid succinimidyl ester) (Bertrand, R., J. Derancourt, and R. Kassab. 1995. Biochemistry. 34:9500-9507), and solvent quenching of FHS-S1 with iodide has been shown to be sensitive to actin binding at low ionic strength (MacLean, Chrin, and Berger, 2000. Biophys. J. 000-000). In order to extend these results and examine the fraction of actin-bound myosin heads within the myofilament lattice during calcium activation, we have modified skeletal muscle myofibrils, mildly cross-linked with EDC (1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide) to prevent shortening, with FHS. The myosin heavy chain appears to be the predominant site of labeling, and the iodide quenching patterns are consistent with those obtained for myosin S1 in solution, suggesting that Lys-553 is indeed the primary site of FHS incorporation in skeletal muscle myofibrils. The iodide quenching results from calcium-activated FHS-myofibrils indicate that during isometric contraction 29% of the myosin heads are strongly bound to actin within the myofilament lattice at low ionic strength. These results suggest that myosin can be specifically modified with FHS in more complex and physiologically relevant preparations, allowing the real time examination of cross-bridge interactions with actin in in vitro motility assays and during isometric and isotonic contractions within single muscle fibers.  相似文献   

9.
Hybridomas with non-growth-associated antibody production are thought to exhibit enhanced specific monoclonal antibody productivity (q MAb) when subjected to hyperosmotic stress. Two hybridoma cell lines exhibiting non-growth-associated antibody production, S3H5/2bA2 and DB9G8 hybridomas, are cultivated in a batch mode using hyperosmolar media resulting from sodium chloride addition. Their response to hyperosmotic stress regarding q MAb is quite different, though they show similar depression of cell growth in hyperosmolar media. The q MAb of S3H5/2bA2 cells in a hyperosmolar medium (396 mOsm/kg, 10% fetal bovine serum (FBS)) is enhanced by approximately 180% when compared with that in a standard medium (283 mOsm/kg, 10% FBS), while q MAb of DB9G8 cells in the same hyperosmolar medium is enhanced by only 10%. Thus, the enhanced q MAb of hybridomas exhibiting non-growth-associated antibody production resulting from hyperosmotic stress is cell line-specific.  相似文献   

10.
Ob17 is a clonal cell line isolated from the epididymal fat pad of C57 BL/6J ob/ob mouse that differentiates into adiposelike cells in serum-supplemented medium. In serum-free medium, this cell line shows increased growth under the addition of insulin, transferrin, fibroblast growth factor (FGF), and a factor present in extract of rat submaxillary gland (SMGE). This medium is referred to as 4F. Epidermal growth factor or nerve growth factor cannot replace SMGE, whereas partially purified platelet extract can substitute for FGF but only partially for SMGE. 4F Medium is able to support the proliferation of cells from other established preadipocyte clonal lines, HGFu and 3T3-F442A, and also of preadipocyte cells isolated from the stromal-vascular fraction of rat and mouse adipose tissues. In each case 4F medium is insufficient to support the differentiation of these cells into adipocytes. Ob17 cells grown and maintained in serum-free hormone-supplemented medium retain the ability to convert to adiposelike cells after serum addition. This serum requirement for differentiation cannot be substituted by the addition of growth hormone or of other putative adipogenic factors, or both. The results are discussed with respect to the requirements for growth and differentiation of the 3T3-L1 and 1246 preadipocyte cell lines previously described.  相似文献   

11.
Summary Ob17 is a clonal cell line isolated from the epididymal fat pad of C57 BL/6J ob/ob mouse that differentiates into adiposelike cells in serum-supplemented medium. In serum-free medium, this cell line shows increased growth under the addition of insulin, transferrin, fibroblast growth factor (FGF), and a factor present in extract of rat submaxillary gland (SMGE). This medium is referred to as 4F. Epidermal growth factor or nerve growth factor cannot replace SMGE, whereas partially purified platelet extract can substitute for FGF but only partially for SMGE. 4F Medium is able to support the proliferation of cells from other established preadipocyte clonal lines, HGFu and 3T3-F442A, and also of preadipocyte cells isolated from the stromal-vascular fraction of rat and mouse adipose tissues. In each case 4F medium is insufficient to support the differentiation of these cells into adipocytes. Ob17 cells grown and maintained in serum-free hormone-supplemented medium retain the ability to convert to adiposelike cells after serum addition. This serum requirement for differentiation cannot be substituted by the addition of growth hormone or of other putative adipogenic factors, or both. The results are discussed with respect to the requirements for growth and differentiation of the 3T3-L1 and 1246 preadipocyte cell lines previously described. This work was supported by the “Centre National de la Recherche Scientifique” (Grant 1208-Biochimie du Développement and Grant 4162-Endocrinologie), by the “Ministère de la Recherce et de la Technologie” (Grant 81-L-1322), by the “Fondation pour la Recherche Médicale,” by NATO (Grant 1704), and by the “Institut National de la Santé et de la Recherche Médicale” (Grant 827006).  相似文献   

12.
Regulation of transferrin receptors in human hematopoietic cell lines   总被引:6,自引:0,他引:6  
Cells grown in the presence of ferric ammonium citrate or hemin exhibited a concentration and time-dependent decrease in 125I-transferrin (Trf) binding. In contrast, cells grown in the presence of protoporphyrin IX or picolinic acid (an iron chelator) exhibited a marked increase in Trf binding. The decrease or increase in binding activity observed under these different conditions of culture reflected, respectively, a reduction or increase in receptor number rather than an alteration in ligand receptor affinity. Growth of the cells in the presence of saturating concentrations of apotransferrin only induced a slight reduction in receptor number. Investigation of the Trf receptors' turnover and biosynthesis clearly showed that iron and hemin decreased the synthesis of Trf receptors without any modification of the receptor turnover; in contrast, protoporphyrin IX and picolinic acid markedly increased the synthesis of Trf receptors. Our results suggest that hemin, iron, and protoporphyrin IX may represent the main molecules involved in the regulation of Trf receptors.  相似文献   

13.
14.
Sorting of fluorescent cells is a powerful technique for revealing the cellular processes that differ among the various cell types found in complex tissues. With the recent availability of transgenic mouse strains in which specific subpopulations of neurons are labeled, it has become desirable to purify these fluorescent neurons from their surrounding hetereogeneous brain tissue for electrophysiological, biochemical and molecular analyses. This has been accomplished using automated fluorescence-activated cell sorting (FACS) and laser capture microdissection (LCM). Although these procedures can be effective, they have some serious disadvantages, including high equipment costs and difficulty in obtaining samples completely free of contaminating tissue. Here we offer an alternative protocol for purifying fluorescent neurons, which relies on less-expensive equipment, readily produces perfectly pure samples and can be applied to neurons that are only dimly labeled and present in low numbers. The entire protocol can be completed in 3-5 h.  相似文献   

15.
The tripeptide Lys-Cys-Lys has been synthesized and covalently labeled at the cysteine sulfhydryl with 4-acetamido-4-maleimidylstilbene-2,2-disulfonic acid to produce a fluorescent labeled peptide (FLP). When excited at 340 nm, the FLP fluoresces strongly with maximal intensity at 405 nm. Addition of proteins containing the kringle lysine-binding domain, such as human lipoprotein (a) and plasminogen kringle 4, significantly attenuate the fluorescence intensity of the FLP. Other proteins, such as bovine serum albumin, did not affect the quantum yield of FLP fluorescence. When human lipoprotein (a) is bound to a lysine-Sepharose affinity column, FLP was found to effectively elute the protein, indicating that the peptide can compete with lysine for the kringle-binding site on lipoprotein (a). The data suggest that FLP binds specifically to kringles through the lysine residues on the peptide, and that binding significantly affects the fluorescence from the labeled peptide. These properties of FLP make it a potentially useful tool for studying the relative affinity of different kringles for lysine binding, which is thought to be an important mechanism for kringle-target protein interactions.  相似文献   

16.
Fluorescently labeled desmin was incorporated into intermediate filaments when microinjected into living tissue culture cells. The desmin, purified from chicken gizzard smooth muscle and labeled with the fluorescent dye iodoacetamido rhodamine, was capable of forming a network of 10-nm filaments in solution. The labeled protein associated specifically with the native vimentin filaments in permeabilized, unfixed interphase and mitotic PtK2 cells. The labeled desmin was microinjected into living, cultured embryonic skeletal myotubes, where it became incorporated in straight fibers aligned along the long axis of the myotubes. Upon exposure to nocodazole, microinjected myotubes exhibited wavy, fluorescent filament bundles around the muscle nuclei. In PtK2 cells, an epithelial cell line, injected desmin formed a filamentous network, which colocalized with the native vimentin intermediate filaments but not with the cytokeratin networks and microtubular arrays. Exposure of the injected cells to nocadazole or acrylamide caused the desmin network to collapse and form a perinuclear cap that was indistinguishable from vimentin caps in the same cells. During mitosis, labeled desmin filaments were excluded from the spindle area, forming a cage around it. The filaments were partitioned into two groups either during anaphase or at the completion of cytokinesis. In the former case, the perispindle desmin filaments appeared to be stretched into two parts by the elongating spindle. In the latter case, a continuous bundle of filaments extended along the length of the spindle and appeared to be pinched in two by the contracting cleavage furrow. In these cells, desmin filaments were present in the midbody where they gradually were removed as the desmin filament network became redistributed throughout the cytoplasm of the spreading daughter cells.  相似文献   

17.
Studying the structure and dynamics of proteins in live cells is essential to understanding their physiological activities and mechanisms, and to validating in vitro characterization. Improvements in labeling and imaging technologies are starting to allow such in vivo studies; however, a number of technical challenges remain. Recently, we developed an electroporation-based protocol for internalization, which allows biomolecules labeled with organic fluorophores to be introduced at high efficiency into live E. coli (Crawford et al. in Biophys J 105 (11):2439–2450, 2013). Here, we address important challenges related to internalization of proteins, and optimize our method in terms of (1) electroporation buffer conditions; (2) removal of dye contaminants from stock protein samples; and (3) removal of non-internalized molecules from cell suspension after electroporation. We illustrate the usability of the optimized protocol by demonstrating high-efficiency internalization of a 10-kDa protein, the ω subunit of RNA polymerase. Provided that suggested control experiments are carried out, any fluorescently labeled protein of up to 60 kDa could be internalized using our method. Further, we probe the effect of electroporation voltage on internalization efficiency and cell viability and demonstrate that, whilst internalization increases with increased voltage, cell viability is compromised. However, due to the low number of damaged cells in our samples, the major fraction of loaded cells always corresponds to non-damaged cells. By taking care to include only viable cells into analysis, our method allows physiologically relevant studies to be performed, including in vivo measurements of protein diffusion, localization and intramolecular dynamics via single-molecule Förster resonance energy transfer.  相似文献   

18.
Porcine brain tubulin labeled with fluorescein isothiocyanate (FITC) was able to polymerize by itself and co-polymerize with tubulin purified from starfish sperm flagella. When we injected the FITC-labeled tubulin into unfertilized eggs of the sand dollar, Clypeaster japonicus, and the eggs were then fertilized, the labeled tubulin was incorporated into the sperm aster. When injected into fertilized eggs at streak stage, the tubulin was quickly incorporated into each central region of growing asters. It was clearly visualized that the labeled tubulin, upon reaching metaphase, accumulated in the mitotic apparatus and later disappeared over the cytoplasm during interphase. The accumulation of the fluorescence in the mitotic apparatus was observed repeatedly at successive cleavage. After lysis of the fertilized eggs with a microtubule-stabilizing solution, fluorescent fibrous structures around the nucleus and those of the sperm aster and the mitotic apparatus were preserved and coincided with the fibrous structures observed by polarization and differential interference microscopy. We found the FITC-labeled tubulin to be incorporated into the entire mitotic apparatus within 20-30 s when injected into the eggs at metaphase or anaphase. This rapid incorporation of the labeled tubulin into the mitotic apparatus suggests that the equilibrium between mitotic microtubules and tubulin is attained very rapidly in the living eggs. Axonemal tubulin purified from starfish sperm flagella and labeled with FITC was also incorporated into microtubular structures in the same fashion as the FITC-labeled brain tubulin. These results suggest that even FITC-labeled heterogeneous tubulins undergo spatial and stage-specific regulation of assembly-disassembly in the same manner as does sand dollar egg tubulin.  相似文献   

19.
The two major proteins in the I-bands of skeletal muscle, actin and tropomyosin, were each labeled with fluorescent dyes and microinjected into cultured cardiac myocytes and skeletal muscle myotubes. Actin was incorporated along the entire length of the I-band in both types of muscle cells. In the myotubes, the incorporation was uniform, whereas in cardiac myocytes twice as much actin was incorporated in the Z-bands as in any other area of the I-band. Labeled tropomyosin that had been prepared from skeletal or smooth muscle was incorporated in a doublet in the I-band with an absence of incorporation in the Z-band. Tropomyosin prepared from brain was incorporated in a similar pattern in the I-bands of cardiac myocytes but was not incorporated in myotubes. These results in living muscle cells contrast with the patterns obtained when labeled actin and tropomyosin are added to isolated myofibrils. Labeled tropomyosins do not bind to any region of the isolated myofibrils, and labeled actin binds to A-bands. Thus, only living skeletal and cardiac muscle cells incorporate exogenous actin and tropomyosin in patterns expected from their known myofibrillar localization. These experiments demonstrate that in contrast to the isolated myofibrils, myofibrils in living cells are dynamic structures that are able to exchange actin and tropomyosin molecules for corresponding labeled molecules. The known overlap of actin filaments in cardiac Z-bands but not in skeletal muscle Z-bands accounts for the different patterns of actin incorporation in these cells. The ability of cardiac myocytes and non-muscle cells but not skeletal myotubes to incorporate brain tropomyosin may reflect differences in the relative actin-binding affinities of non-muscle tropomyosin and the respective native tropomyosins. The implications of these results for myofibrillogenesis are presented.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号